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Abstract. The vector equation of radiative transfer is solved both for conservative and non-conservative 
planetary atmospheres using the method of discrete ordinates. The atmosphere, bounded by a Lambert 
bottom, is considered plane-parallel: and homogeneous. The scattering in the atmosphere obeys the 
Rayleigh or Rayleigh-Cabannes law. The compiled package of FORTRAN codes allows us to find the 
Stokes parameters for such an atmosphere at arbitrary optical depth. 

1. Introduction 

The brightness and polarization of the sunlit sky had been a major challenge for 
theoreticians for 76 years: the problem was first posed by Lord Rayleigh in 1871 
and it was solved in an elegant way by Chandrasekhar in 1947. 

The problem itself is clear enough - a parallel beam of the Sun's radiation 
(natural or in a given state of polarization) is incident on a plane-parallel homo- 
geneous atmosphere of optical thickness 7o in some specified direction which is 
characterized by the cosine of the incident angle 00. It is required to find the 
external field of radiation, i.e., the distribution of intensity and polarization of the 
light, diffusely transmitted by the atmosphere at ~-= T0 and of the light diffusely 
reflected by the atmosphere at ~-= 0. 

A proper vector equation of transfer was formulated and solved by Chandra- 
sekhar (1947) using the method of discrete ordinates. 

For a conservatively-scattering atmosphere he succeeded in factorizing the 
characteristic equation which allowed to express the solution in an explicit form. 

Applying this solution to the problem of determining the brightness and polariz- 
ation of the sunlit sky, Chandrasekhar arrived at the theoretical results (Chandra- 
sekhar and Elbert, t954) which coincided very well with those obtained experimen- 
tally (Dorno, 1919). 

Since then Chandrasekhar's solution has been used to explain many other 
features of radiative transfer and a voluminous set of tables has been compiled by 
Coulson et al. (1960) which is convenient for obtaining instant estimates of radi- 
ation field on Rayleigh scattering. Later on a lot of new methods to solve the 
vector equation of radiative transfer was elaborated which were powerful enough 
to cope with more general phase matrices than that of Rayleigh and in the same 
time allowing for the actual distribution of physical parameters in the atmosphere. 
Here we refer only to some of them: 

(a) iteration methods, 
(b) method of singular eigenfunctions, 
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(c) method of matrix operators, 
(d) adding method, 
(e) method of invariant imbedding etc. 

The descriptions of these methods and the respective references are given by 
Hansen and Travis (1974) and van de Hulst (1980). 

But, in elaborating new methods one has to rely on some firm benchmark 
results, which one's own results may be compared with. It is highly recommended 
that the accuracy of those benchmark results are known. For such a purpose the 
method of discrete ordinates is suited best. 

Since the Rayleigh phase matrix is reducible with respect to the Stokes par- 
ameter V and since the various coefficients in the Fourier expansions of/ l ,  L and 
U have certain simple relations of proportionality, the solution of transfer equation 
reduces to the solution of one two-component vector equation and four scalar 
equations of pseudo-problem. 

In the present paper the two-component vector equation was solved using the 
method of discrete ordinates for both conservative and non-conservative atmos- 
pheres (cf. Code, 1950). The attempts to use the Sobolev method of resolvent 
function for non-conservative atmospheres were unsuccessful as stated also by 
Domke (1971). 

The remaining four scalar equations were solved using the approximation of the 
Sobolev resolvent function (Viik et al., 1985). 

As a result the explicit formulae were obtained to determine both the external 
and internal radiation field in case of illuminating the atmosphere with a parallel 
beam in a given state of polarization. 

This solution has been generalized for the case of the Rayleigh-Cabannes phase 
matrix, i.e., when light is scattered by anisotropic particles or in a spectral line 
which bring along a certain component of non-polarized light. 

The Lambert reflecting ground of the atmosphere is taken into account as well. 
Since the isotropy of the Lambert reflector it is clear that the ground does not 
affect the Stokes parameters U and V. 

A package of FORTRAN subroutines has been compiled to solve the problem 
posed above (Viik, 1989) and a series of numerical experiments have been carried 
out to determine the limits and possibilities of the method described. 

2. Formulation of the Problem 

If the scattering in an atmosphere is described by a phase matrix Z, the Stokes 
parameters of the radiation field I = (It, L, U, V) T satisfy the following equation 
of transfer 

/x aI(~',/x, ~v, "to) _ I('r,/x, ~, "to) - 1 A  e-~/~°Z(/~, qv; -/Xo, q~o)F- 
0T 4 
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where 

2 r r  + 1  

0 - - 1  

(1) 

F = (FI, Fr, Fv,  Fv) T (2) 

is the Stokes vector which represents the parallel beam of radiation incident on 
the atmosphere in the direction (-/-to, q~o). The net fluxes of the incident beam 
per unit area normal to the beam are ~rF. In Equation (1) /* denotes the cosine 
of the angle to the outward normal and ~ the azimuth angle. And, finally, A is 
the albedo of single scattering (0 < A ~< 1), r - the optical depth, measured from 
the upper boundary of the atmosphere and ro is the optical thickness of the 
atmosphere. 

If the atmosphere is bounded by a Lambert  reflector with albedo )to and there 
is no incident diffuse radiation at r = 0, the boundary conditions for Equation (1) 
are 

where 

I(0, -/ .z,  ~o, to) = 0 ,  

I(ro,/x, , ,  to) = Ao/Xo e-'o/~oEF + 

2 r r  i 

f f  + -- hoE dr¢' 
"/r 

o o 

- t*' ,  *o ) ,  (3)  

°i) E = I  1 1 0 
0 0 

0 0 

(4) 

If the atmosphere scatters according to the Rayleigh or Rayleigh-Cabannes 
phase matrix the Stokes parameter V is uncoupled from parameter 1l,/r and U. 

Chandrasekhar (1960) has shown that the parameter V may be written in the 
form 

V(, ,  IX, ~, to) = ~Fv[ -  /~/*of(3)(r, /*, /*o, to) + 

+ (1 -/x2)1/2(1 - 1~)l/2f(4)(r, IX, p-to, to) cos(q~o - p)].  (5) 

where the f(o are the solutions of two scalar equations which will be dealt with 
further. Henceforth we observe the 3-component vector equation, the phase matrix 
of which is described as 

Z(I*, ~; ~o, q~o) = cZ*(t*, ~; ~o, Po) + (1 - c)E,  (6) 
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where the coefficient c is expressed in terms of depolarization factor pn in the 
form (cf. Penndorf, 1957) 

2(1 - Pn) 
c = (7) 

2 + p n  

The Rayleigh phase matrix Z* may be decomposed in the form 

where 

Z*(/1, C;/10, Co) = Z(°)(/1,/10) + (1 -/12)1/2(1 --/.~)112 X 

X Z(1)(/1, C; ~IIO, CO) "t- Z(2)(/1, C; /10, CO), 

[2(1_/12)(1_/12)+/12/~ /12 i)  
Z(O)(/1,~)= \ 3{ /18 0 0 1 , 

(8) 

(9) 

3 / 2/1/1o cos(co - C) 

z(1)(m c;/1o, co) = 2 ~ o 
- 2/1o sin(co - C) 

Z(2)(/1,  C; /10, CO) = 

3 [/12/12 cos 2 (Co-  C) 

= _ :1 _/12 cos 2(Co - C) 

4 \ _  2/1/18 sin 2(Co - C) 

0 sin(co - c )~  

) 0 0 

0 cos(co c) 

_/12 cos 2(Co - C) 

cos 2(Co - C) 

2t* sin 2(Co - C) 

/12/,£ 2 sin 2(Co - C) \ 

- / 1 o  sin 2(Co - C) 

2/1p~) cos 2(Co - C)/  

(11) 
The solution of Equation (1) is written in the form 

I(r,/1, C, to) = I(°)(r,/1, to) + (1 -/12)1n(1 - ~)l/21(1)(T, /..6, C, TO) -}- 

+ I(2)( r,/1, C, to).  (12) 

According to Chandrasekhar (1960) we may write 

I(1)( T, /1, C, TO) ~-- Z(1)(/1,  C; --  /10, Co)Ff (1) (  "r , /1 , /1o,  TO), (13) 

I(2)( r,/1, C, to) = Z(2)(/1, C; - /1o,  Co)Ff(2)(% ~,/1o, ~'o). (14) 

The functions f(o in Equations (5), (13) and (14) satisfy the scalar equation of 
transfer for a pseudo-problem 

/1 
of(o(,, to) 1 /1, /1o, =f(i)(r,/1,/1o, ro) 21  - -  e - " r / JXO - -  

Or 4 
+1 

- A f g~°(/1')f(i)(r, IX',/1o, to) d/1', 
- - 1  

i =  1 , . . . , 4 ,  (15) 
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where 
*(1)(/.t) = 3(1 --/x2)(1 + 2/z2), 

. ( 2 ) ( / 1  ) = 3(1 + / . { 2 ) 2  ( 1 6 )  

3 2 *(~)(~) = a ~  , 

, ( 4 ) ( / A , )  = 3(1 _ / . 1 , 2 ) .  

Henceforth we shall use the Mullikin indices (1966). 
It has been shown that the solution of equations (15) may be written (cf. Viik 

et al . ,  1985) as 

f ( i ) ( r ,  I x,  tXo, to) - *lXo {X(i)(/Xo, ro)[x(i)(r ' tx, ro) + y(O(r,  /Xo, to) - 1] - 
/x +/Xo 

- V(i)(t*o, ro)[X(O(ro - r, tZo, to) + y(O(ro - r, la., ro) - 11}, (17) 

where 

f(O(~, - t*,/Xo, to) 

- *---~--~ { x ( O ( ~ o ,  C o ) I V ( o ( , ,  ~ ,  ¢o) - y ( O ( ¢ ,  ~ o ,  , o )1  - 
/x-/Xo 

- Y(0(/Xo, T0) [x ( i ) ( ' r 0  - -  T, ].L, TO) - -  x(i)('l 'O --  "i', P43, '] '0)]} , (18) 

-r o 

x ( i ) ( r , / x ,  to) = 1 + f qCi)(t, %) e -( '- ') /~ dt ,  

T 

T 

y(0(r,/x, To) = e - ' / "  + f q)(i)(t, to) e -( '-t)/~ dt, (19) 

0 

X{i ) ( / .g ,  TO) ~--X(i)(O,  1.6, ~ 0 ) ,  

Y(i)(tz, ~'o) = y( i ) (%,  tx ' To ) 

and (F(o is the resolovent function of Sobolev (1972) which satisfies an integral 
equation 

ro 

~( i ) ( r ,  To) = f K(i)(l t  - rJ)~(i)(t, %) dt + K(i)(r), (20) 

0 

where 
1 

K(O(r)  = a f *(0(s) e -'/" ds/s ,  

0 

i = 1 . . . .  , 4 .  (21) 
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Applying the method of resolvent function approximation (Viik, 1986) we may 
easily find the functions (19) and the respective solutions, Equations (17) and (18). 

If 0n =~ 0 then in Equation (15) we have to use the proper albedos of single 
scattering. According to Chandrasekhar they are 

h (1) = h (2) = CA, 

h(3) = h(4) _ 2(1 - 2pn) h. (22) 
2 +  Pn 

3. The Solution of the Vector Equation of Transfer 

After the transformations described above we are left with a two-component 
vector equation of transfer 

0I(°)(r, ~, ~ ,  Zo) 
/~ = I(°)(r,/~,/-~o, To) - 

Or 
+1 

-1Ac f 
2 

- i  

Z(°)(/~, P/)I(°)(~ ",/~',/~o, %) d~'  - 

+1 

-½h(1 - c)E f I(°)(r,/z',/~o, ¢o) d/~' - 
- 1  

-I~-aZ(O)(lZ, l, Zo)+~(1-c)hE]Fe-'/~*o. (23) 

Following the Chandrasekhar method of replacing integrals by the correspond- 
ing Gauss sums of order of N in the interval (0, 1) we obtain the solution of 
Equation (23) in the form (Viik, 1989) 

N 

II(r, +-I~i, /Zo, to) = ~] a~Q~(Kt3) e-"~'~ + 
13=1 

N 

+ ~ bt3Q?(Kt3) e-'~('0 -~) + 
/3=1 

N 

+ ~ c~,QT(k,~)e-k"~+ 

N 

+ ~ d,~QF(k,~) e -k~(~-°-~) + 
a = l  

Atx2 + B 

1 +_ txi/tXo 
e-~/,~., (24) 
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L(r ,  +-Ix~, tXo, to) = 

N 

a13R~(K13) e - ~ "  + 
13=1 

N 

+2 
13=1 

N 

+ ~ c~R~(k~)e-~o~+ 

N 

+2 
o e = l  

C 
q e -  rlt*o , 

1 +_ ixi/iXo 

b13R2(K13) e - ~  ('o - ~) + 

-T- dc~Ri (k~) e-G(-o-') + 

(25) 

where 

Q . ( x )  - I't2 + z (x)  and RT(x )  - v(x) (26) 
1 +- t*~x 1 +- I.t~x 

This solution is valid only for the non-conservative Rayleigh-Cabannes atmos- 
phere (a ~e 1, p~ 4= 0). For a conservative Rayleigh-Cabannes atmosphere (A = 
1, p~ :~ 0) there are minor differences in Equations (24) and (25); namely, the first 
two summations begin from 13 = 2 and we have to add to both formulae the 
following term 

ai + b l ( r  + - Ix,). 

If we have the conservative Rayleigh atmosphere (h = 1, p~ = 0) then the solu- 
tion of Equation (23) is (cf. Chandrasekhar, 1960) as 

N 

It(r, +-IXi, IXo, to) = a, + ~ a~Orf(K13) e-Ke ~ + 
13=2  

N 

+ bl(~ +- ~i) + ~, b13Q?(K13) e-~(~o - ~) + 
1 3 = 2  

N N 

+ E c~QF(k~) e - % ' +  ~ d~Q?(k~)  e-%(~o ~) + 
a = l  a = l  

+ A t  * 2 + B  
- -  e r / .o  , 
1 +_ ixJlxo 

N 

I,.(r. +-t~,, /Zo, "Co) = a1 + b f f  r +- IX,) - ~ c~R~(k~)  e-k~ " -  
ot=l  

N 

d~Ri (k~) e-G(~o -~) + c - ~- - -  e - ~ / ~ o ,  ( 2 8 )  
~= 1 1 +-/xJ/Xo 
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1 - ~2 
Q ( )  i 

+_K~_ 1 +- t*,K~ 
Q+-(ko,) = 1 +- k~,Iz~, 

and (29) 
k 2 -  1 

e ? ( k ~ )  - 1 +_ mk~ 

The two functions z and v are to be found f rom the coupled algebraic system 

z[1 - 2s~(Do - D2) - (Do] - v(Do = 2~:(D2 - D4) + ~'D2, 

- z(~D2 + (Do) + v[1 - Do(~+  ()] = ~D4 -I- (D2 ,  

3 
= ~ac,  ; = ¼ a 0  - c) 

where  

(30) 

where  

Dm = Dm(/-~a). 

The  constants  Kt~ and k~ we find f rom the condi t ion that  the de terminant  of  the 

system of  homoge ne ous  linear algebraic equat ions  obta ined  f rom the general  

solution of  Equa t ion  (23) is equal  to zero 

[3A(Do - D2) - 4][3Ac(Do - D2) - 81 - 36Ac(1 - A)D4 + 

+ 12AD2[c(3 - A) - 2] + 8A(1 - c)Do = 0, (33) 

where  D,n is given by Equa t ion  (31)• 
This equat ion  has exactly N pairs of  solutions -+x if A 4= 1. In  the conservat ive 

N 

D,.,,(x) = 2 ~ WitZm 
i= 1 1 - -  1,£2X 2 

In  Equa t ion  (31) IZi and wi are the points and weights of  the gaussian quadra ture  

of  order  N in the interval (0, 1). 

The  coefficients A,  B and C of  the part icular  solutions we find f rom the following 

algebraic system 

A[1 - ~(3D4 - 2D2)] - ~B(3D2 - 2D0) - ~CDo = 

1 2 = 5~[(3/~o - 2)F~ + Fr ] ,  

- A[2~(D2 - D4) + ~'D2] + B[1 - 2~(D0 - D2) - ~'Do] - ~CDo = 

= se(1 - I~)F~ + ~-~(FI + Fr ) ,  

- A ( ~ D 4  + (D2) -B(s~D2 + (Do) + C[1 - D o ( ~ +  ~')] = 

1 2 = 5~(l~oF~ + F,) + ½((Ft + f , ) ,  (32) 

and (31) 
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case the number of pairs of solutions is N -  1 since x z = 0 is a root of Equation 
(33). 

We note that if A = 1, Equation (33) does not coincide with Equation (246) 
given by Chandrasekhar (1960, ch. X, §74). 

The roots of characteristic equation (33) satisfy the following inequalities: 

0 <  Ixll < ~ g  I < Ix21 < ~ - ,  < . . .  < [XNI < Ixf  x , 

which make solution of Equation (33) very easy. Though Equation (30) cannot 
be factorized as in the case of conservative Rayleigh atmosphere, we relate the 
smaller roots in intervals (/x2 ~,/x~-_~) to the l component and denote them by 
K~(fi = 1 . . . .  , N), and the larger roots to the r component and denote them by 
k~(~ = 1 , . . . ,  N). 

4. The Boundary Conditions of Equation (23) 

The only coefficients in Equations (24) and (25) which are still undetermined are 
the coefficeints a/3, b/3, c~ and do. They are to be found from the boundary 
conditions (3) which for the two-component problem may be written in the form 

h ( 0 ,  - ~ i ,  ~o ,  To) = It(0,  - ~ i ,  ~o,  To) : 0 ,  

I~(~o, ~i ,  ~o ,  To) = Ir0-o, ~,~, m ,  To) = 
1 

Fr) -}- I~o ~ [ / / ( T o ,  --/L~¢, tt/,0, TO) e-~-o/~o(f l + + 

0 

+ It(to, -/x' , /x0, To)l/x' d/x'. (34) 

Here  we have to distinguish between three cases: 

1. A ¢ 1, p, :P 0, 
2. A= 1, p, 4:0, 
3. A= 1, p , = 0 .  

Firstly, using Equations (24) and (25) and Equations (34) we arrive at the 
following results 

N N 

E a/3Qc(Kt3) + E b/3Q+(K/3) e-"~'o + 
/3=1 p = l  

N N 

+ ~ c~Q2-(k~) + ~ d~Q+(k~) e-k~o = - Atx~ + B (351 
= i ~= 1 1 - txi/tXo' 

N N N N 
~, a~RE(K~)+ E b¢R+(K¢)e ,,~,o+ ~ c~R?-(k,~)+ ~ d~R+(k~)x  

/3=1 13=1 c~=l c~=l 

C 
x e - k ~ 0 -  , (36) 

1 - txi/IXo 
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N N N 

E a¢IIJ-(K~3)e-~'o+ E b~IIT(K~)+ E c,~rI?(k~)e -k~'°+ 
/3=1 /3=1 a = l  

N 

+ ~ dflli-(k~) = A-(/Xo) -.A/x} +______BB e_~.o,,.o, 
~=~  1 ~- ~lbi]l-£ 0 

(37) 

N N N 

~. at3P+(K~)e-~o'o+ ~ b~Pi-(K~)+ ~ c~P+(k~)e -k~r°+ 
13=1 13=1 ~ = 1  

N C 
+ E d~Pr,(k~)= A-(txo) . e -~°°*°, 

o~= 1 1 -]- I~ill&o 

(38) 

where 

t i T ( x )  = O ? ( x )  - 3 . o T ? ( x )  , 

P ~ ( x )  = R ~ ( x )  - 3 . o T ; - ( x )  , 

A-(p-o) = 3.o[ADf(txg *) + Dg(/Xo-1)( B + C)] × 

1 e-~o/~*o(F, + F~) x e-~o/,*o + 53.o/~ 

(39) 

and 

TT(x) = D~(x) + D~(x)[z(x) + v(x)]. 

For the second case the respective Equations differ from Equations (35)-(38), 
namely, the summation with respect to index fi starts from /3---2. Besides, in 
Equations (35) and (38) there appear the following supplementary terms 

al -- bll, Zi , 

and in Equations (37)-(38) 

a1(1 - ho) + b,[r0(1 - ao) +/xi + 23.0]. 

For the third case - pure Rayleigh scattering - we prefer to write down the 
respective boundary conditions explicitly 

N N N 

al + E aoQT(K~)- bltzi+ ~. bt3Q+(Kt3)e -~ ' °+  E c~QE(k~)+ 
/3=2 /3=2 a = l  

N A/x 2 + B 
+ , (40) + E d~Qi (ks)e -k~'o - -  

~= 1 1 - tXi /  l~o 

N N N 

al + ~ apRF(~:~) - blp.i + E b~R+(Ke) e - '~°  + E c,~RT-(k~) + 
¢~=2 13=2 n*=l 

N C 
+ ~ d~R+(k,~)e-%'o= 

~== 1 -/~Jt*o 
(41)  
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N 
2 

al(1 - A0) + ~ a~II+(K~) e-K~ "0 + bl[zo(1 - A0) +/-ti + 5A0] + 
13=2 

N N 

+ ~ bt31I~(K~)+ ~ c~[I~(k~)e-%~o+ 

N 

+ ~ d~flF(k~) = A-(/Xo) At4Z+--B e-.o/.o, 
,~=~ 1 + txJtXo 

2 
al(1 - ao) + bl[r0(1 - ao) +/~i-l- 3/~0] -}- 

N N 

+ ~ c~P;(k~)e-k~~o + ~ d~Pi-(k,~) 
a = l  a=l 

C 
= a-(/Xo) e -~o/'~o , 

1 + tzill~o 

where we have used Equations (27)-(29) and (39), only 

and 

T{(tq~) = D~(Kt~ ) - Df(K~) 

(42) 

(43) 

r _ + ( k . )  1 1 = g --- gk= + (1 - k2)D~(k=). (44) 

The boundary conditions (35)-(38) or (40)-(43) give us a set of linear algebraic 
equations of order 4N which are easy to solve using any of the well-known methods 
(Press et al., 1986). 

Thus, we have completed the solution of the two-component vector transfer 
equation. 

5. Numerical  Results 

A package of subroutines has been written in FORTRAN to compute the Stokes 
parameters in a plane-parallel homogeneous atmosphere illuminated by a parallel 
beam (Viik, 1989). This package has been extensively used to find out how the 
non-conservativeness of the atmosphere or the anisotropy of its particles influence 
the radiative field. 

Following van de Hulst (1980), we determined the intensity of the solar radiation 
in the zenith and nadir when the sun is overhead or 30 ° above the horizon, the 
optical thickness of the atmosphere varying from zero to infinity. The zenith 
intensity displays a clear maximum in the range of optical thicknesses r0 = 0.5 - 2.5 
(Figure 1). Decrease in 3. naturally decreases also the zenith intensity shifting the 
maximum to optically thinner atmospheres. 

In thick absorbing atmospheres the nadir intensity shows the saturation effect 
the level of which depends on the albedo of single scattering, and which is more 
pronounced for the lower Sun (Figure 2). 



2 7 2  T O N U  VHK 

0.¢ 

I 

0.3 

0.2 

0.1 

I I 
ZENITH INTEN$1TY 

boo = 1.0 

- - -  po  = 0.5 

I I I 
A - f . O  

0.9 

0 . ~  ~ 

t 0.9 

1 1  0.5 ,~ 

0.7 
t i  S "~" -,~ 

[ i / :  " " " 
I I I I ~ ' " ~ " ~ _ _  

0.? 0.6 0.5 0.~ 0.3 0.2 0.1 0 

(Z-o+ l.qgq) -1 

Fig. 1. The intensity of the solar radiation in the zenith as a function of the optical thickness of the 
Rayleigh scattering atmosphere for different angles of incidence and albedos of single scattering. 

The  R u b e n s o n  degree  of polar iza t ion  ( R D P )  in zenith 

p _ L(O, 1,/~o, ~'o) - It(O, 1,/Zo, to) 

L(O, 1,/Zo, to) + I~(0, 1, ~o, To) 

as a funct ion of the optical  thickness of  the  a t m o s p h e r e  is given for  different  
al t i tudes of  the sun, a lbedo  of single scat ter ing,  factors  of  depolar iza t ion  and states 
of  polar iza t ion  of  the incident  flux (Figures 3, 4 and 5). 

I t  appea r s  tha t  for  the na tura l  incident  flux (F~ --- Fr = 0.5) the R D P  is high for  



R A Y L E I G H  S C A T T E R I N G  IN P L A N E T A R Y  A T M O S P H E R E S  273 

/,0 

0.0 

0.6 

0.~ 

0.2 

I I I I I I 

NAOIR INTENMTY 

juo = 1.0 

- - -  )ao=O.S 

0.9 

/ 1 1 / ~ 0  
/ 

/ 
/ 

/ 
/ 

J i 0.7 
f 

f ~  

0.9 

0.5 

O.Z 

0.f" 

LmW'~- I I I I I I I 
0.7 0.6 0.$ 0.~ 0.3 0.2 0.1 0 

(~o + t~g~)-' 

Fig. 2. The intensity of the solar radiation of the nadir as a function of the optical thickness of the 
Rayleigh scattering atmosphere for different angles of incidence and albedos of single scattering. 

th inner  a t m o s p h e r e s  where  the pure  Rayle igh  scat ter ing domina tes  when  the sun 
is low. The  R D P  decreases  towards  optical ly th icker  a tmosphe re s  reaching zero 
for  semi-infinite a tmospheres .  This  decrease  is m o r e  s teep for  higher  values  of  A 
(Figure 3). 

I f  the incident  flux is l inearly polar ized  in the l direct ion (Figure 4) or  in the r 
direct ion (Figure 5) the R D P  shows roughly  the s ame  behav iou r  - it decreases  (in 
absolu te  value)  towards  opt ical ly thicker  a tmospheres .  
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Fig. 3. The Rubenson degree of polarization at zenith for the solar radiation as a function of the 
optical thickness of the atmosphere, the altitude of the sun, albedo of single scattering and the factor 

of depolarization. 

Fo r  fur ther  illustration, Figures 6, 7, 8 and 9 show the R D P  of  light diffusely 

reflected f rom a semi-infinite a tmosphere  in the principal plane as a function o f  

h, c and the state of  polar izat ion of  the incident flux. Figure 6 for h = 1 coincides 
with the Figure 16.2 of  van de Hulst  (1980). Since every act of  scattering reduces 
the R D P ,  Figures 6 and 7 show the larger scale of  R D P  values for absorbing 

a tmospheres .  If  the incident flux is linearly polar ized in the I direction, i.e., in the 

principal plane,  there  arises a small area of  negative R D P  for  the zenith source 
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Fig. 4. The Rubenson degree of polarization at zenith for the linearly polarized incident flux (Fc = 

1, FR = 0) as a funct ion  of the optical thickness of the Rayleigh scattering atmosphere, the altitude of 

the source and albedo of single scattering. 

and grazing view angles (q~ = 0) and for the same situation in the antisolar direction 
(Figure 8). 

If the incident flux is linearly polarized in the r direction the isolines of the RDP 
are symmetric with respect to the l ine/x = 1 (Figure 9). For grazing incidence and 
view angles the RDP reaches nearly 100%, since the radiation at these angles 
cannot penetrate deep in the atmosphere and the single-scattering approximation 
dominates. In Figure 10 we display the isolines RDP = 0 as functions of T0, /X and 
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of the source and albedo of the single scattering. 

h for the natural incident flux at the angle -81° .4  both for the reflected and 

transmitted light. In the (/Xo, r0) plane the increase in absorption reduces the areas 
with negative RDP.  As indicated by Dave and Furukawa (1966) for h = 1 we 
observe four neutral points for the transmitted light in region r0 ~ 1.25 - 1.65. For  
h = 0.8 this region is only r0 ~ 0.8 - 1.05. We studied the neutral curves for the 
transmitted light in more  detail for two values of h -  1.0 (Figure 11) and 0.5 
(Figure 12). Both figures show the neutral curves in (/z, to) plane. In the conserv- 
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scattering. 

ative a tmosphere  the neutral  curves for small tzo both for solar and antisolar 

directions are approximate ly  symmetr ic  and equal in area. The larger the angle 

arc cos / Io  the smaller area is covered by the neutral  curve in antisolar direction 
and if/~o ~ 0.5 this area vanishes comple te ly  (for the absorbing a tmosphere  this 
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situation arrives at p-~ -~ 0.3). In solar directions the neutral bubble becomes larger 

with the growth of /~.  and 'takes off' from ~he ~ - 0 axis, The bubble flattens and 
i f /zo = 1 it degenerates into the l ine / z  = 1. The evolute of  the neutral curves is 

approximately a straight line 
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/~ = 0.215~-o - 0.312 (#o = 0 . 1 , . . . ,  0 .9) .  

The  max imum optical thickness o f  an a tmosphere  for  which there  exists a 

region with negat ive polar izat ion in the principal plane (for given p-o) may  be 

approximated  by a simple formula  



280 "ram, vnK 

o.o / , , > f - -  i , 

~u 0.00 

0.2 - jo.90 
0.75, ./,. . / "  

~=Jr 

0.5 I'" 
jff 

1 Ifj 
-- / / J  

.f .... ~-o.~ / 
, ' 1  ~ = o / 

,o-,(~ ~,  (, - 

",,\ \ 
"%, O..tf 

o o ~ .  \ 
%''%~.~ 

0.6 - " ~  0.90 

0.50 I*=O ~ . _ .  

0.~ ' X  
XX 

°">. 
Ib.go "-%. 

0.o o.2 o., o.6 0.8 /~  7.0 

Fig. 9. The Rubenson degree of polariza~con for the linearly polarized inddent flux (Fc O, Fa- I) 
d~ffusety reIlected by a semMnfinite Rayleigh scattering atmosphere in the principal plane as a N~etion 

ot the albcdo of the single scattering. 

To = 0.950p~ + 3.525tZo + 1 .598.  

F o r  the case A = 0.5 (F igure  12) the  larges t  a rea  with nega t ive  R D P  a ppe a r s  to 

be for  /~o~0 .55 .  Wi th  the  fu r the r  increase  in the  sun 's  a l t i tude  the  a r ea  wi th  

negat ive  R D P  decreases  rapidly .  
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It is of  importance to estimate the accuracy of the method proposed. Firstly, 
we compared our results with those by Schnatz and Siewert (t 971) and Siewert and 
Maiorino (1980). They coincided to the last given figure. Secondly, we gradually 
increased the number of quadrature points and compared the respective results for 
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large number of model atmospheres. It appeared that there exists an approximate 
formula between the number of significant figures n and the number of quadrature 
points N (N > 4) - namely, 

n = ¼ N + 4 .  

6. Conclusions 

We discussed the solution of the vector equation of transfer in an atmosphere 
which absorbs radiation and scatters it according to Rayleigh-Cabannes' law. 
Despite the fact that the characteristic equation for the absorbing atmosphere 
cannot be factorized the method of discrete ordinates lends itself readily to finding 
the Stokes parameters both for internal and external radiation fields in a plane- 
parallel homogeneous  atmosphere. 

We suppose that this method is most suited for obtaining the benchmark results 
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when elaborating powerful methods to solve the vector equation of transfer for 
atmospheres with realistic physical parameters. 
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