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Large and randomly arranged pinning centers cause a strong deformation of a 
flux line lattice, so that each pinning center acts on the lattice with a maximum 
force. The average force for such single-particle pinning can be inferred from a 
simple summing procedure and has a domelike dependence on magnetic field. 
Pinning centers of average ]orce, such as clusters of dislocations, strongly 
deform the flux line lattice only in weak fields and in fields close to the critical 
field, where there is a peak in the dependence of the critical current on magnetic 
field. In the range of  intermediate fields there is a weak collective pinning. A 
large concentration of weak centers leads to collective pinning in all fields. In 
this case, near the critical field a critical current peak should be observed. To 
explain this peak and to define the boundaries between the regions of collective 
and single-particle pinning the possible break -off of the flux line lattice from 
the lines of  magnetic force should be taken into consideration, which leads to 
extra softening of the lattice. 

1. I N T R O D U C T I O N  

Type II superconductors in a sufficiently strong magnetic field transfer 
to a mixed state which is a flux line lattice. 1 The critical current in this state is 
determined by the pinning force, i.e., by the flux line lattice interaction with 
inhomogeneities of the sample. 2 There are two types of pinning-force 
dependence on the magnetic field. In the case of strong pinning this 
dependence has a smooth, wide maximum at fields (0.3-0.5)Hc2. In the case 
of weak pinning usually in a wide range of fields the pinning force weakly 
depends on magnetic field and only near He2 does it have a narrow and very 
high maximum. 3-6 In the present paper this interesting "peak effect" is 
explained theoretically. 

To find an average pinning force it is essential that in the presence of 
pinning centers there is no long-range order present in the flux line lattice. 7 
In a certain volume Vc there is a short-range order and vortices are arranged 
almost periodically. With increasing distance this periodicity is disturbed. 
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When a current below the critical value is passing, each of the volumes 
Vc displaces independently under the Lorentz force for a distance less than 
the size ~, so that the pinning force that arises compensates the Lorentz 
force. Since inside the volume the lattice is almost regular and the pinning 
centers are randomly distributed, the pinning forces acting upon the lattice 
from either side of each center compensate each other. The maximum 
pinning force acting upon the volume Vc is equal to f N  1/2, where f is the 
force of interaction of an individual center with a lattice, and N is the 
number of pinning centers in the volume Vc. In a magnetic field B of the 
order of He2 each center interacts with the lattice with a force of the order of 
f ;  therefore, N = nVc, where n is the density of the pinning centers. The 
critical current density j is expressed through the pinning force acting upon a 
unit volume and can be found by the formula 

B j  = f N  1/2 V c  1 = f (n /  Vc ) '/2 (1) 

In the region of magnetic fields where elastic deformations of a flux line 
lattice are important, the volume Vc has been found in Ref. 7. The order of 
magnitude of this volume can be found from simple energy considerations. 
The energy of interaction of one center with the flux line lattice is equal to fa, 
where a is the lattice parameter. The sign of this energy is determined by the 
position of the pinning center in a flux line lattice. Therefore, for the 
randomly distributed inhomogeneities the interaction energy for the volume 
Vr is equal to f a N  1/2. The volume boundaries are displaced for a distance of 
the order of a, which leads to an increase in the elastic energy. Thus, the 
energy change per unit volume 6F caused by inhomogeneities is equal to 

6F = C66(a/ Rc ) 2 + C 4 4 ( a /  n c  ) 2 - f a N  x/2 We 1 (2) 

where Rr and Lc are the transverse and longitudinal sizes of the region in 
which there is a short-range order. C66 and C44 are elastic moduli of the flux 
line lattice. In formula (2) the term with the compression modulus Cll is 
omitted, since due to the large value of C~t the shear deformations of the 
lattice exceed the compression displacement. Inserting N = n V~ and V~ = 
RZLc into Eq. (2), we find Re and Lc from the minimum condition of 
expression (2): 

~ 3 / 2 ~ 1 / 2  2 8 a 2 C 6 6 C 4 4 a  2 6 2 4 Rc=321/2G66 I.--44 a L c =  Vr = 2 5 6 a  C44C66 
n/2 ' nf  2 , n3~  

(3) 

Substituting this value of V~ into formula (1), we find the expression for the 
critical current density 

B] = n 2f4/16a 3C44C26 (4) 
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Formula  (4) has been obtained in Ref. 8. In fields close to/-/c2, C44 tends to a 
constant limit, C66 ~ ( 1 - b )  2 (b  = B/Hc2), and the pinning force f in many 

�9 2 cases is proport ional  to A , i.e., 1 - b. As a result, the critical current depends 
only slightly on magnetic field�9 

On approaching Hc2 two physical effects become important:  they limit 
the region of applicability of elasticity theory and of Eq. 4, which based upon 
this theory�9 Both these effects lead to a high maximum in the critical current. 
One effect arises when the correlation length Rc is compared  with the 
effective penetrat ion depth of the magnetic field he~ = h ( 1 -  b) -1/2. Short- 
scale distortions of the flux line lattice cannot be described by elasticity 
theory, since the magnetic field does not change at distances lower than its 
penetrat ion depth and the flux line lattice breaks away from magnetic force 
lines. As a result, there arises spatial dispersion of the elastic modulus 9 C44 
and an effective softening of the lattice�9 In this region Vc decreases 
exponentially and the critical current thus increases. ~~ It stops increasing 
when the dimension Rc becomes of the order  of the lattice paramete r  a. The 
transverse dimension of the region is still large and can be found by 
minimizing the energy (2), but R~ should be substituted f o r  a in this 
expression, and the modulus C44 for its effective value with the spatial 
dispersion taken into account C'44 = C44(1--b)• -2, where x is the Ginzburg-  
Landau parameter �9 Then we have 

Vc = L c a  2 = a2(4C44a2/fn 1/2)2/3 (5 )  

In this formula C44 and f are proport ional  to ( 1 - b ) ,  and the volume Vc 
weakly depends on the magnetic field, whereas the critical current deter-  
mined by formula (1) tends to zero by a linear law. Such an explanation of 
the peak effect is valid, provided in the volume Vr determined by formula (5) 
the number  of pinning cen~ers n V~ >> 1 is large. 

In the opposite limiting case where the concentration of the pinning 
centers is small n Vc<< 1, the peak  effect arises from other causes. On 
approaching Hcz, the elastic moduli C66 and C44 decrease and the elastic 
deformat ion caused by an individual center increases�9 At  a certain value of 
the field this deformat ion becomes of the order of the lattice parameter �9 In 
large fields each pinning center plastically deforms the lattice and holds it 
with a maximum force f. The critical current is thus proport ional  to the 
defect concentrat ion 

Bj =fn (6) 

In the magnetic field in which plastic deformat ion appears  first, the current 
determined by formula (6) much exceeds the critical current in weaker  fields 
determined by formula (4). In order  to obtain the critical value of the 
magnetic field corresponding to the arising of plastic deformation and the 
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critical current  maximum,  one  should find the value of  de format ion  u caused 
by one pinning center.  Transverse  sizes of the region in which deformat ion  is 
s t rong are of  the o rder  of the lattice pa rame te r  a. The longitudinal size and 
the value of  the deformat ion  u are found  f rom the min imum condi t ion of the 
free energy  6F per  pinning center  

[ C66 ~ '44 \  2 2 
6 F = [ - ~ - + - ~ ) u  a L - f u  

(7) 
L~a(&4/C66)1/2;  l,l ~ fa - l (&4C66)  -1/2 

Plastic de format ion  and the peak  effect arise when u becomes  of the order  of 
a. Express ion (6) for the critical current  is valid under  the condit ion that  

f >  a 2(~'44C66)1/2 (8) 

Wi thou t  taking account  of the spatial dispersion of the modulus  C~4 the 
condi t ion (8) was obta ined  by Labusch.  11 

In the case that condi t ion (8) is satisfied for all fields, the critical current  
is a smooth ,  domel ike  funct ion of the magnet ic  field and the peak  effect is 
absent.  If the force f is small and propor t iona l  to 1 - b, the condi t ion (8) is 
fulfilled only at fields close to He2, or  in weak fields. In this case the peak  
effect is observed  both  near  He2 and at fields B << He2. In some cases the 
condi t ion (8) is never  fulfilled. In such a case the critical current  over  the 
entire range of  magnet ic  field is de te rmined  by formula  (4) and the peak  
effect is absent.  

2. F L U X  LINE LATTICE I N T E R A C T I O N  FORCE WITH THE 
PINNING CENTERS 

There  are various physical reasons for the arising of  inhomogenei t ies  in 
a superconductor .  Particles of  another  phase, dislocation clusters, grain 
boundar ies  in a polycrystall ine sample,  or  an i nhomogeneous  distr ibution of 
impurities may serve as inhomogenei t ies .  As  a result, such physical quan-  
tities as the e l e c t r o n - p h o n o n  interact ion constant ,  the electron free path 
length, and the density of states of  the Fermi surface are r a n d o m  coordina te  
functions.  

Let  us first investigate superconductors  with r a n d o m  electron inter- 
action 

--1 g(,) = ( g ~ )  + gffr) (9) 

The  variat ion of  the free energy 6F  to first o rder  with respect  to gl is equal to 

6F  = v / d 3 r  gl(r)la(r)P2 (10) 

where  u = mp/2rr 2 is the density of states on the Fermi surface. 
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If the distance between the pinning centers exceeds their linear dimen- 
sions, it is convenient  to introduce the interaction force f of the flux line 
lattice with an individual pinning center 

f(r) = t, I d3rl gl(rl) 0]~(r+rl)120r (11) 

For pinning centers of size ro smaller than the vortex size ~, we find from 
formula  (11) 

fir) = v 0]A(r)]2 f d3r gffr) (12) 
3r ) 

For pinning centers of large sizes r0 >> ~c the force f depends essentially on the 
smoothness of the function gl(r). For smooth inhomogeneit ies the force f is 
exponentially small. For instance, for g l ( r ) ~  exp [-(r /r0)2],  the force f - -  
exp ( -47r2r~/3a2) ,  where a is the distance between vortices in a triangular 
lattice. In a real case when grain boundaries are pinning centers, a sharp 
variation of superconductor  parameters  is observed at the boundary.  Since 
]A(r)] 2 is a periodic coordinate function, the main contribution to the integral 
in formula (11) produces a layers of vortices tangent to the grain surface. The 
amplitude of the pinning force f is proport ional  to the area of this layer, 
provided the layer involves many vortices, or to the linear dimension, if 
there is only one vortex in the layer. The order of magnitude of the force f is 
given by 

f =  v g l A 2 , f l z ( 1  + ll l /a ) (13) 

For ellipsoidal grains 

l~ ~ III ~ (ro,f  ) w2 (14) 

If the boundaries of the grains are flat, the angular points serve as pinning 
centers. In this case 

-1 COS 02"~ -1 lz=(ro 1 +cos01~. ~ ] ,' Ill= ( r o l +  ~: ] (15) 

where 01 is the angle between the direction of the normal to the surface and 
the direction of induction, and 02 is the angle between the normal to the 
surface and the e lementary cell vector. Formula  (11) is valid if the electron 
interaction is a random quantity. When the other parameters  affecting the 
superconducting transition tempera ture  vary, formula (11) is valid near Tc 
or near Hc2 provided account is taken of the fact that g is the effective 
dimensionless constant of the electron-electron interaction. 
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In case the random quantity does not lead to a variation of the 
superconducting transition temperature ,  the variation of the free energy is 
connected only with gradients of the order  paramete r  A. For instance, with a 
random variation of the electron free path the addition to the free energy 
near the transition tempera ture  has the form 

8F = 8-~ dar 8(T/D)lo_AI 2 (16) 

where D = Vltr/3 is the diffusion coefficient and 

F ( 1 +  1 ) _ 0 ( 1 ) ]  O_ 0 n ( T ) =  1 -  8 T~'t'_0 ; = - - -  2 ieA 
L 2 4~'Trt~ Or 

In the vicinity of Hc2 for superconductors with a small electron free path 
(Tc~'t~<< 1) the addition to the free energy is 

u ,I 1 eB 
6F =~- -T tP  ~2+2~-T)  I d3r6DlO-AI2  (17) 

In order of magnitude,  formula (11) is also valid for a random variation of 
the electron free path, provided the following substitution is performed:  

6 ( D n )  6Hc 2 T 
g l o g l + r  D• o - e D r l  Tc ' "r = 1 Tc (18) 

Formulas (12) and (13) are valid if gl is small and the order paramete r  A 
differs only slightly from its value in a homogeneous  sample. Such a situation 
is probably realized with pinnings on dislocations or on grain boundaries in 
polycrystals, if the field is not too close to Hc2. The value gl is not small if 
particles of other phases fall out of the superconductor  matrix. In case Hr 
particles are smaller than H~2 matrices, the suppression of the order 
pa ramete r  leads to a decrease of the effective interaction. For particles of 
large sizes with ro >>4:(T), the following replacement  should be done in 
formula (13): 

- 1  - -1  --1 
ge~ = gl gl --> 4- ("jT2 Tc2/,_~ 2) (19) 

For metal  particles of small dimensions with ro < 4(T)  the suppression of 
superconductivity may occur in a volume of the order  of ~:3(T). In this case in 
formula (12) the following substitution should be carried out: 

9 2 

gl d3r --' (gl V0) -1 + [So~(T)(rgl )  ~/2] ~ ~ ~-~:--~) (20) 

where Vo and S0 are the volume and surface area of a metal  particle. If, in the 
superconductor  matrix, particles with a larger value of H~2 fall o u t - -  
dielectric particles or those with low boundary t ransparency- - then  super- 
conductivity is stimulated at the boundary.  For particles with an increased 
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value of He2 one should substitute in (12) and (13) 

A2__~ A2ff = A2 + glTr2T2 Vo 
[Vo+ ~:3(T) ] (21) 

The same substitution is also valid for dielectric particles or for particles with 
low boundary  transparency, provided that in formulas (12), (13), and (21 ) g l 
is substituted for ~'. 

Thus, the tempera ture  and field force dependences are determined by 
the type of inhomogeneit ies and their sizes. If this force is sufficiently large, 
then a great number  of centers act upon the superconductor  with the force f. 
A one-part icle pinning occurs in this case and the average current is 
proport ional  to the force f. If the force f is small, then a weaker  collective 
pinning takes place. To calculate the average force and, consequently, the 
transport  current, and also to define tile range of the one-part icle pinning, it 
is necessary to find the flux line lattice deformation.  

3. E Q U I L I B R I U M  E Q U A T I O N S  F O R  A D E F O R M E D  F L U X  L I N E  
L A T T I C E  

Smooth  deformations of the flux line lattice can be described with the 
help of elasticity theory. However ,  the spatial dispersion of the elastic 

A-19 moduli is important  for small wave vectors K -  ~ .  This dispersion is 
connected with the fact that magnetic force lines cannot bend at distances 
less than penetrat ion depths of A~fr. Therefore,  for K > A ~-1 the displacement 
of the flux line lattice u and the correction to the vector potential  A1 should 
be considered as independent  variables. In order to obtain the equations for 
these quantities let us present  the order pa ramete r  A(r) in the following 
form: 

A(r) = Ao( r -  u) exp [2ie (uAo](1 + S + ix) 

A(r) = A0(r) + A1 

Affr) = - u ( O / O r -  2ieA0)A0 + A(S + i x )  (22) 

The variation of the free energy 3F caused by the deformation of the flux 
line lattice is, to second order with respect to A1 and A1, 

• . 

1I + - -  d 3 r A 1 , . { r o t r o t A 1 - 4 7 r j l } +  d3r(j t )A1 (23) 
8~- 
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with 

P  I(p ) 

where al(p) and/31(p) are linear corrections with respect to A~ and Aa to the 
Green's  functions integrated by the energy variable ~:.~2-~4 Inserting expres- 
sion (22) for A~ into formula (23), after averaging over the cell, we get 

- d r/~hh(rot AI)Z-t-( A1 + [ B u ] - ~ e  -~r] 0X'~2 

1 0X)2+ F/0S\2 2 ~q (OS~ z 
+a~(Az 2e / 

-a4(S~,r)-asS(O[BAI])}+ I d3r { (jl)A1 

c6o 
-+~-Ort30rt3 ~-2-\~zz] / '  c ~ ' 3 = 1 ' 2  (24) 

The coefficients k~, k~, and ai are functions of magnetic field, temperature,  
and electron free path. In deriving formula (24) the magnetic field has been 
assumed to vary only slightly over the cell size. Therefore, expression (24) 
for the free energy holds either for fields close to Hc2, or at a large value of 
the parameter  x for fields B > He1. It should be noted that in fields of the 
order of Hc 1 the spatial dispersion of the elastic moduli is unimportant. 

At temperatures close to Tc 

al=a3=-as=O; a6-- B(H-B) /47 r ;  a 2  = 1/4e2; a4=B/e 
~ ~F dill 1 k2h= 2e-p-vrtrrl(lAI2);3T k~ = k~[ l - ~ - ~ ]  (25) 

In fields close to/arc: for superconductors with a small electron free path we 
get 

8~'e~(l',Xl 2> ~ eB<IN 2) 3'2 
k?, B ]/1; k~ = 27r2T2 T1 

az= l/4e2; al=4e2a3=y3/ya; a4=B/e (26) 

as = y3(eByl) -1", a6 = B ( H -  B)/41r 

/]([A2)2]/2 l1 8e2p2v3rt~g ,/1 eBD\ q2} 
C66 = 0"48 327r23aT z gTr3,z [ 0  t 2 + _ 9 - ~ ) J  



Pinning in Type II Superconductors 417 

where 

/ 1  3 e B D ~  / 1  e B D \  

, , /1 e B D \  ~ 2 2 3 2 r , / 1  e B D \  q 2 
3'2=--/3A4 ' / 2 + 2 - ~ )  ~e p v 

g ~  

e B D  , /1  e B D \  

8 7 r T e D  I-L B ' / 1 + e B D \  

]/2 

A complete change of the free energy consists of two parts 

(27) 

6 F  = 617. + 8F~ (28) 

determined by formulas (10), (15), (17) and (24). Varying the free energy 
(28) over the parameters X, $, A1 and u, we get a system of equations for 
these quantities. Excluding the phase ,g and modulus S of the order 
parameter,  and also the vector potential A1, we get the equation for the 
value of the displacement of u: 

C 6 6 K i u  + C 4 4 ( K ) K z  u -t--(C11(K) - C66)K•  

I / ~177 u)12 
= (2,n-)36(K)[(j)B] + ~, d3r exp ( - iKr)gl ( r )  Or 

4 i e B K ~ .  Ia(r-u)l 2 
4 K 2 + K  ~ 2 _k2K2,.  . .2,-K2+k2,,-1 --Kzq/3/ 'Y1 h • t h) 

x / 1 4 Y 3  k2h .,2 (29) ~1K2+k]] J 
where 

B 2 k~(1 --1- ]/3]/1) B ( I - I -  B )  

C44(K) = 4--~ K2+k~ +(g2z + k~)'g3/'gt + 4~- 

C11(K) - C66 : B2k2~  K2 + k~(1 + ]/3/3/1) (30) 
4~- [ (K2+k~)(K2+k~+(K2z +k 2 )y 3 /y l )  

[1 2 -1 / + khYa'Y1 (K2 + k2)-1] 2 
K 2 + K 2  2 --I 2 2 2 2 -t-KzT3"Y1 -khK• (K q-kh) -1 I 

In the vicinity of the transition temperature the expression for the moduli 
coincides with the corresponding expressions obtained by Brandt. 9 The 
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modulus Cll is large compared to C66 and the compression deformation is 
thus small in comparison with the shear deformation. Below we consider 
only the transverse component  uK, (KuK) = 0. If inhomogeneities present a 
number of separate pinning centers, then Eq. (29) acquires the form 

C66K~H + C44(K)K~2 u = (27r)36(K)[(j)B] +~" fi exp ( -  iKri) (31) 
i 

where the force f is given by formulas (12) and (13). 

4. S I N G L E - P A R T I C L E  P I N N I N G  

The interaction force of an individual pinning center with the flux line 
lattice depends on the difference r - u ,  where r is the coordinate of the 
pinning center relative to the nondeformed lattice and u is the displacement 
of the lattice at the site of the pin location. From formula (31) the equation 
for the value of this displacement follows: 

U = c - i f ( r -  u); C-1 = I ( - ~ )  3 [C66K~- d3K ~ + C44(K)K2 ]-1 (32) 

The limits of integration in formula (29) depend on the size of the pinning 
center. For a small pinning center the integration with respect to the wave 
vector K proceeds over the cell volume in an inverse lattice. When the 
pinning force f is weak or the rigidity of the lattice C is strong, the 
displacement u is small and uniquely determined by the coordinate r. In this 
case the force f ( r - u )  does not differ from the force f(r) in magnitude and is a 
periodic function of r, A typical graph of this function is given in Fig. 1. The 
critical current is determined by the value of the function f ( r - u )  averaged 
over positions of pins r. In an approximation of independent pinning centers 
this force is zero. As is shown below, the average force in this case is defined 
by collective effects and is much less than f. Another  case is realized for a 
large force f or for a low rigidity of the lattice C. If the maximum value of the 
displacement u exceeds some critical value uc, the dependence of u(r) and, 
consequently, of f ( r - u )  on r becomes multivalued. A graph of this function 
is indicated in Fig. 2 and can be easily obtained from the graph shown in Fig. 
1 by shifting each point along the abscissa by a value proportional to the 
ordinate. In this case the average force depends on prehistory, i.e., there is a 
hysteresis. For instance, when the lattice shifts to the left, the force depen- 
dence on the position of the center is depicted by the solid curve in Fig. 2. 
The average force is positive and proportional to the number of pins neu in 
metastable states: 

B i  = f~a• (33) 
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Fig. 1 

The critical value of the displacement uc with the nonzero ne~ is equal in 
order  of magnitude to the radius of the pinning force action r r. Therefore ,  the 
condition of applicability of formula (33) is the following: 

u > r r ;  ] ' > C r  r (34) 

If the spatial dispersion of the modulus C44 is not taken into account in the 

/ 

Fig. 2 
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evaluation of the integral (32) for C, condition (34) coincides with the 
Labusch criterion. 11 However,  K - a-1 is important in the integral. Thus, in 
all cases, besides requiring fields close to Hcl,  we have C44(K)<< C44(0) and 
condition (34) is weaker than the Labusch criterion. For pinning centers 
whose size is less than ~:, K• -- a-1 is important in integral (32). Substituting 
expression (30) for the coefficiennt C44 into formula (32) and performing the 
integration over K, we get 

C = a 2BkhC~/62 [In (a/~)] 1/2/77" (35) 

In magnetic fields B -  He2 expression (35) for the coefficient C coincides 
with the corresponding expression in Ref. 15. If spatial dispersion is not 
taken into account, condition (34) is not fulfilled for small particles. 16 The 
spatial dispersion leads to a strong decrease of the modulus C44 and 
condition (34) can be fulfilled for small particles in weak fields B < Hc2 at 
least. If superconductivity is suppressed in the particles, then condition (34) 
is fulfilled at b < by, 

3 2 

b v In ~ k gogl So gt )  (36) 

If superconductivity is stimulated by the inhomogeneity, the vortices may 
flow around the inhomogeneity. In this case the single-particle pinning for 
small particles is apparently absent. The dielectric particles or small void 
attract vortices in magnetic fields which are not too close to He2; V~:-3 < 
1 - b .  Therefore,  condition (34) may be fulfilled only in weak fields: 

b < by = (V/s  (s  (37) 

For large defects the region of applicability of formula (33) is considerably 
extended. Each such defect captures and holds many vortices. This leads to 
an increase of the the force f determined by formula (13). The value of the 
displacement u can be found from Eq. (29). For large defects both the shear 
deformations and the compression deformations should be taken into 
account: 

( - ~ 3  /K~ + K  2, [C66(K2 +K~I)+C44(K)K2~]-I  U = 

+ [Clf fK) iK 2 +KI~ ) +  C 4 4 ( K ) K  2 ] - 1 / f ( K )  (38)  

On the right-hand side of Eq. (29) distances of the order  of ~ are important 
for the direction normal to the plane tangent to the defect, and distances l. 
and III in the directions lying in this plane. Therefore,  the integrals with 
respect to K in Eq. (38) should be cut off by Ks ~ ~/Iz  and KII ~ ~/ (a  + Lq). 
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Performing the integration, we get 

u=f127r;661zln[14 l~(47rC66)1/2( 1+ 7r )] 
B(~ll+a ~ \ kh{l,l+a[ln (a/~)]l/2},J 

477" [g~ +(rr/a)Z] 1/2 a[ln(a/~)]l/2[g 2 +(rr/a)2] 1/2 } 
+ B2k2ha(lll+a) Ku, a[ln (a./~)] 1/2 tan 1 lzKu, 

(39) 

For the normal  metal  particles the force f is determined by formulas (13) and 
(19). Using this expression, we can be convinced that the condition (34) is 
fulfilled, provided the dimension of particles l > x ~ ( 1 -  b) -1. For particles 
with the dimension ~: < l < x~ condition (34) is fulfilled in fields B << He2. In 
fields/3 --He2 formula (39) gives u --~:. Apparently,  metastable  states and 
single-particle pinning occur in this case. But only numerical calculations 
can provide a final answer to this question. 

If the dielectric phase falls out, or voids are formed,  or there is a low 
transparency of the grain boundaries,  then condition (34) is fulfilled in all 
magnetic fields, if the size of the grains is l > a. 

In all cases when condition (34) is fulfilled, in a wide range of magnetic 
fields, the dependence  of the value/3f on magnetic field has the form of a fiat 
dome. In fields of the order  of H~2 the effective concentration neff is of the 
order  of the total concentration of the pinning centers. Therefore,  with the 
domelike dependence of the critical current, there is a maximum a t / 3  
(0.3-0.5)Hc2, which, irrespective of the model,  is equal to 

VA412 =n12ff3~22 J/3 -'-g-g~2 n (40) 
7T I c 

For the particles of a normal  metal  the decrease of current while approach-  
ing He2 is connected with decreasing A and j - ( 1 -  b) 2. For the dielectric 
particles A does not tend to zero while approaching He2. In this case the 
decrease of the current is determined by vortices flowing around the defects. 
With decreasing field the average force diminishes, which is connected with 
a simultaneous decrease of both the effective concentration ne, and the force 
of interaction f with one of the pinning centers. At  a large distance between 
the vortices some pinning centers are free of vortices. Thus, 

2 [ a l l  nef~=n 1-t (41) 
u ( { +  t,0 

For the large-radius particles near< n only in very weak fields. For such 
particles a decrease of jB in weak fields is caused by the diminishing of the 
number  of vortices confined by one pinning center. From formulas (13), 
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(19), (33), and (41) we find 

H~22 ( b-~2) [ /~/~1(~-~ L , ,, 1 )-1]-1 /B= l, /11 + bl/2n 1+ +lll+~b_l/2[ln(cr/bl/Z]lX/2 
(42) 

Let us consider the pinning caused by dislocation clusters. In such 
clusters the effective electron free path is less than that in a nondeformed 
sample. Therefore, it is possible to assume that pinning centers are large 
regions r0 > ~ with an increased value of the critical magnetic field Hc2. The 
value g~ determined from formula (18) is small in this case (g1< r). The 
condition (34) is fulfilled at any magnetic field only for the case of a large 
dislocation cluster. In case the size of these clusters satisfies the inequality 

~: < l < x~-g] -1 (43) 

the inequality (34) is fulfilled only in weak fields and in those close to Hcz. In 
an intermediate region of magnetic fields, where condition (34) is not 
fulfilled, the critical current is small. 

Using expression (39) for the displacement u, we find the values of the 
magnetic field bp when the current has a maximum near Hc2: 

~.~1/3]-1 
1 -  bp = ~5[ 1 + (/~-~ Z "  �9 (44) 

From expression (33) we find the value of the maximum critical current 

jB = n---~2 (45) 

If the pinning is connected with the free path inhomogeneity, the value 41 in 
formulas (44) and (45) is proportional to To-7". In this case the critical 
current is proportional to ( T o - T )  2. For sufficiently large clusters the 
position of the maximum determined by formula (44) is temperature 
independent. For smaller defects the position of the maximum is displaced 
toward the side of large fields. In a narrow vicinity of Tc the variation of the 
effective interaction may turn out to be important. In this case there is a 
temperature-independent term in gl. As a result, with increasing tempera- 
ture the maximum in the current is displaced to the side of lower fields. Both 
types of temperature dependence of the maximum position of the critical 
current have been observed in experiment, s6'w In superconductors with a 
large x, a peak may be observed in weak fields He1 < B << Hr The position 
of the peak is also determined by formula (39): 

l r ~--~2 in ('n'2~-_~ ]-1 bP = ~5( 1 + ~--~) [ 1 + Z - - - ~  ~-1/ )  (46) 
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The critical current at the maximum point is equal to 
2 2 ]B = n(Hc2/gvrx )(gl/'r)lflz(lll+a)(~/a)(lll+a2/dj) -1 (47) 

The critical current between maxima is small and determined by collective 
effects. 

5. C O L L E C T I V E  PINNING 

Let  us consider now the case of weak pinning when an individual 
pinning center causes a weak deformation of the flux line lattice. 1~ If a 
current is flowing, a large region of the flux line lattice containing many 
pinning centers displaces as a whole. Each such region may be considered as 
one large pinning center. These regions may be in metastable states, 
provided the relative shifts of the flux line lattice are of the order  of the 
action force radius r e. In order  to obtain the volume of such a region we 
calculate the correlation function of displacements at distances much greater 
than the lattice period. From Eqs. (29) we find 

d 3 K  
([u(r) --  U(0) ]  2) : - - / ~  W(K)(1 - COS Kr)[C66K 2 + C44(K)g2z ]-2 

(48) 
W (K)=  v2J" d3r e x p ( -  i K r ) r  ( r l ) ,  A,-/0[~ ~ ) l  2 0[A(r + r l~ r  )127/" 

where ~(r) = (gffr)gff0)) is the correlation function of inhomogeneities. The 
function W(0) is expressed through the force f introduced earlier [formulas 
(11), (12), and (18)]: 

W(0) = n (f2(r)) (49) 

where n is the concentration of pinning centers. 
Calculating the integrals in formula (48) with a logarithmic accuracy, we 

have 

W ( 0 )  { /  2 4"/rC66 2'~ 1/2 1 (p~q 47TC66z2~ / ( [ u ( r ) - -  u(O)]2 -- ~ ~/~--~/a/~p + ~  ) +G-~ l n~  B~k~e~]/ 
q-T/" /3tl.... 66 

(50) 
Regions of the vortex lattice in which relative shifts are less than the action 
force radius rr [formula (11)] will be called correlated regions. 

The linear dimension Rc of correlated regions is determined by Eq. 
(50), 

([u(Rc) - u(0)] 2) = r~ (51) 

In many cases of small defects, magnetic fields close to He2 and defects with 
sharp edges, the action force radius r r coincides with the size of the vortex ~: 
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in order  of magnitude. Regions whose relative shifts exceed r r can indepen- 
dently follow their pinning centers. Therefore,  the average force acting upon 
the flux line lattice from the side of inhomogeneities is determined by 
averaging Eq. (29) over such regions with volume Vc. Inside such a region 
the lattice may be assumed to be nondeformed.  On averaging Eq. (29), we 
get 

j2~B2 = W(O)/Vc (52) 

where Vc is the volume of the region determined by Eq. (51). If the value of 
Rc determined by formula (51) satisfies the condition 

R~kh >> 1 

then the spatial dispersion of elastic moduli in the integral (48) is unim- 
portant.  The size of the correlation region in this case is equal to 

172 n . , -~3 /2  2 9 2 
�9 J" D(. . .  66 r f  BRc 2 B - C 6 6 r f  

R c  - W ( O )  ' Z c  - ( 4 , / 7 . C 6 6 ) 1 / 2  - W ( 0 )  ( 5 3 )  

From formulas (52) and (53) we derive the expression for the critical current 

j~B = W(o)/IOB2 2 C66F f23 (54) 

Expression (54) for the critical current coincides with the results of Ref. 8. 
In another  limiting case 

t~ < Rc < k h  1 

in the integral (48), k• >> kh is important, for which the elastic modulus C44 is 

B2k2h l + a l  
C44(K)-  4 -~  K~ (55) 

In this region the correlator determined by formula (50) increases 
logarithmically with distance. Therefore,  the correlation volume Vc and the 
critical current Jc depend exponentially on magnetic field 1~ 

1 / 2 n . - - , 3 / 2 1  2_ ( 7"/" /~  I... 66 KhFf~ 
j~--exp i - b  ~ -1 (56) 

where b is a number of the order of unity. The current stops increasing 
exponentially when the correlation radius Rc becomes of the order  of the 
lattice parameter  a. Then the problem becomes one-dimensional. The 
integral determining the correlation radius Lc diverges in powers at small K. 
Evaluating L~ from the viewpoint of dimensions, we obtain 

r B4k4a6r~ ]1/3 l{W(O),~t/2 
Lc = ~ ' [ ( ~ i J  ' joB = a \  " T ~  ] (57) 
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Let us examine now the dependence of the critical current on magnetic field 
determined by formulas (54'1, (56), and (57). The values W(0), C66 , and k~ 
obey the proportionali t ies 

W(O)-b(1-b)2;  C66-b(1-b)2;  k 2 - ( l - b )  (58) 

where b =B/Hr From formulas (58) it follows that in a wide range of 
magnetic fields, of the order of Hr the critical current is determined by 
formula (54) and depends smoothly on the magnetic field value. On 
approaching Hcz the plateau is substituted by a region of exponential  growth 
described by formula (56). In the magnetic field determined by the equality 

r~ = W(O)/(4rr1/2BC3/62kh) (59) 

the critical size becomes of the order of the cell pa ramete r  and the current 
achieves a max imum value. With a further increase of field the current drops 
in proport ion to ( 1 - b ) .  In superconductors  with large x there is a wide 
range of weak magnetic fields in which/'cB ~ b-2. With a further decrease of 
field it is possible to observe a region of exponential  current growth 
determined by formula (56). The position of the current maximum, as in the 
case of large fields, is determiLned by formula (59). With a further decrease of 
field, the current, as follows from formula (57), does not change. It should be 
noted that in the case of a collective pinning, weak inhomogeneit ies are 
characterized by one pa ramete r  W(0) only, which defines the current on the 
plateau, the values of the current at the maxima, and their positions. 

6. P I N N I N G  IN FILMS 

The peak effect in films in fields close to He2 is not usually observed. In 
the case of a collective p inning  in massive samples the peak  effect is 
connected with the spatial dispersion of the elastic modulus C44(K). In a film 
the elasticity of the flux line lattice is described only by one modulus C66, 
possessing weak dispersion only, and this reason for the peak effect is thus 
absent. 

In order to find the critical current for the case of collective pinning, we 
calculate the size of the region in which there is a short-range order. In a 
three-dimensional  case this size is determined by formulas (3) and (53). 
Analogously,  for the film we get 

Re = ~:C66 W~o~/2 = C66a/fn 1/2 (60) 

where W(0) is determined by formula (49), in which n is the number  of 
defects per  unit area of film. The critical current is found from formula (52) 
with Vc = R~, 

jcJ~ : W ( 0 ) / ~ C 6 6  (61) 
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This expression has been obtained in Ref. 8. With a large concentration of 
defects (ns collective pinning is realized at any magnetic field. 
Formula  (61) is valid for a wide range of magnetic fields, until Rc > a. In this 
region the quantity B j  only slightly depends on the magnetic field value. The 
conditions Rc > a is not fulfilled only in the vicinity of He2 and in the region 
of weak magnetic fields. In such weak magnetic fields the average current 
only slightly depends on the value of the magnetic field. The corresponding 
expression has been obtained in Ref. 18. For a low concentration of defects, 
ha2< 1, formula (61) still holds for the intermediate region of magnetic 
fields, provided defects are rather  weak. In weak fields and in fields close to 
He2 the condition of single-particle pinning (34) is fulfilled. For the film this 
condition has the form 

r r = ~: < 0e/C66) In (1/n~ :2) (62) 

In fulfilling condition (62) the critical current is determined by formula (33) 
of the single-particle pinning. In the vicinity of the critical field Hc2 

j~B = nf  (63) 

At the point where condition (62) is first fulfilled, the critical current 
determined by formula (62) exceeds logarithmically the critical current 
determined by formula (61). Therefore,  a slight maximum can be observed 
in the current dependence on magnetic field. With a further increase of 
magnetic field the current determined by formula (63) drops in proport ion to 
(1 - b). In the close vicinity to He2 formula (11) obtained by the perturbat ion 
theory for the force f cannot be applied and is substituted by Eq. (20). In this 
region vortices flow around the pinning centers and the critical current is 

On approaching He2 
diminishes as (1 - b) 2. 

LB = nC66~ (64) 

the critical current determined by formula (64) 

7. C O N C L U S I O N  

The results obtained above refer to the case when all the pinning centers 
are approximately of the same magnitude. If there are defects with essen- 
tially differing pinning forces, then in the region of a single-particle pinning 
their contribution to the critical current is summed independently.  In the 
vicinity of Hc2 the position of the peak  is defined by the force of interaction 
of the defect with the flux line lattice. Therefore,  when there are two types of 
pinning centers with different concentration and force of interaction with the 
flux line lattice, there should be observed two peaks in the vicinity of He2. 
Such a phenomenon  has been observed experimentally in Ref. 19. 
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In massive samples  the collective p inn ing  is much  less than  the single- 
part icle one.  Fur ther ,  the collective p inn ing  thus becomes  unobse rvab le  if 
there is at least a small  concen t ra t ion  of s t rong p inn ing  centers  in the sample.  
Appa ren t l y ,  this e lucidates  the exper imenta l  da ta  analysis carried out  by 
Kramer .  2~ The  exper imen ta l  data  agree well qual i ta t ively with the results of 
the presen t  paper .  For  s t rong p inn ing  centers  the d e p e n d e n c e  of the critical 
cur ren t  on  magnet ic  field has a smooth ,  domel ike  shape.  For  p inn ing  centers  
with an in te rmedia te  force, the peak  effect is observed  near  He2. However ,  
the Labusch  cr i ter ion recalcula ted for the m e a n  p inn ing  center  is not  fulfilled 
in most  cases even  if the spatial  dispers ion of the modu lus  is t aken  into 
account .  In  this case the s ingle-par t ic le  p inn ing  is likely to be d e t e r m i n e d  by 
a small  n u m b e r  of s t rong p inn ing  centers.  

There  is not  much difference be tween  collective and  single-part icle  
p inn ing  forces in a film. Therefore ,  for weak defects in a film, collective 
p inn ing  should  occur in a film over  a wide range of magnet ic  field. This has 

�9 2 1  

been  conf i rmed by exper iment .  
In the case of collective p inn ing  the d e p e n d e n c e  of the critical cur ren t  

on  magnet ic  field and  t empera tu re  is def ined by the only paramete r ,  the 
corre la t ion  func t ion  W. Wi th  s ingle-part ic le  p inn ing  the results are more  
sensit ive to the type of p inn ing  centers.  However ,  no p rob lem of summi ng  
up exists in this case. A n d  in each par t icular  case when  the characterist ics of 
the defects are well known,  it is possible to ob ta in  for the critical cur ren t  not  
only the qual i ta t ive  results es t imated  above,  but  the quant i ta t ive  formulas  as 

well. 
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