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A microscopic theory for deriving hydrodynamic equations for Fermi
superfluids is developed and applied to the two-fluid hydrodynamic equations
in superfluid *He-B near the transition temperature. It is shown how the
two-fluid hydrodynamic equations as well as the Boltzmann-type transport
equations for the Bogoliubov—Valatin quasiparticles are derived from the
matrix kinetic equation. Special attention is paid to the derivation of the
particle number conservation law and also to the definition of the chemical
potential when the system deviates from local equilibrium.

1. INFRODUCTION

The dynamical properties of Fermi superfluids have been investigated
by many authors (see Ref. 1 for a recent review). One can expect that, when
the wave number ¢ and the frequency w of the disturbances are much
smaller than, respectively, the inverse coherence length 1/£ and the energy
gap A (the so-called macroscopic limit), the thermal excitations, in this case
the Bogoliubov-Valatin quasiparticles, are decoupled from the superfluid
condensate; the configuration of the quasiparticles is described by Boltz-
mann-type transport equations. From this aspect, various transport
coefficients in superfluid *He have been computed and show good
agreement with experiment® 2%+,
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The theoretical microscopic basis for the above procedure also has been
discussed by some authors. Kinetic equations for superconductors without
Fermi liquid effects have been derived by Stephen'* and by Kemoklidze and
Pitaevskii.!® Stephen obtained the local equilibrium solution for the matrix
Green’s function and derived the Landau two-fluid hydrodynamic equa-
tions. A very transparent matrix formulation which can incorporate the
Fermi liquid effects has been given by Betbeder-Matibet and Nozieres'S
(BN), which has been applied to investigate sound propagation'’ and spin
dynamicsm’20 in superfluid *He. However, BN theory is applicable only to
the two extreme limits, i.e., the collisionless limit and the hydrodynamic
limit. In order to treat dissipative effects, it is necessary to introduce some
phenomenological form of the collision term.'%*°

A general theory for deriving the kinetic equation including collisions
has been given by Wolfle*! by the use of the real time response formalism
developed by Kadanoff and Baym® for a normal system. His theory is valid
over all the frequency range, including the deformation of the order
parameter. In fact, Wolfle>> has succeeded in explaining quantitatively the
zero-sound absorption in the high-frequency range. However, his theory is
restricted to the linear regime and he has not attempted to derive the whole
set of two-fluid hydrodynamic equations directly from the matrix equation,
although Wolfle® and Einzel and Wolfle”® have computed various transport
coefficients which appear in the phenomenological theory by use of the
simplified version of kinetic equations.

A systematic derivation of the two-fluid hydrodynamic equations has
been given by Galaiko®® and Shumeiko.?* Their theories are, however,
restricted to the s-wave BCS superfluid, and no Fermi liquid effects were
considered. We shall show that in the presence of Fermi liquid effects one
cannot get a correct result for the deviation of the chemical potential from its
local equilibrium value by Shumeiko’s method.**

The purpose of the present article is to derive in a systematic and
transparent manner the two-fluid hydrodynamic equations for *He-B from
the microscopic point of view. We start from the matrix kinetic equations
derived by Wolfle*' for the matrix Green’s functions G =.%> We solve them in
a power series form in terms of w and g, by invoking the Enskog-Chapman
scheme.”® Apart from Wolfle’s method,?' we first solve the dynamical
equation for the spectral function A = G~ + G~. We show that the spectral
function that reflects the structure of the Cooper pair adjusts itself to its local
equilibrium value within the time 1/A. It also will be proved that when the
condition

A»1/7>»w, vrq (1)

(ve is the Fermi velocity and 7 is a typical collision time) is fulfilled, the
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Green’s functions are expressed in the form

=

GZ=A¢" )

where the scalar functions ¢~ can be interpreted as the distribution
functions of the Bogoliubov-Valatin quasiparticles.

Following the usual methods,'®** we eliminate first the global
phase of the energy gap by applying the gauge transformation on the kinetic
equations. Usually,"®** the number conservation law is introduced a priori
as the equation to determine that global phase. We examine that procedure
and show that it is a mathematical convenience which can be justified in
the macroscopic limit. We also carefully explore the relation between the
chemical potential and the phase of the order parameter. The gist of the
considerations is that the chemical potential is a quantity defined on a
thermodynamic basis whereas the phase of the energy gap is defined
completely on a quantum mechanical basis. This observation leads to a
clear-cut derivation of the accelerating equation with dissipative terms, i.e.,
the second viscosity term.

As has been pointed out by Graham and Pleiner,*® the orbital part
two-fluid equations for *He-B are the same as those for He-II*! and the
s-wave BCS superfluid.>* In this sense, our formulation yields no qualita-
tively new results. We believe, however, that our results are worth recording
because our method provides a most general and transparent language for
the microscopic derivation of the hydrodynamic equations, including dis-
sipative effects. Moreover, our method can even handle the nonlinear
regime, although we will demonstrate it only in the derivation of the
hydrodynamic equations without dissipation. The outline of the present
work has been already reported.?’

The organization of this paper is as follows. In Section 2, we briefly
review Wolfle’s method*' of deriving the matrix kinetic equation. In Section
3, following Kadanoff and Baym,”® we manipulate the matrix kinetic
equation so that it is appropriate to be handled with respect to the macro-
scopic limit. In Section 4, conservation laws are derived. Special attention is
paid to the particle number conservation law. Section 5 is devoted to the
study of the spectral function. Local equilibrium (zeroth order in w and gq)
forms of the Green’s functions are also derived. In Section 6, the thermo-
dynamic relations and the hydrodynamic equations obeyed by the local
equilibrium solutions are discussed. In Section 7, the first order (in  and q)
solutions of the kinetic equations are obtained. Section 8 is devoted to the
derivation of the hydrodynamic equations, including dissipative terms.
Concluding remarks are given in Section 9. In the Appendix, we consider the
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relation between the number conservation law and the equation to deter-
mine the global phase of the order parameter. Throughout this article, we
take the unitsof i=kg=1.

2. GENERAL FORMULATION

In this section, we derive a matrix kinetic equation for the matrix
Green’s function following Kadanoff and Baym®® and Wolfle.*' For details,
we refer the reader to their work.

For the purpose of dealing with the superfluid Fermi system, it is
convenient to define four-dimensional spinor field operators

[¢r(1)
)
Fi)= yi (1) @)
Pi (1),
Y1) = (W (DT (D (L (1)) “)

where (1) is the abbreviation for the space-time coordinates (ri, #;) and ¢;
and ¢ are the destruction and creation operators, respectively. Nonequili-
brium Green'’s functions in the presence of an external field U(1, 1') are
defined as

G (1,15 U)=(—iX¥us (¥ 5e(1)) ®)
G (1,15 U)=i{W (1) s (1)) (6)
where
P, (1) =) FD)L(r)
with

t

P(t)=T exp [—i LO d1d1 v (U, 1')\?(1’)}

where T is the usual chronological operator. The average is taken over the
grandcanonical ensemble at t = —0:

(A)=tr A exp [~B (3 — woN)l/tr exp [~B( — pnoN)]

The equations of motion for G= are given by*'

=

[D-U—-ReM,GZ|=I% )
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where [A, B] is the commutator,

9 (Vi ,
D= i (3 po)os | 51 -11) ®)
6t1 2m

ps is the Pauli matrix in the particle-hole space, and §(1—1') is the
four-dimensional &-function. The real part of the self-energy Re M
represents the energy shift of the quasiparticles, including the off-diagonal
elements which describe the energy gap. The collision terms I~ are written
as

7= (M2, G5} —{MZ, G} ©®

where {A, B} is the anticommutator and Mg denotes the self-energy parts
to describe the collision process. For simplicity we take into account only the
s-wave part of the scattering amplitude, which is denoted as V, and treat the
collision process with the Born approximation. Then, similar to Kadanoft
and Baym’s result,25 we have

ME(1, V)= V2 [ d3d3 p3G7(1, 105 1 03672, B)psG* (3. 2]
-v? J d2 d3 psG=(1,2)psG=(2,3)p:G~(3, 1)ps  (10)
We are interested here in the situation where the disturbances of the
system are slowly varying in space and time. In this case, it is convenient to
perform beforehand a gauge transformation on the Green’s functions so that
the fluctuation of the global phase of the energy gap can be eliminated, as has

been done in other works. *'%%*?% | et us define the transformed Green’s
function by

G"E(l, 11): e—ipzf\(l)GE(l’ 1r)eip31\(1') (1 1)

which obeys the equation of motion

[D-U-ReM,GZ|=I% (12)
where
« 3 [v? oA 1, ] }
=i Lt p— —=mv? s(1-1 1
B={is [t uo= " 2—smviD]eafs-1) 3)
and

U=U(, 1)+3[Vi-vy(1)+v,(1) - V,]6(1-1") (14)
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The superfluid velocity v, has been introduced as
vi(1)=(1/m)ViA(1) (15)

where m is the mass of the *He atom. The collision terms are invariant under
the gauge transformation and so is the diagonal part of Re M. An explicit
form of Re M will be given below. The transformed Green’s functions
describe the system in the moving frame with the velocity v,. In what
follows, we omit the tilde for simplicity and also omit the external field U
because it was introduced as a convenience for deriving the kinetic equation.

3. DERIVATION OF THE GENERALIZED KINETIC EQUATION

In this section we follow Kadanoff and Baym®® and manipulate the
matrix kinetic equation given in the last section to make it appropriate for
describing the system near the hydrodynamic limit.

When the disturbance of the system is slowly varying, we can expect
that G~ to be slowly varying functions of the ‘“‘center-of-mass” coordinates

R=(r+r)/2, T=(t+11)/2
but to be sharply peaked about zero values of the “relative” coordinates
r=r—r;, t=0-1
We define the Fourier transform of G= over r and ¢ by
G*R, T,p, )= :tiJ drdtexp[—i(p-r—w't)]G=(1, 1)) (16)

Any physical quantities of interest can be computed from the 4 X4 Wigner
distribution function N defined by

do' -
NR, T.p)= [ 25 G“R, T.p,0) 7
T
which can be written explicitly as
AR, T, p) —dR, T, p) )
—di(R, T,p) 1-n(R, T, —p)

where n and d are 2 X2 matrices and /i denotes the transpose of n. The
matrix n represents the usual Wigner distribution function

nes(R, T,p) = [ dr exp(=ip- WL R+ s ®R—1)  (19)

whereas the matrix d gives the anomalous correlation function:

do(R, T,p)= | drexpl—ip- v R+Ws®R-10)  (20)

N, T, p)=( (18)
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Let us turn to the kinetic equation given in the last section. Since the
G=(R, T, r, t) are sharply peaked about r=0 and ¢ =0, we can expand the
quantities v; and Re M in powers of r and ¢ and retain only the lowest order
terms. Then we have

8 = =, 1(3% 0G=
2 G vite, 671+ 1|25 )
o7 G TG R
1(3% 8G=) 1(0€ 3G™ =
__{9_, G } _{ii__}=1< (21)
2 l6R’ oap 28T bw’
where the energy matrix & is given by
P’ 1
%=(ﬁ—uo+/\+§mv3>p3+p-vs+ReM(R,T,p) 22)

We have neglected the o’ dependence of Re M because the correction is of
order T/Eg.”' We write & as a sum of the equilibrium energy matrix €, and
the fluctuating part §%:

&=%&,+ 6% (23)
In the BW state®® &o is given as
(€ D
g8=(5 ) 24)

where £ =p°/2m* —uo (m* the effective mass) and the 2 X2 energy gap
matrix A, is given®® by

=i % 23R,wﬁuavcrzEA[\(f)) (25)

where A is the absolute magnitude of the energy gap, p is the unit vector
parallel to P, R ,, is some orthogonal matrix, and the o are Pauli matrices in
spin space. It is convenient for the BW state®® to introduce a new set of Pauli
matrices in particle-hole space as

po(P)=po=1

p1®)=A'B)o1~A"(p)p2

p5(B) = A"(B)p1+A'(B)p2

p3(P)=ps (26)

where A’ = (A+A")/2 and A" = (A— At1)/2i. These new Pauli matrices obey
the same commutation relations as the original Pauli matrices. By use of the
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new Pauli matrices we can express &, simply as
&o=£&ps +Aph 27)
As for the fluctuating part 6%, we can write
88 =(A+3mvi)ps+p v, += (28)

where X is expressed self-consistently in terms of the Wigner distribution
functions via tHe Fermi liquid interaction and the pairing interaction.'®?’
We can neglect the antisymmetric part of the Fermi liquid interaction
because we are dealing with the spin-independent problem. Further, we
retain conventionally the Fermi liquid interactions up to the p-wave part to
write

foo=fo+fiPi(p-p) (29)

where P, is the first-order Legendre polynomial. The pairing interaction is
given in our problem as

gow =—381P1(p + p) (30)

Now let us expand X and N in terms of new Pauli matrices:

3 . 3 .
2=Y 3%, N=Y N9 (31)
i=0 i=0

1 1

Then the self-consistent relations are given by

2@=2 ;ff P - BN @)= NG ®)] (32)
3P=2 ;fﬁ (N® ()= NG @] (33)
301 ®) =X gar [NV @)= N6 @)l () (34)
3%p5 () = . o [N®@)-N& @)ps (@) (35)

with Ny the equilibrium Wigner distribution function.

It will be shown a posteriori that in the macroscopic limit the pair
correlation function depends on the angle p in the same way as the
equilibrium one; therefore, the angle dependence of the oft-diagonal
elements of N is absorbed in p| (p) and p5 (p). Then the last two of the above
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equations are simplified to be

2P=6a=-g, L[N ®)-NO @] (34)
5P=-g, T IN?@)-NE @)] (35))

where = or 5A represents the fluctuation of the magnitude of the order
parameter. Since we have already eliminated the fluctuation of the phase of
the energy gap, we have

TP=YN®@)=0 (36)

P
which will play an important role in the derivation of the number conser-
vation law.
Finally, we write down the collision term:
IR, T,p, )

=+3{M R, T,p,0), G-R, T,p, 0"} ~{M~,G"}] (37a)
where
MR, T,p, ")

— V2 J’ dpz dp3 dp4 da.)z dw3 dw4
@m)"

X (277)45(a)'+w2—w3—w4)5(l) +Pp2—Ps—Pa)
X{psG=(R, T, p3, w3)p33tr [p3G™ (R, T, p2, w2)p3G~ (R, T, ps, w4)]

—p3GZR, T, p3, 03)p3G= (R, T, p2, w2)p3G =R, T, ps, wa)ps}
(37b)

The above equations compose a complete set to describe a superfluid Fermi
system. We collect them here for convenience:

0 = . = 108 dG™
N + +—_._ —
aTG l[va ] Z{ap7 BR}

1128 662}

2 1oR’ op

1(4% aG= -

+—{—> =I< 38

Z{GT aw'} (38)
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I*==3(M>, G"}-{M~,G™}) (39)

NP @)=0 (40)
P
It is to be noted that, if one neglects the off-diagonal elements in the above
equations, one immediately has the kinetic equation for the normal system
given by Kadanoff and Baym.*®

4. CONSERVATION LAWS

We are interested in the derivation of the hydrodynamic equations
where the frequency w as well as the wave number q is very small. We can
solve the kinetic equation in a power series form in terms of w and g: the
zeroth-order solutions give the local equilibrium solution, while the higher
order solutions describe the deviation from the local equilibrium. This is
essentially the same as the Enskog-Chapman method®® of solving the
Boltzmann equation for a dilute gaseous system. In fact, we shall see that the
kinetic equations of our problem in the macroscopic limit also reduce to the
Boltzmann-type equations for weakly interacting Bogoliubov-Valatin
quasiparticles. In the Enskog—Chapman method, at each stage of the
approximation, the hydrodynamic equations, which have the form of the
conservation laws, are given by the solubility condition for the next order
distribution function.?® This procedure can also be followed in our problem
for the momentum and the energy conservation laws as was done by
Shumeiko.** However, we can alternatively obtain the complete conser-
vation laws for both the momentum and the energy densities by taking
appropriate moments of the kinetic equation (21). The hydrodynamic
equations at each stage of the approximation are obtained by substituting
the solved distribution function into the conservation laws.

The number density p, the momentum density ¥ in the moving frame
and the energy density U are computed from the Wigner distribution
function N as

p =Y 1tr {ps[N +3(ps— 1)]} (41)

JI

Yptr [N +3(ps—1)] (42)

U=3Y 5t {&N+3ps— 1]}

+3tr{[p - Vo + (€ +A+ImvD)ps][N +1(os— )]}
+(uwo—A) tr {ps[N +3(p3— 1)]}} (43)
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The expression for the energy density is rather complicated for two reasons.
One is that we should avoid the double counting of the mutual two-body
interactions. The other is that we must discard the contribution from the
gauge field A, because it should have no contribution to the total energy
although it plays an important role in determining the dynamics of the
system.

We first consider the momentum and energy conservation laws. Noting
that the collision teri in the kinetic equation (21) conserves momentum and
energy, we have two conservation laws:

] 1 &
—J +—Y =t [ { }+ ; ]
aT oR; 5 4 f ap;’ 8:{%, N}

il )]

oU . d 1 €
= (oA +mv, - (F +pv)——¥ —~ ’{——, ” 4
T (mo—A)p+mv; - (¥ +pvy) 8R,~§'4tr[bp P, N (45)

Let us turn to the particle number conservation law. From the definition of p
given by Eq. (41) it follows that

p 1 , 9 1 0% ”
2Liy= N y= il
T §2tr [p3i[€, N]]+ oR, & 4tr[p3{ PR , N 0 (46)

where the third term is interpreted to be the divergence of the current
density, while the second term can be rewritten by use of Egs. (34') and (35')
to be

T3tr[psi[€ N11=—4(A+88) L N®(p)

Thus we have

%425 ufo {gf,w}]—at(mamzzv‘”(p):o @7)

aT oR; 7 4

We recall that the kinetic equations should be solved under the constraint of
(36),

L N®(p)=0

The solutions of the kinetic equations automatically satisfy the number
conservation law

s ol N -
aT+aR §4tr p3{apiN 0 (48)



362 Jun’ichiro Hara and Katsuhiko Nagai

On the other hand, we can adopt instead of Eq. (36) the conservation law
(48) itself as the constraint on the solutions of the kinetic equation, as was
done by Betbeder-Matibet and Nozieres'® and Shumeiko.?* As will be
shown in the Appendix, this is a mathematical convenience which can be
justified in the macroscopic limit where the structure of the order parameter
does not change and the distribution functions are described in terms of the
conserved quantities or their space derivatives.

In fact, the distribution functions will be written in terms of the
following parameters: the local temperature 1/, the normal velocity v,, and
the gauge parameter A. The set of conservation laws obtained in this section
is sufficient to determine the behaviors of these parameters.

From the requirement of Galilei invariance, the current density given
above can be related to the momentum density J in the fixed frame as

I=Y+mpvy=mY str[p:{0%/op, N}] (49)

This yields the well-known relation between the effective mass and the real
mass of the *He atom:

m*/m=1+3F; (50)

where F; =prf (Nk is the density of states at the Fermi surface for both
spin projections).

5. SPECTRAL FUNCTION AND THE LOCAL EQUILIBRIUM
SOLUTION

In the rest of this paper, we solve the kinetic equations in a power series
in terms of w and g and substitute the results into the conservation laws
given in the last section to obtain the hydrodynamic equations. However, the
kinetic equations are still complicated because they still contain the internal
frequency w'. Wolfle®" has eliminated o' by directly integrating the kinetic
equation to show that two types of matrix distribution functions (6 and ér in
his notation) are necessary to describe the deviation of the system from local
equilibrium. We instead take another approach very similar to that of
Kadanoff and Baym®’; that is, first we solve the kinetic equation for the
spectral function. In our method we can have a more transparent under-
standing of the local equilibrium solution.

The spectral function is defined by

AR T,p,0)=G (R, T,p,w)+G (R, T, p, »') 1)

Noting that the collision terms I~ and I~ have different signs, we have for A
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the kinetic equation

op’ R

2

oR’ op

A 1{a%aA} 1{8%’ 3A}+;{"g %}=o (52)

_+ g’A +— _’
o7 L& Al oT o’

We solve it in a power series in terms of @ and g. For that purpose, it is
convenient to expand the energy matrices € and 6% in terms of the Pauli
matrices p;:

=8+ 801 B)+ €701 D)
58 =629 +52Vp  (p)+6€%ps (D) (53)

The zeroth-order solution is given by

Ao= Y 3(1+v&,/E,)278(w’ —vE,p) (54)

v==%

where v is the particle-hole index and &, E,, and E,, are defined by

&=V @)+ EVpi () (55)
Ep=[(8VY+(E&D)]? = [(¢+A+1mv] + XY +(A+84)1'? (56)

and
E,p=Ep+v88Q =Ey+v(p-v,+¥?) (57)

The first-order solution can be obtained iteratively from Eq. (52):

A= Y [278(w'—vE.p)g, +278 (0’ — vE ,p)h,] (58)
v=x1
with
v ([ 0% [_ag} 9&” [_a%] a%""))
& 853([ ’a] "oR] op g pl oR (59)
and

8E° aT dR] ap apl R
_[0& o€
+ E[—, —]) 60
Y lop aR (60)

The first-order correction A, to the spectral function is smaller than Ag by
the factor of w/A or que/A. Physically this means that the spectral function
adjusts itself to Ay on the time scale 1/A or within the space range of the
coherence length ¢ by virtue of quantum mechanical interference effects.



364 Jun’ichiro Hara and Katsuhiko Nagai

This fact has been pointed out by Galaiko,?* although he did not directly
treat the spectral function. In the recent theory of the spin dynamics of
superfluid *He, Leggett and Takagi’® introduced the concepts of superspin
and normal spin. The superspin polarization comes from the deformation of
the Cooper pair wave function due to the applied magnetic field and it
adjusts itself to its local equilibrium value quantum mechanically within the
time 1/A. On the other hand, the change-in the configuration of the
Bogoliubov—Valatin quasiparticles gives rise to the normal spin polariza-
tion. It is worth noting that the spectral function in our formalism just
describes the behavior of the Cooper pair structure.

From the definition of the spectral function, we see that the matrix
elements of G= are written as

Gy =Axfs R, T,p,») 61)
Go=As[l-fow R, T,p, ) (62)
We also expand f, in terms of w and g and retain up to the first-order terms:

fss' :fﬂss' +flss’ (63)
Then we can write G~ up to the first order as
Gs<s = (A()ss’ +A1ss’)(f()ss‘ +flss’)
= (A0+A1)ss'f035' +ADsS'flss’ (64)

We expect the zeroth-order solution to give the local equilibrium solution
which makes the collision terms I= vanish. Then we can choose the most
general form of fo. to be

fOss' = ass'f<{B (Rv T)[w’ —Pp-V, (R’ T)]} (65)

with the equilibrium Fermi distribution function f~[x]=1/(e* + 1). It will be
shown later that 8 and v,, are the inverse local temperature and the normal
velocity, respectively. It should be emphasized that, contrary to the normal
case,”” we cannot include the local chemical potential in the argument of the
Fermi distribution function, because it would violate the particle-hole
symmetry relation to be obeyed by the matrix Green’s functions:

G (R, T,p,0)=piG"(R, T, —p, ~w')p: (66)
From Egs. (54), (58), (64), and (65), we have for G= up to the first order

G =AfT[B(w' —p* V,)]+Y. 278(w’ — vE,p) 8F,(p) (67)
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and

G =Af"[B(w' —p* Vi) X 278(w' — vE.p) SF.(P) (68)

where f=1—f".

In this section, we have derived the local equilibrium solution by a
rather intuitive method. It can be shown, however, that in the linear regime
our solution coincides with Wolfle’s result. Moreoever, we can show that the
two types of distribution functions én and &r introduced by wolfle*! to
describe the deviation of the system from local equilibrium are related to our
SF, by the relationships

én =3 6F,(p) (69)

5r=Y v 8F,(p) (70)

6. THERMODYNAMIC RELATIONS AND THE HYDRODYNAMIC
EQUATIONS IN LOCAL EQUILIBRIUM

In this section, we compute the local equilibrium values of the con-
served quantities and derive the thermodynamic relations as well as the
hydrodynamic equations.

The Wigner distribution function in local equilibrium is

o
NiR T,p)= | 55 A0+ AD f (B ~p - V)] (71)

We can neglect the contribution from A because it is small by the factor of
/A or que/A. Then we have

1 < < gl’ <l <<
=—(fs—fS+1)+— -
Ne=3 F =+ D45 65+ D) (72)
with
f==fT[B(E=Fp-va) (73)
Substituting this into Egs. (41) and (42), we have
2(3)
p=% [1+5 (T +£5 - D)] (74)
» E,

and

J’=§P(ff —f3) (75)
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By inspection of the rhs of Eq. (75), we note that Y is proportional tov, —v,.
Then, we define the normal density p, by

Y=mp,(v,—v;) (76)
which together with Eq. (49) leads to
J=m(p,v,+psvs) an

where p, = p —p,. Thus we can interpret v, to be the normal velocity.”"
As for the energy density, it is more convenient to compiite it in a
variational form. From Eq. (43), we have for 6U

SU =Y 5tr (E8N)+Y - 6v,+p 8GmvE)+(uo—A) 8p (78)
P

Substituting Eq. (72) into Eq. (78), we obtain
U =8 +vi+3mpvi)+(1/B) 88 +(mo—A—3movl) dp
+(v,—vs) 8Y (79)

where we have defined the entropy density S by
S==2Y(< Inf; +f7 Inf7) (80)
|

Comparing this result with the Landau-Khalatnikov phenomenological
theory,’® we can interpret 1/8 as the local temperature. Further, the
chemical potential in local equilibrium can be defined by

p=wo—A—3imu; (81)

from which we have the well-known acceleration relation>"

m ovs/dT = —V(u +3mv?d) (82)

Other hydrodynamic equations are given by substituting Eq. (72) into the
conservation laws derived in Section 4.
The number conservation is trivial:

map/dT +divI=0 (83)
The momentum conservation law leads to
a ov,
—Ji . (T divy, +Y - —-+8V.(1/B8)=0 84
aTJ,+(V,, Wi+Jidivv,+J oR, (1/8) (84)

Combining Eq. (84) with the acceleration equation (82), we have

%+vs divI+ - Vivi+(v, - V)IV+¥ divy,+Vp=0 (85)
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where the local pressure p is defined via the Gibbs-Duhem relation’"

Sp=pdu+S8(/B)+Y -8(v,—v,) (86)

Finally, the energy conservation law has the form

—= —div[(‘p, +%ml]§>-‘+(~'"vn)"’+%vn] (87)

The local equilibrium distribution functions are completely determined by
solving the hydrodynamic equations (83), (85), and (87) under some appro-
priate boundary conditions.

It is convenient for later use to write down the linear version of the
above results:

omp/oT +divI =0 (88)

3a¥/oT+Vp=0 (89)

aU/dT +div [od +(So/Bo)¥,]=0 (90)
J=m(psoVs+pPnoVa) On
8p = po 6+ S08(1/8) (92)
p =[Ne/(1+Fo)] 8u =[N¢/(1 + Fo)l(—A) (93)
8U=Cvé8(1/B)+podp %4)

where F, = Ngf; is the s-wave Fermi liquid parameter, Cy the equilibrium

specific heat per volume and p,¢ is expressed in terms of the Yosida function
K32

Pro=po—pso=poY (1 +3F1)/(1+3F.Y) 95)

We also give the Wigner distribution function in the linear regime:

Nl = No + 5]\’1 (96)
with
88DV A—-5% V¢

ON, =
i El

[Ap3(P)—£p1(D)]6(Eo)

+{6%‘°) —p- Vv, Lo

T Ty

E, Eo
©7)

where @ = f~ —3; the fluctuation part of the energy matrix 6% is determined
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by

iFY

,(())z 3473 . _ .

Y ——1+%F1Yp (Ve—Vs)+Pp- v, 98)
3A 1 Y 1

sEM =—— —>=— Aa—) 99
s e " voreralg 9)

88D = —A—fSsp= 1;FO Su (100)

7. FIRST-ORDER SOLUTION OF KINETIC EQUATIONS

As has been shown in Section 5, the deviation of the system from local
equilibrium is described by 8F, (¥ = £1). The equations to determine the
first-order solutions of 8F, are obtained from Eq. (21) by an iterative
method. For simplicity, we confine ourselves in the rest of this paper to the
linear regime; then the Green’s functions G~ are written as [see Egs. (67)
and (68)]

GZ=Af"FY 8F, 27 8(w' —vEo,) (101)

In what follow$ we drop the index zero to indicate the equilibrium value
except for special cases.

Let us first consider the collision term. Substituting Eq. (101) into Eq.
(37a), we have

[T= Y L27w8(w' —vE) (102)

v==x1

The expression for I, is rather complicated:

" dp, dp. d < P o >
Iy:_J a2 dPs AP 2 5 8o 8.6fTf213fa

Qm)y’ R
X (2lp3A..p3, SF, 1311 [p3A,p3A.,]
—2{p38F.p3, AL )2 r [03A..03A,))
+2{p3ALps, AYi tr (03 0F,,p3A.,]
~Hp3A,.p3, A5 tr [p3A,,ps 6F,,]
~3{p3A,.034A,,03A,,p3, F,}
+3{03 8F,,p3A,,p3A,,03, A, }
“%{P3AV4P3 5FV3P3A11303, Au}
+%{P3AV493AV3P3 3Fu2103, A} (103)
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where 8,=8(@P+pP2—Ps3—Pa), 6.5 =O0(WE +1v2E;—v3Es—v4Ey), fi=
f<(ViEi),
A,=3(1+v&/E) (104)

and

8F, =8F,(®)/f (E)f~(E) (105)

We restrict ourselves to the neighborhood of the transition temperature and
consider superfluid effects up to linear order in B.A. For that purpose it
suffices to replace all the terms in the collisicn term by its normal value
except for the terms that yield (A/E)>. Then, the collision term is simplified
to
1 1 e
I, = 6F 1
®) +(0)(V?/cos 38)
XY j dx’ j sin0dodp do'
449 cos (6/2) 2w

chix 1

1,2{6FV,(p) 485FP @), A} (106)

XB(@'|x’ |+v|x|)

where T, is the normal relaxation time: 7(0) is its value at the Fermi surface;
x=pB¢&; 0 and~ ¢ are the angle variables used by Abrikosov and Khalat-
nikov®’; and @' is the azimuthal angle of p’ around p. The function B is given
by®

1 X1+ x>

B(x1+x2) Sh [(x1+x2)/7]

(107)

Let us turn to the drift term. Substituting Eq. (101) into the lhs of Eq. (21)
‘and retaining the first-order terms in @ and ¢, we find the drift terms:

Y 27 8(w' —vE)

<(if, 5FV]+f'A,(—VBEM— al)

oT P'or

+§f{§f A }<_VBE 3(;1/{[3)_13 %) f{aég AV}> (108)

where f'=(3f /dE)= —pBf (E)f~(E). The time derivative of 8% is
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computed by use of the zeroth-order solutions as

@_.__%F‘Y -i(v —v)+ AL
oT 1+ Yy o V"V
oA a(1/B) , ... 1 op
- % 10
51/B) T p1(P)— Nana(p) (109)

Following the Enskog-Chapman scheme,?**° we replace the time deriva-

tives by the space derivatives via the hydrodynamic equations derived in
Section 6. Finally we have for 6F, the equation

1+%,2F1Y m(i,BA"p E[é”’“(p)] g} BV(%)

i[%, 3F,]+%f’({

1
400 A @=pv.)

+[vé+p ] N;—gp §>d|vvn

+{2 g a(1/3 B[ il )}}_d”v"
[,,g +03® [3p (St 58 divws))

= (110)
The general solutions of Eq. (110) are given by the sum of the particular
solutions and the trivial solutions of the homogeneous equation
I,—i[% 8F,]=0 (111)
By inspection of Eq. (103), we find that the trivial solutions that satisfy the
particle-hole symmetry are written as
SF,=fA,(p-BR, T)+vEC(R, T)) (112)

where B and C are arbitrary functions of R and T.
We proceed to the particular solutions. Let us first consider the shear
viscosity term for illustration. The equation to be solved is

d
i, 6F. 1+ ( §+p3)p,jx,-,-=u (113)
with
1/9v,; Ov. 2
i Z(aR,- oR, 300V
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We can easily find the solution within the relaxation time approximation
I, = —8F,/r,. Making use of that solution, we can find a solution for Eq.
(113) of the form

1 A
OF.=—n(®) iy X[ vgA et ®] (19

where we have assumed 7,A > 1 and also the particle-hole symmetry of the
density of states for the ¢ integral. The effective relaxation time 7,(£) obeys
the relation

I Qg ) ch (x/2) ,
1= (O)Jd Blr=x) o /2)( )’(f) (115)

where a; is the angle-averaged quantity
a1 =(V*(cos’ 6 —3 sin” 9)/cos 38)/{ V?/cos 360) (116)

The result (114) is composed of the sum of the term proportional to the
spectral function A, and the correction term. The correction term is
necessary to solve the matrix equation within an accuracy of order 1/7,A;
however, we can neglect it in the following calculation because not only is it
smaller than the main term by 1/7,A, but also it makes no contribution to the
physical quantities of interest. A similar situation holds for all the other drift
terms. Then, we write the set of particular solutions of Eq. (110) omitting the
correction terms:

6Fpu = —f’Au
<[ Xwg i@ - ¥(Z)ene

|
+FF div(@—pv.)v ETs(f)

+<——p——lp g)dxvvnv =73(¢)

Ne 3
S S oA
+—divv, vE divv, ] 117
co iv v, vE74(£)— 3Cy 31/8) ivv 75(&) (117)
where the effective relaxation times 7», 73, T4, and 7s obey
ch (x/2) [ £'\°E’
1=___§ B(x'— ) 118
2ot Bk S (5) Fre) i)
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with
ay =(V? cos 6/cos 36)/{V?/cos 38) (119)
T 1 _onchx/2) (€N
™ (O)de Bx-x% (x'/z)(E) (&) (120)
T4 3 (o, . ch(x/2)E
b B - SR L)
ch (x/2) A?
s ax B S o ) (121)
and
h(x/2) E
1=—+W)j£dx B(x'—|x|) Ch((x,//z))E, 7s5(£")
_ _n Ch(x/2) A g
SelaBe-n TR (E) e aw
where the integral $dx’ means
o o 0
!erx :L dx’—J_oo dx’ (123)

In the above results, we have neglected one of the two terms that are
proportional to V(1/8). This can be justified by the following argument:
these force terms smoothly reduce to the normal version when 8 - 8. (8. the
inverse transition temperature), whereas in the normal state, as has been
shown by Sykes and Brooker,>* the neglected term gives rise to a smaller
contribution to the thermal conductivity than the other one by a factor of
1/BEg (Er is the Fermi energy).
We have shown that all the first-order solutions have the form of

oF, =f'A..(p) (124)

as long as the condition 7,A » 1 is fulfilled. We can easily diagonalize Eq.
(124) by the Bogoliubov transformation as

Ut 8F,U =3f[1+ vp5 ()], (P) (125)

This indicates that, when 7,A » 1, the first-order solutions are all described
by the Bogoliubov—Valatin quasiparticle distribution functions. This fact has
been already used by many authors to compute the various transport
coefficients>*'. Before concluding this section, let us estimate the superfluid
effects on the various effective relaxation times within the order of 8. A.
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If we define q1(x) by
T1(€) = 7(0)[ch(x/2)]q:(x) (126)

it satisfies the following equation:
2 2

ch (i/z):[H(%) ]q‘_“ljdx'B(x‘x')ql(x')(% (127)

which has been treated by Pethick et al.* to investigate the shear viscosity
near the transition temperature. By making use of the relation

§2 A2

li =1l——==1-7A8 128

.;—I;r(IJ B2 B2 wA8(§) (128)

we can estimate the deviation of q; from its normal value g,; to be

—a
1+(x/ ) T

qn( ) (129)

bq: = sh (x/2)

For 7,(¢), we find no correction to the normal result apart from the
correction of order (B.A). If we define ¢, by

72(&) = 7(0) [ch(x/2)]q2(x)/x (130)

then g, satisfies
2

=[1+(%) qu_azj dx’ B(x —x)ga(x') (131)

ch (x/2)

which is nothing but the equation to be solved for the thermal conductivity in
the normal Fermi liquid.>*** A very interesting situation occurs with regard
to 75. If we define g3 by

73(€) = 7(0)[ch(x/2)]q3(x) (132)
we have

ch (1/2):[14‘(%)2] J dx' B(x - x)(fl) qs(x") (133)

As has been shown by Wolfle,® one finds a singular solution of the form

1 4
ch (x/2) rch

It is worth noting that Eq. (133) is the same as that considered by Bhat-
tacharrya et al.” for the spin relaxation effects.*® The mechanism of the spin
relaxation® is the same as that in the deviation of the chemical potential
from its local equilibrium.

q3(x)=———= (134)
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Asfor 74 and 7s, it suffices for our purpose only to note that they have no
such singular behavior as 7.

8. CONSTRUCTION OF THE HYDRODYNAMIC EQUATIONS
WITH DISSIPATIVE TERMS

In this section, we shall derive the linearized version of the two-fluid
hydrodynamic equations with dissipative terms for *He-B. This can be
achieved by substituting the Wigner distribution function N up to the first
order into the conservation laws given in Section 4. The Wigner distribution
function can be expressed in terms of 3, v,, and A (not ).

Before going into details, we make some remarks on the
phenomenological derivation of the two-fluid hydrodynamic equations.”' In
the phenomenological theories®®?! it is assumed that the thermodynamic
relations which hold in local equilibrium are also valid even if the system
slightly deviates from local equilibrium. Then, in order to derive the
phenomenological theory from the microscopic point of view, one should
postulate that the thermodynamic relations [see Egs. (91)-(94)].

8p =[Ng/(1+ Fo)] 6u (135)
8Y =mpno(vr —Vs) (136)
8U=Cv8(1/B)+uodp (137)

as well as the Gibbs—Duhem relation
8p =po du+S808(1/8) (138)

hold even if the system deviates from local equilibrium. This means that the
variables v, and 1/8 still have the meaning of the normal velocity and the
local temperature, respectively. The quantities 8p, 8¥', 6U, and v, are
completely defined on a microscopic basis [see Egs. (41)~(43) and also Eq.
(15)]. Then it becomes necessary to redefine the chemical potential and the
focal pressure.

We can make the thermodynamic relations (136) and (137) hold by
choosing appropriately the quantities B and C in the trivial solution (112)so
that the first-order corrections to 8¥ and U vanish. Contrary to the cases of
8¥ and 8U, we cannot find any trivial solution which would contribute to Jp,
because of the particle-hole symmetry relation imposed on the Green’s
functions [see eq. (66)]. Thus, it is inevitable to redefine the chemical
potential microscopically in order to keep the thermodynamic relation
(135).
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The Wigner distribution function N up to first order (in gq) is given by

N =No+8 N, +Y (8F,, + 6F,,) (139)

The second term SN, has the same form as Eq. (97), although the energy
matrix 8% should be determined self-consistently by use of Eq. (139). Let us
decompose formally 8% into the zeroth-order (in q) term 8%, and the
first-order (in g) term 8%, as

58 =8%) +8%, (140)

The zeroth-order term 8%; is given by the same form as Egs. (98)-(100) as

1
IFY
0) 3471
= —— . p— + . A
8&, 1+%F1Yp (vi—vo)t+tp v (141)
aA 1
T ) 142
ba/B) (B (142)
88 =—-A—f56p (143)

although the actual values of B,v,, and A are different from the local
equilibrium case. The contribution to §€; comes only from the first-order
correction to the magnitude of the order parameter, which we denote by
8Ay; therefore

8%,=064A,p1(p) (144)

Let us also formally decompose the Wigner distribution function given by
Eq. (139) into the zeroth-order term 8N and the first-order term 8N, as

N =Ny+8N| +8N; (145)

where 8N is obtained from Eq. (97) by replacing 6€ by 6%] given by Eqgs.
(141)-(143). The first-order term 8N is expressed as

0 ’ '
SN1=% (anu+6Ev)—E £8A1(Ap3 —ép1)

A
+%2— 8A, & (146)
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The number density 8p can be computed by substituting Eq. (145) into
Eq. (41):

80 = Ne(—A~£3 8p)
-23 mf'(é) Z[Nl; div(@—pva)

3 6§> ! J
+—op-=
( Ne 3P ) AV Ve (147)

Solving Eq. (147) in terms of 8p, we obtain

{Ne(=A) =2 nsf (£) [L aiva-pw)

d,
P Ny

T1+F,

p 1 65) . ]
+|—— " —_
(NF 3p o divv,

Equating Eq. (148) with Eq. (135), we have a new microscopic definition of
the chemical potential:

(148)

S =—A+¢div@F—pv,)+ s divv, (149)
where
1 . 2
ta= - | dems@(£) 7 (150)
and
_ £’y 1 9 .
to= | aen@ (g) rl50- ) (151)

Recalling the definition of v [Eq. (15)], we have the acceleration equation
with dissipative terms:

m vy /0T =—V[u - div(I—pv,)— o div v, ] (152)

It is worthwhile to give some comments on the treatment of this problem by
Shumeiko®* and Wolfle.® They tried to determine the chemical potential
shift essentially through the relation

8u> 6,u> 1
== = Yy =
ou=(32) 0= () L5 trlpsoN] (153)

This method gives a result (1+ Fy) times larger than the correct result,
although one could obtain the correct result from Eq. (153) if one put



Microscopic Derivation of Hydrodynamic Equations 377

(®u/8p)=1/Ng by imposing a somewhat artificial restriction’ upon the
partial derivative (du/dp).

Now let us determine 8A;. The magnitude of the order parameter se®
is computed from Egs. (34") and (145) self-consistently as

ay - oA 1 YA A _ A1 9A S
08 =31/ ( ) Y-S Y1 T B s cy AV
(154)
where {A) denotes the energy average:
(Ay=| @ (- ay (155)

Then we can write
A A 1 dA > S
= —_— " Y(I) 1
oA _1<<<74 B 5 1/3) > divv (156)

From the requirement that the first-order corrections to §¥ and U vanish,
we have

1 0
E> &rapi a—éj

+B;ipiph=0 (157)

1 aQ ’
E%p, tr 5N1= _NFJ4_77'_«BV,(

and

1Y tr [€6Ny]
P

=~ Nef(8 581~ ( - d(ffﬂ)g e = divy, +CE?) (158)

=0
from which it follows that

R, 1
B= m*EFYBV(B> (159)

;f/A << E Bd(l/B) >> <<“E2_%a(f?3)”>>}

Shs

and

S
} C_v divyv, (160)
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By choosing B and C as Egs. (159) and (160), we can recover the
thermodynamic relations (136) and (137).

Let us turn to the momentum flux. Within the linear regime, the
momentum flux I1; in the moving frame is obtained from Eq. (44) as

1 §& I6&
M=% —tr I:Pi{g_, 5N} +Pi{‘—, No} +6;{8€, No}J (161)
p 4 ap; ap;
where

SN =8N + 6N, and 5% = 8] +58,.

The zeroth-order contribution to II in the fixed frame is written in the same
form as in the local equilibrium case:

(U7 = 8ylp(— A)+ S 8(1/B)] (162)
The first-order correction to II is given by

(Hl)ii=§i [P:{Zg 5N1}] (163)

Let us first treat the off-diagonal part:

(Hl)i#j=2i [Pz{i SNI}J

=—4§p%(§) n(f)(é)zf’Xn-

J

O0Vy; av,,, )
=- + ; 164
(dR 3R, ’3d“’v (164)
where
L))
T15 m=N\NE) /] (165)

The diagonal part is computed from

= b [of o0

=p<<r3(§>2[NLFdiv(J pv,,)+ ———p f)dlvvn]>>
—NF<<73(’E§>2(‘NF);_%P'g_f))[ﬁ;diV(J—PVn)

o=3pe o) dive]) (166)
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Recalling the definition of {5 and ¢, in Egs. (150) and (151), we can write Eq.
(166) as

(I1)u=pl[{3div(I—pv.)+ s divv,]

—&idiv(@—pvy)— o div, (167)
where
/T 3_f> £>2>>
a= Q\(NF 3P % T3(E (168)
and
S ()
= ————— @ — — 1
=Ne((-3p50) % (169)
We note that ¢; and {, satisfy the Onsager reciprocal relation™"
{1={a (170)

although they are small compared with p{; because they include in the
integrand a small factor (p/Ng)—3p - 9¢/0p. Collecting the results (162),
(164), and (167) we have

IL; = 85lp(— A+ 3 div(I—pva)+ s divv,)+ 5 8(1/8)]
—6,','[§1 div (J—pv,,)+{2 div V"]

av,,,- OVpi 2 . )

— — 4 —_— i'd " 171

"(aR,- oR; 36’ vy (171)
If we redefine the pressure by

Sp=p[—A+¢div@—pvy)+Ladivy, ] +S8(1/B) (172)

we find that the Gibbs—Duhem relation (138) is recovered [see Eq. (149)]
and also that the momentum flux has the anticipated form*'

0U avni 2 .
Il;=8p&;—m "'+—~—5--dlvvn>
i i (aR,- oR; 377
—5,-i[{1diV(J—an)+§2diVVn] (173)

Let us turn to the energy flux. In the same way as for the momentum
flux, we obtain

U s
ﬁ__dlv(”0J+Ev">
8 1 0%,
~L vy [g{——,aN}] 174
6R,- p4 : 0 ap, ! ( )
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where the zeroth-order term has been already included in the first term.
Substituting Eq. (146) in to Eq. (174), we finally obtain

aU S 1
Sk div [#OJ+an KV(E)]=0 (175)
where the thermal conductivity « is given by
2NFEFE (&*/Exy
1l-—— 176
S @y (1255 (176)

We can neglect the second term, which comes from the trivial solution,
because it is smaller than the first by a factor of (1/B8Eg).” Then it follows that

Kk = (Bp/ m* X&) (177)

Thus we have derived the complete set of hydrodynamic equations as well as
the thermodynamic relations from the microscopic point of view.

For completeness, we estimate the first order correction to the magni-
tude of the order parameter given by Eqgs. (156) and (160). We have seen in
Section 7 that 74 and 7s have no singular behavior at the transition tempera-
ture; therefore it suffices to put 74 =75 = 7(0). Then we have

I, x oA 1 o0A S
5A, = [1 ——1_Y(1 _CVYAa(l/B)>]B g o GO
(178)

where
x =1—(£/E?) (179)

The leading term near T, diverges as 1/A” which is in agreement with
Shumeiko.>*

Finally, we investigate briefly the behavior of the transport coefficients
near the transition temperature. The shear viscosity coefficient n was first
investigated by Pethick et al.* It decreases below the transition temperature
proportionally to 8. A, although such a behavior can be actually observed in
the narrow temperature range of |1—p8/8.=<107>.>* To the thermal
conductivity «, there is no correction of order B.A. The second-viscosity
coeflicient ¢ was investigated by Wolfle® and Wolfle and Einzel.” It diverges
near the transition temperature proportionally to 1/8.A. From the expres-
sions for {1 =44 [Eqs (151) and (168)], we can easily see that ¢, = ¢4 is of
order p{3/(B.Er)’ or of order n/pB:.A(B.Er)*. Thus, {; = {4 can be neglected
compared with p¢; and 7n/p in the temperature range where 7,A » 1 is
satisfied. Another second viscosity coeflicient £, is estimated from Eq. (169)
to be p>¢s/(B.Ex)* which is also small except for the immediate vicinity of
the transition temperature. All the results agree with previous
calculations.%**
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9. CONCLUDING REMARKS

In the preceding sections, we have derived the two-fluid hydrodynamic
equations for *He-B by applying the generalized Enskog—Chapman scheme
to the matrix kinetic equation. OQur method is a natural extension of
Kadanoff and Baym’s method>® for normal systems to superfluid systems.

We have derived the Boltzmann equation for the Bogoliubov—Valatin
quasiparticle distribution function only in the neighborhood of the transition
temperature. It can be also done throughout the temperature range 0=<
1/B=1/B. as long as the condition 1,A>» 1 is fulfilled. Moreover, it is
possible to incorporate a more realistic scattering amplitude, including the
higher partial wave contribution.”® The numerical evaluation of the trans-
port coefficients by use of the variational method’ will be reported else-
where.

We have calculated the scattering processes in the Born approximation.
However, it is not satisfactory in the low-temperature limit because the
group velocities of the Bogoliubov-Valatin quasiparticles in the BW state
vanish at E = A. Therefore, as was shown in the case of rotons in He II,36 we
can expect that the transport coefficient, for example 7, will diverge
logarithmically at the low-temperature limit, contrary to the prediction by
Pethick ef al.® It is still not clear whether this divergence can be observed or
not. This problem will be considered separately.

Our method for deriving the hydrodynamic equations also can be
applied to the spin dynamics and the orbital dynamics for both the A and B
phases of superfluid *He. Investigations in this direction are now in progress.

APPENDIX

We show in this appendix in detail that the condition
LN®@=0
p

is equivalent to requiring the number conservation law. For simplicity, we
consider the linear regime within the first order in w and q. From Eq. (71)
and (145), we note that the first-order term of N is written as

N®=NQ+N{ (A1)
with

do’ <
NG = [ S5 APF (@) (A2)
awr
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and
NY’ =% SF (A3)

The first term N is obtained from Eq. (58) to be

6 f 38€'"Y  06&® 9t 0587
N = ———)(—* +A A= > A
A <2E3 2E2/\ % oT oT “op oR (Ad)
Then, by use of Egs. (98)-(100) we have
Y-1[ o Y
ZN(Z)—T[—a—;—d J+Y_1div(J—pv,,)] (A5)

where Y is the Yosida function and we have neglected the odd term in £
during the integration over £.

On the other hand, the second contribution Y N (12) can be directly

| 4
evaluated from Eq. (110). Multiplying by p3 on both sides of Eq. (110) and
also taking the trace, we sum over p to yield

Y /dp
T N® = 4A(ﬁ+pd1vvn> (A6)
) 4

Finally, we obtain the anticipated result:

1
(2) _
N 4A( o div J)
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