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The kinetic equation for Bogoliubov quasiparticles is solved in a well- 
controlled approximation and the kinetic coefficients of shear viscosity, 
second viscosity, and thermal conductivity are calculated for all tempera- 
tures. The results are in good agreement with data on the shear viscosity. 
Finally, the rate of relaxation of the normal fluid density from a state of 
disequilibrium with the superfluid component is considered. 

1. I N T R O D U C T I O N  

Using the scalar kinetic equation and the results for the Bogoliubov 
quasiparticle relaxation time derived in the preceding paper  (hereafter 
referred to as I), we shall calculate in this paper  the transport  coefficients 
associated with the orbital part of the linearized hydrodynamics of 3He-B. 
We shall demonstra te  that, due to the isotropy of the B-phase energy gap, 
a quantitative calculation of the transport  coefficients is possible for all 
temperatures,  at least in the weak coupling limit and as far as the quasipar- 
ticle scattering amplitude is known or may be inferred from other experi- 
ments. 

Calculations of the transport  coefficients of an s-wave pairing Fermi 
gas have been reported by Shumeiko. 2 The shear viscosity of superfluid 
3He has been considered by Seiden, 3 Soda and Fujiki, 4 Shazamanian,  "~ and 
Geil ikman and Chechetkin. 6 All of these calculations had a more or less 
exploratory character. On the other hand, there are some exact results 
available on the shear viscosity and thermal conductivity at low tempera-  
tures 7 and on the shear viscosity and the second viscosity near the tran- 
sition. 8"l~ For the case of isotropic quasiparticle scattering there is also a 
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recent calculation of the B-phase shear viscosity for the whole temperature 
range by Ono et al. 12 

The paper is organized as follows. In Section 2 we deal with the 
coefficient of shear viscosity and include a detailed comparison with 
experiment. In Section 3 the coefficients of second viscosity are calculated. 
Section 4 is devoted to the calculation of the diffusive thermal conductivity. 
In Section 5 we consider the relaxation of the normal fluid density from a 
state of disequilibrium with the superfluid component.  

2. S H E A R  V I S C O S I T Y  

The coefficient of shear viscosity r describes the response of the 
momentum current density 8~-q to a transverse velocity field v~ imposed on 
the normal component  

IOv7 ov7 2 0 v ~  

87r# is expressed in terms of the Bogoliubov quasiparticle distribution 
function 8Up by 

an,j = E p,-(Vp); a. ;  (2) 
P 

where 8@ characterizes the deviation from local equilibrium and 

Vp = V~,Ep = f f . l  Ep)p/ m * (3) 

is the quasiparticle velocity. 
In the case of a stationary transport situation it is sufficient to approx- 

imate &,p on the lhs of the kinetic equation (I.33) by the local equilibrium 
distribution in the rest frame of the moving fuid  

8Up = f~, (SEp - 8E~, "t ) + O (17. v" )  (4) 

where 6E~,Xt = p  �9 v" denotes the energy change of a quasiparticle in the 
velocity field v". Assuming the velocity field along the x axis and its 
gradient along Y, the kinetic equation has the form 

~v pyc/y . . ,  i , i~ 
p~v~f. = -~~pSup + It, (5) g 

8u'p is seen to be an odd function of ~:p, and I N is consequently given by Eq. 
0.59). Iip n is closely connected with 1-p -1, as demonstrated by the exact 
properties, Eqs. (I.75) and (I.76). Since the eigenfunctions of Iip " are not 
known, an exact solution of the integral equation (5) cannot be given. 
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However,  the dependence of the collision operator  on energy and 
temperature is smooth and it can be hoped that good approximate solu- 
tions can be easily found. Approximate solutions may be generated in two 
ways. The more common method is the variational solution of the kinetic 
equation (5). It may be shown by standard methods that the coefficient of 
shear viscosity is bounded from below by 

d~2 fl~2 C (~l, ~2)xlr(~2) ] } -1 
(6) 

where 

C ( ~ ,  r  - -  1 ~:1 ~:2 [-I cosh2- ~ 
7"N(0)UIE2 i=l 

o o  

X E Io d~3d~46(lilEl+tx2E2+l~3E3+l.~4E4) 
# , I . . . / A 4  

x i~3 sech 2-T + ~/2#3/zs 

Here ~(~)  is a trial function. The simplest choice would be ~(~:) = UE.  For 
this case 77 has been evaluated numerically by Ono et  al. 12 with the 
additional approximation of isotropic scattering. In general, �9 is expected 
to be given by a power series 

qz(~) = (~/E) ~ a.E" 
rt = - - o c  

The coefficients an can in principle be determined by seeking the minimum 
of the functional (6) in the space of the a,. 

Since the numerical evaluation of the integrals in Eq. (6) is rather 
laborious and the result for the simple trial function sOlE is expected to be 
off by up to 30%, as may be inferred from a discrepancy of this size of the 
variational solution and the exact solution in the normal state, we follow a 
different line of approach. Instead of finding an approximate solution of 
the exact collision integral, we construct an approximation of the collision 
integral that allows an exact solution. The approximation should preserve 
as many features of the exact collision integral as possible, while at the 



42 P. W~lfle and D. Einzel 

same time allowing a closed solution. An approximation of this type is 

E •  f; Yp, 5P20" f;)(r162 
Ip" = iX2 to(G) Y,' [f;'/Zo(G')] 

�9 ~p f ;  Ep'5P2(~'~')(r162 
+ l T 2  E p  t ~,(G) E,. [f,./Tr(&.)] 

where 

ro l (~) = r N' (0, T)Io(E) ,  
2 T 

r f  (r = z~ ~ (0, T)~/o ~ I 2 ( E )  a-(u) 

(7) 

(8) 

Equation (7) satisfies the relations for the exact collision integral given by 
Eqs. (1.75) and (I.76), indicating that the energy and temperature depen- 
dence of the integral operator in (7) is simulated quite closely. 

In the vicinity of Tc one has z) -t << ~.-1 and ~'o l ~ ~.-1. In the opposite 
limit of T ~ 0 the backscattering integral Ip" is small, of order T/Ao,  due to 
the factors r  In order to save effort in the solution of the kinetic 
equation (5), we have therefore neglected r} -t and approximated ro ~ by 

- 1  
T 

Introducing a dimensionless function &(~:) by 

rl 
. qyv x ~, Co . . . .  (9) 

and performing the angular integration in the backscattering integral I~", 
one then obtains the separable integral equation 

((~:2/E2)& (~:)/~-)r, 
r(~) = & (~:)- X 2 (10) 

(1/r)f '  

where we have introduced the abbreviation 
oc, 

(A(~))r,= I_ d~ ( - f ' ( E ) ) A ( ~ )  
oo 

Equation (10) is readily solved for & (~). Substituting the result into Eq. (5), 
one finds for the shear viscosity coefficient 

~ = ~ npFVF[\~-~ r / r  + M i(1 - ~ ~ 1 / r ) ) r ,  (11) 

Here r (E)  is the exact quasiparticle lifetime given by Eq. (1.65). 
In the normal state we have ~e2/E2 = 1. Noting the simple structure of 

z(~:) given by Eq. (1.73), the energy integrals may be evaluated analytically, 
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with the result 

where 

1 
rl(T)=gnpvVFrN(O, T)f.(A2); T ~  > T~ (12) 

f,(A2)=~rr~ 2+]A2/(1-A2) (13) 

Due to the T 2 dependence of the relaxation rate r~(0, T), r/ is pro- 
portional to T -2. Comparing the result (12) with the exact result, 9'1~ it is 
found that the corrections are less than 1% for all values of A2(0<A2 < 1). 
Thus for all practical purposes the result (12) is exact. 

The first term in an expansion of 77 in powers of a/Tc  below Tc may be 
easily calculated. Observing that 

~:2 .,X 
a~01im ~-~ = 1 - A lima~o ~ c2 + A 2 - 1 - ~ra 3(~:) (14) 

we can do the energy integrals in Eq. (11) with the aid of the delta function. 
The result is 

rl(T)/r l (Tc)  = 1-a(A2)[1-(T/T~)]  1/2 (15) 

where 

7r 2 (2 A C )  '/2 [1 + 3A2/(1-A 22)12 
(16) 

Here we have inserted A(T) as given by (I.83). a (A2) is a strong function of 
,~2 for A2 values of interest (0.5 - A2-< 0.8). The function a(A2) may also be 
calculated by employing the exact eigenfunctions of the normal-state 
collision operator. 8 Equation (16) deviates from the exact result by higher 
order terms in the eigenstate expansion, which are typically of the order of 
1%. 

In the limit of low temperatures, T/A<< 1, the corresponding limit of 
the qp relaxation rate, Eq. (I.79), may be substituted in Eq. (11)�9 It is seen 

�9 in that the contribution from the backscatterlng term Ip is of order T/Ao small 
and can be neglected. Thus the dependence of the viscosity on the parameter 
3.2 drops out. As noted by Pethick et al., 7 the viscosity is given by the usual 
gas kinetic expression 

n (T  =0)  ~ 2 = ~iOnvo~" (17) 

where 

iOn ~. ~,  2 t P x  ( - - f p )  = m*(pa /37r2) y(T) ( 1 8 )  
p 
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is the mass density of the normal component [ Y is defined by Eq. (I.78)] and 

(19) 

is the averaged thermal quasiparticle velocity squared. It is remarkable that 
2 the temperature dependences of O,, vp, and r compensate such that rt 

attains a temperature-independent limiting value for T ~ 0, which is of the 
order of the viscosity at T~ on dimensional grounds. Inserting the expres- 
sion (I.79) for ~', one finds 

~ ( r = O )  2 ['Tc'~ 2 1 (20) 
n(T~) =3=~• &(,~2)Wo 

with fn (A2) and Wo defined by Eqs. (11) and (I.79), respectively. The exact 
result by Pethick et  al. 7 is recovered from Eq. (20). 

We have evaluated Eq. (11) numerically with z(E) and A(T) given by 
Eqs. (I.65) and (I.83) for various values of A2. For purposes of comparison 
with other theoretical results, we first consider the ease of isotropic 
quasiparticle scattering, i.e., As(O,  ~b)---So, A,(O,  4~) = 0. In this case one 
has A2=~. In Fig. 1 the normalized viscosity coefficient is plotted vs. 
( 1 - T / T  c) 1/2. The solid curve is the result of the present calculation, the 
.dashed curve represents the result of a variational calculation by Ono et  
al., 12 and the limiting behavior as T ~ Tc and as T -~ 0 according to Pethick 
et  al. 7"8 is shown as dash-dotted straight lines. The agreement is good in 
general. The deviation of the dashed line from the exact low-temperature 
limit is caused by the variational approximation for rt (To). It is seen that the 
straight line at Tc approaches r/(T) only very close to To 

1.o I~ . . . .  

"q!T_)J\ Shectr viscosity of 3He-B 
"Tll lc~- " ~  lisot ropic scattering) 

0.4 \. "~" 
' / 

0.2 

I I I I 

O.2 0.4 0.6 O.8 
(11- T / T c ) 1/2 

19 

Fig. 1. Normalized shear viscosity of the BW 
state for isotropic scattering vs. ( 1 -  
T/To)i/2: our theory (solid. curve), exact 
asymptotic results 7's (dash-dotted straight 

�9 1 2  lines), variational calculatton (dashed line). 
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Fig. 2. Shear viscosity of 3He-B normalized to the value at Tc 
vs. reduced temperature near 20 bar pressure: our theory (solid 
curve), heat flow data after Johnson e t  al.  ~3 (squares), torsion 
pendulum data after Main et  al. (triangles), Guernsey et  al.  15 

(crosses), and Parpia e t  al. t6 (circles). 

The scattering of quasiparticles in 3He-B is far from isotropic. 
At tempts  to calculate r / in  the normal state by employing the s - p  approx-  
imation for the scattering amplitude have been successful at vapor pres- 
sure, but yield results that are too small by a factor of two in the range from 
5 bar to the melting pressure. We therefore adopt the point  of view that 
~'N(0) and A2 are parameters  to be determined from other experiments.  
Given values of ~'N(0) extracted from orbital and spin relaxation 
measurements  as well as from the sound absorption closely below To, Az 
may be calculated from the shear viscosity or the zero-sound attenuation in 
the normal state. In this way values for A2 ranging from 0.65 at melting 
pressure to about  0.7 at 20 bar are found. 

In Fig. 2 the result of a numerical evaluation of Eq. (11) for A2 = 0.7 
and values of 3'0 and 8o quoted in Section 4 of I is compared  with heat flow 
data of the La Jolla group, 13 and torsion pendulum data of the Manchester 
group, 14 and of the Columbia group. ~5 All of these experiments  were of an 
exploratory nature. In the calculation A(T) was approximated by Eq. 
(1.83), with AC/CN = 1.55. 

Also shown in Fig. 2 are the recent, very precise torsion pendulum 16 data of the Cornell group. 
In Fig. 3 our theoretical result for A2 = 0.65, yo = 0.16, and 80 = 0.29, 

as well as a specific heat discontinuity of AC/CN = 2.0, appropriate  at 
melting pressure, is compared  with the vibrating wire data of the Helsinki 
group. 17 The agreement  of theory with experiment  would be even better  if 
we had allowed for strong coupling enhancement  of the zero- temperature  
gap in Eq. (I.83). The deviation at low temperatures  is presumably due to 
finite mean free path effects. 
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Fig. 3. Shear viscosity of 3He-B normalized to the value at Tc vs. 
reduced temperature at melting pressure: our theory (solid curve), vibrat- 
ing wire data after Alvesalo et al. 17 (circles). 

In Fig. 4 a comparison of theory is made with the high-precision data 
of the Cornell group ~6 by plotting the square of the relative change of the 
viscosity near  Tc against T / T c .  The agreement  is seen to be quite satis- 
factory, apart  f rom a systematic deviation of these viscosity data toward 
lower values at lower temperatures.  It has been suggested 18 that this is 

F Shear viscosity of 3He - B / - 
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Fig. 4. Normalized change of the shear viscosity squared of 3He- 
B vs. reduced temperature: our theory (solid curve), torsion 
pendulum data after Reppy et a l .  16 (circles). Asymptotic behavior 
near Tc is shown by the straight line. s 
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probably associated with finite mean free path effects in the narrow slab 
geometry (50/~m) used in this experiment. 

In a temperature region of width 10-3To about the transition a 
behavior linear in l -T /To  of T/--q(T<) was observed in the Cornell 
experiment. Such behavior has been predicted by one of the authors for the 
so-called gapless regime TA<< 1 [Eq. (83) of Ref. 19]. It turns out, however, 
that the coefficient of (1 - T~ Tr is larger than the experimentally observed 
one by a factor of 40. The observed behavior is probably due to fluctua- 
tions above To. 

3. SECOND VISCOSITY 

The hydrodynamic equations of an isotropic superfiuid contain three 
coefficients of second viscosity appearing in the momentum conservation 
law and the acceleration equations of the superfluid. 

The corresponding terms in the stress tensor are 

ll~s = -&s{(t div [ps(v s - v")] + (2 div v n } (21) 

In the limit T -> T< the (~ term vanishes, while (2 is identified with the usual 
coefficient of bulk viscosity. ~rl and (2 describe the response of the momen- 
tum current to longitudinal velocity fields v, and v~. The change in the 
distribution function induced by such a disturbance is isotropic. The 
diagonal part of the momentum current is given by 

1 
tr [Ilul = ~ 2 pVflT. &,'. 

P 

= �89 V PVp(~o/Ep) 6u'p 
P 

with 

1. ! = gpFVV Y= ( # I G )  3u~> + O(T2/e 2) (22) 
P 

, r  
~v~ = 8vp - f p  ~ (8tp - ~z ) 

~, G / ~ atz\ T 2 

Taking into account a~/an =f  o-NF'  and the expression for the density 
change 

/X2 E . \  
8 - 8p.)] (23) an = Y [ ep  8up - = - ~ 3  ( tanh .~)(  ep 

p LE~ 2Ep \ J 
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it is readily verified that 

and therefore 

~ - -  ova, = 0 (24) 
G 

�89 tr [II0- ] = O(T2/e2F) (25) 
2 2 In the case of ~r2 there is an additional factor of Tc/er from the streaming 

part of the kinetic equation such that st2 is of order T4/e~ small compared 
to the coefficient of first viscosity. ~'~ is of order T2/e 2 small. Both 
coefficients are therefore negligible in 3He-B. 

The remaining coefficient (3 governs the response of the chemical 
potential to normal-superfluid counterflow, which introduces dissipation 
into the equation of motion of vs, 

m C = _~r{/x t _ m•3 div [ps (v' - v n)] - m(1 div v n } (26) 

Here #t  is the local equilibrium value of the chemical potential. 8/.t ~ is 
determined by the requirement that the local equilibrium distribution 

6v~ = f;  -~ (6co - 6t~') (27) 

gives the correct density change, 

6n~=~[~pSv,  A 2 leo P -2-E-x(tanh-~T)(Se'p - Stz')] ==-8" (28) 

The isotropic part of 8co, given by 

3ep = fo 6n (29) 

is equal to its local equilibrium value. 
Taking the difference of 6n and 3n~, one obtains 

6n-6n ' :~p  [-~p(6vp-Sv.)+~-ff~p(tanh-~)(6lz-8.')]=OG , A 2 Ep (30) 

introducing 8 # ' = B / z - 8 # k  the deviation from local equilibrium, and 
recalling that 8@ in the kinetic equation is defined by 

we derive the following relation between 8/z' and 8v~ from Eq. (30): 

( A 2 C p o ,  
2Ep 2T)  3~' = - -  ovp ~ \ - g / ' p  +~-g~3 t a n h - -  --= N F  6/-t '  - ~ E p  (31) 
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Here NF may be interpreted as the thermodynamic derivative of the 
density with respect to the chemical potential at fixed quasiparticle dis- 
tribution. 

The left-hand side of the kinetic equation in this case is approximated 
by substituting the local equilibrium distribution function 

Vp (32) 

with the isotropic part of 8Etp given by 

6El = (fo 6n-&ut)=-~p-~v6n (33) 

Making use of the continuity equation to eliminate to 6n in favor of q �9 j, we 
obtain for the isotropic part of the kinetic equation 

P ~-p Nvv q(j - P  v") = - - - l  6v~, + Ip (34)  �9 ~'p 

The relevant part of the inscattering term, isotropic and odd in ~o, is 
approximated by 

X'; i ~. . ,  Y., (~.,I~.,)(,~,.~,I:'.,) (35) 

The expression (35) again satisfies approximately the relations (I.75) and 
(I.76) of the exact inscattering integral. A more precise approximation 
involving two relaxation times could again be given in a form similar to Eq. 
(7). 

Introducing a dimensionless function ~h(s r by 

8v~ = - i  ~Pf'p __1 q(J _ P v")& (~:~) (36) 
E,  N~ 

we can write the kinetic equation 

((r / E2)c#(r 
~-(~:) = ~b(r (37) 

This separable integral equation is easily solved. Substituting the result into 
Eq. (34), we find the second viscosity coefficient as 

1 []~2 \ (~2/E2>~" ] (38) 

Near the transition, the second term in the square brackets diverges as l/A, 
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Fig. 5. Normal ized second viscosity coefficient ~'3 
for the BW state vs. reduced tempera ture .  

and one has 

4 /2 AC',-'/2/ T \  -~/2 
~r3 = m--~pF ZN (0) ~ ~--~-) ~ l - - - ~ j  / (39) 

This result has been derived previously by one of the authors by exactly 
solving the kinetic equation. Note, however, that the factor O/t/On in Eq. 
(14) of Ref. 11 has to be taken at fixed qp distribution, i.e., O/t/On 1,, = NF'. 
The numerical estimates of ~'3 in Ref. 11 therefore are too large by a factor 
of F~. 

In the limit of low temperatures ~'3 becomes temperature independent 

27r 1_1_(T~ 2 1 . u ( 0 ,  Tc) (40) 
lira ~3 = -~- NF \ A0/ w0 

This result is again exact. 
The rosult of a numerical evaluation of Eq. (38) is plotted in Fig. 5 as 

~3[A(T)/A(O)]/NF'c~(O, To) vs. l - T / T o  using the values 3,o=0.12 and 
60 = 0.29 appropriate for a pressure of 20 bar. 

4. T H E R M A L  CONDUCTIV ITY  

The coefficient of thermal conductivity characterizes the response of 
the heat current Jo to a temperature gradient 

Jo = - K  V T  (41) 

Equation (41) describes heat transport by a random diffusion process of the 
thermal excitations. In addition, in a superfluid there is a convective 
contribution to the heat current, j~ = Sv,  even in the absence of mass flow, 
due to the possibility of normal-superfluid counterflow. In the vicinity of Tc 
the convective transport process is much more effective than the diffusive 
one and it is difficult to measure K. At  lower temperatures the diffusive 
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processes take over, since v, is bounded by friction and by the finiteness of 
the qp velocity. 

The diffusive heat current may be expressed in terms of the quasipar- 
ticle distribution function 6u, as 

io = Z Ep VoEp 6u'p (42) 
P 

In the presence of a stationary diffusive heat current the distribution 
function is close to a local equilibrium distribution function characterized 
by the local temperature deviation 8T 

6u. = f ; [6E~ - (EJ T) ST] + O(VT) (43) 

Substituting this into the left-hand side of the kinetic equation (I.33), one 
finds 

i , in 
m* ~ ) ' o T  ~ (44) 

From the symmetry of the lhs of Eq. (44), it follows that the solution 6u~ is 
odd in ~:p and has l = 1 angular symmetry. The energy dependence of the 
driving term has changed, as compared to the case of the viscosity, by the 
additional factor of Ep. Taking this modification into account, the inscat- 
tering term of the collision integral is approximated by 

f ;  . ZP '  ~ p ' e l ( p  " O')[~b';'/TO(~p')] 
Ep, f 'v[Evlzo(~p,)] 

+ f ;  . Yp, 
v,/~ r ,  (~.----~ r Zp, f 'r  (45) 

with A7 and "Yl given by Eq. (I.71) and % and rt defined by Eq. (8). 
The expression (45) is devised such that it shares the properties stated 

in Eqs. (I.75) and (1.76) with the exact collision integral, viz., 

and 

y , ~,  p / i n  I AI "Yl 
Zp lm[P) Z p =~5 + Ylm(fi)Su• (46) 

y A P ' = Y,m(/3) 8v o (47) I~n{ Im(P)zfP 3 \rO(~p) rr(~p)] 

Adopting the argument following Eq. (8), we drop r71 and approximate 
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--I T-1. ro by Introducing a dimensionless function ~b(#) by 

. p . q  ~p ,, Ep . . . . . .  

we find that the kinetic equation takes the form 

;t 7 (#% (#)(1/~))~, 
r(#)=4~(#) 3 (E2/r ) r  (49) 

Solving for ~b and substituting the result into Eq. (48), we find the 
coefficient of thermal conductivity as 

1 n [ ( # 2 " r ) [ ' - 4  A 7 (~2)~. -] 
K 3 3- ( (E2-~ - -~ ) (1 / r ) ) r , J  

(50) 

In the normal state (T--- To) the energy integrals in Eq. (50) may be 
evaluated analytically with the result 

1 2  [ rr2 5 A T ]  
K =~C~v~rN(O) 3---~-~ 12 3 - ~ 7  (51) 

where CN = �89 is the specific heat of the normal Fermi liquid, x is 
proportional to T -1. Equation (51) deviates from the exact result 9"1~ by 
typically 1%. In contrast to the viscosity, where the singular behavior of 
the quasiparticle velocity VpE~ as a function of #p for T ~ T~ caused the 
deviation of rl from rl (T~) to be nonanalytic, ~ ( 1 -  T/T~) z/2, the thermal 
conductivity varies smoothly as 

r ( T ) =  r(Tc)+ a~(1 - T/Tc), T= T~ (52) 

due to the smooth behavior of the energy current per quasiparticle, 
EpV~Ep. The coefficient a~ cannot be evaluated so easily from the exact 
kinetic equation, because it involves contributions from a variety of 
different sources. 

In the limit T o O ,  the inscattering part of the collision integral 
vanishes due to the factors #/E, #'/E' scaling as T/Ao and the kinetic 
equation can be solved exactly. Since this property is conserved by our 
approximate treatment, the result (50) reduces to the exact result in this 
limit. It turns out that K diverges as l IT  as in the normal state, with a 
prefactor given by 

lim (KT)= 2 _ ~  __ (53) r - ~ o  ~ V 2 F [ T 2 r N ( 0 ) ]  1 W0 
The prefactor is roughly equal to the one in the normal state. 
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Fig. 6. Normalized thermal conductivity for the 
BW state at about 20 bar vs. reduced temperature. 

We have evaluated Eq. (50) numerically using ~-(sc) - t  and A(T) as 
given by Eqs. (1.65) and (I.83), respectively, and taking values for yo, 80 as 
estimated in Section 4 of I. In Fig. 6 the result is plotted as KT vs. 1 - T/Tc, 
using the parameter  value A~- = 0.9 appropriate for SHe at intermediate 
pressures. KT is seen to increase with decreasing temperature before 
tending to the low-temperature limiting value. There are no data on the 
diffusive thermal conductivity available at present, 

5. R E L A X A T I O N  OF T H E  N O R M A L  D E N S I T Y  C O M P O N E N T  

In this section we discuss situations in which by some means normal 
and superfluid components are brought out of equilibrium with respect to 
each other. For example, we might be able to increase the density of the 
normal component  (instantaneously) by injection of hot quasiparticles into 
the system (a type of experiment which has been carried out on super- 
conductors, where the device of tunnel junctions is available), thus 
increasing the normal density component  p,. We would expect p, to relax 
subsequently to some equilibrium value. Conversely, if we had a chemical 
potential field that only acted on the Cooper pairs, we should find that the 
superfluid density component  ps adjusted in times of order A/h to the 
instantaneous value of the field, forcing the superfluid component  out of 
equilibrium with the normal component.  The relaxation of the normal 
component  to a mutual equilibrium state would take place via particle- 
number-nonconserving quasiparticle collisions in which quasiparticles are 
converted into Cooper  pairs and vice versa. Indeed, the latter mechanism is 
realized for the spin density in 3He, where the spin-orbit  correlations 
induced by the nuclear dipole interactions provide a field acting only on the 
Cooper pair spins. This will be discussed in a subsequent paper dealing 
with the spin transport coefficients. 
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The change in density of the normal component may be defined by 

P 

and the change of the superfluid component by 

A 2 
8p~= m ~ ~ - ~ ( t a n h  ~ T ) ( S t ~ - f ~  Sn)  

where 

(54) 

(55) 

SO, +SO, = m 8n = 8p (56) 

is the total change in mass density [cf. Eq. (23)]. 
Considering only the homogeneous case, the kinetic equation reads 

to &, (~:) = - [i/~-(~:)] 6u'(~:) +/-in(~) (57) 

where Iin(~ :) is the component of the inscattering term isotropic in 13 and 
odd in ~:p. The collision integral is identical to the one entering the cal- 
culation of the second viscosity coefficient (3, and will be approximated by 
Eq. (35). 

Let us assume that the chemical potential of the quasiparticle system 
changes suddenly by an amount 8tz. The quasiparticle collisions cause the 
distribution to relax toward a local equilibrium distribution 

i 8,, ~ = - f .  (~:~IE~) 8~ (5 8 ) 

The change in the normal fluid density corresponding to this distribution is 
given by 

~:pot 8p~ = m ~ - -o~,p  =X "~ 81~ (59) -ff Ep 

with the partial susceptibility at fixed superfluid component 

2 2 t X q~ m E ( ~ p / E p ) ( - f p )  (60) 
P 

Multiplying Eq. (57) by ~ / E  and summing on p, one obtains 

to 8p,, = - [i/ren(to)][3p,, - 8p~] (61) 

where ~'efe is calculated using the approximate collision integral and substi- 
tuting 8;,'p = &,p + f 'o(~/E) 8~ as 

(~2/E2):. ((~2/E2)['r/(to~" + i)]):, 
~'~fr(to ) = ( (A 2 / E2)(1/~.))r ~" ( (~2 / E2)[1/  (to~ " + i)])r (62) 
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There is a slight dependence on frequency due to the energy dependence of 
r In the limit of T ~  Tc the first term in Eq. (62) diverges like 1/A. This 
is a consequence of qp number conservation in the normal state. In the 
limit of low temperatures reg(to) tends to the quasiparticle relaxation time 

lim ten(to ) = z (63) 
T ~ 0  

In analogy to the case of intrinsic qp spin relaxation, one may consider 
relaxation at fixed total density variation 8p (in the spin case, total spin 
polarization), instead of fixed chemical potential 8/z. For given change in 
density the equilibrium change of the normal density component is given 
by 

8p ~ = (X q~ / X ~ 8p (64) 

where X ~  mNF is the thermodynamic derivative (Op/Olz)r in the absence 
of Fermi liquid effects. 

One may eliminate 8/x in favor of 8p from Eq. (59) by observing that 
the superfluid component  of the density assumes its local equilibrium value 

8p~ = 2( ~~ 8l~ (65) 

with X ~~ = X ~  ~176 in times of the order of h/A ,  which is much more rapid 
than the quasiparticles. 

With the aid of Eqs. (64) and (65), we may write the relaxation 
equation in the form 

to 8On = - ( i / z o ) ( S p n  - 8 p  ~  (66) 

where the relaxation time is now given by 

zp = (1 -gq~176 (67) 

In the limit T ~ Tc, ~'o tends to the normal-state qp relaxation time on the 
Fermi surface 

lim ~'o = zN(0) (68) 
T ~ T c  

and for T-~ 0 we have 

lim ro = r (69) 
T o O  

In Fig. 7 we have plotted the result of a numerical evaluation of Eq. (67) 
for to~- << 1 as ~-(E =A, T ) / ~  o vs. 1 - T/Tc. 
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Fig. 7. Relaxation rate 1/r 0 of the normal fluid 
density normaliked to the quasiparticle relaxation 
rate at the Fermi surface for 3He-B vs. reduced 
temperature. 
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