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Transport and Relaxation Properties of
Superfluid *He.
I. Kinetic Equation and Bogoliubov Quasiparticle
Relaxation Rate

D. Einzel and P. Wolfle*
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The kinetic equation for Bogoliubov quasiparticles for both the A and B
phases of superfluid *He is derived from the general matrix kinetic equation.
A condensed expression for the exact spin-symmetric collision integral is
given. The quasiparticle relaxation rate is calculated for the BW state using
the s—p approximation for the quasiparticle scattering amplitude. By using
the results for the quasiparticle relaxation rate, the mean free path of Bogol-
iubov quasiparticles is calculated for all temperatures.

1. INTRODUCTION

Since the discovery of the superfluid phases of *He and their
subsequent interpretation as pair-correlated Fermi liquids, considerable
effort has been spent in studying the dynamics of this system. One expects
that at least for not too high frequencies w and wave vectors q, such that
w <A and q <A/vg (here A is the energy gap and vg the Fermi velocity) a
two-fluid description along the lines set forth by Landau and others' in the
case of “He should be applicable. Here the role of the superfluid
component is played by the condensate of Cooper pairs, while the normal
component is represented by the gas of thermal excitations, most
importantly the Bogoliubov quasiparticles. In this low-frequency, low-
wave vector regime the condensate is characterized by the local structure
of the order parameter, which is completely determined by the variables
corresponding to the various broken symmetries.

The normal component, on the other hand, is described by a dis-
tribution function in momentum space of Bogoliubov quasiparticles (or any
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other elementary excitations that happen to be of importance). For
frequencies so low that the gas of thermal excitations is in a local equili-
brium state, completely characterized by a set of local thermodynamic
variables, the motion of the system is described by a set of hydrodynamic
equations. The structure of these equations can be derived from rather
general arguments involving transformation properties and the symmetry
of the ground state."? These equations contain a number of
phenomenological parameters, such as thermodynamic derivatives and
transport coefficients.

The purpose of this paper is to derive the scalar kinetic equation for
Bogoliubov quasiparticles, which is the starting point for the calculation of
the transport coefficients. A matrix kinetic equation was first discussed in
detail by Betbeder-Matibet and Noziéres® for the case of s-wave pairing in
the collisionless limit. The effect of quasiparticle collisions on the matrix
kinetic equation and its application to the sound propagation problem in
superfluid *He has been extensively studied by Walfle.>°

The collision integral of the scalar kinetic equation was first derived by
Shumeiko’ for the case of s-wave pairing. Bhattacharyya, Pethick, and
Smith®® have given the collision integral for p-wave pairing for tempera-
tures close to the transition and in the low-temperature limit. Ono et al."
have derived the collision integral for isotropic quasiparticle scattéring in the
BW state.

The plan of the paper is as follows. In Section 2 the scalar kinetic
equation for the distribution function of Bogoliubov quasiparticles is
derived from the microscopic theory. The collision integral for the spin-
symmetric case is discussed in detail in Section 3. The quasiparticle
relaxation time and mean free path are evaluated and discussed in Section
4,

2. SCALAR KINETIC EQUATION

The state of a pair-correlated Fermi liquid is completely described by
the quasiparticle (qp) distribution function
3

foor5, )= | 55 Lexp a0 (). (1) (1)
and the pair amplitude
d’q .
8o, 0= [ L5 [exp (a0 (025 0) @)

Here the subscript on p. denotes p+q/2. The observable densities and
currents are obtained by averaging the respective operators over the dis-
tribution function f,.
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It is convenient to combine the two correlation functions in a 4 x4
matrix distribution function in particle hole and spin space:

nelg ) )

4 X4 matrices of this type are here and in the following denoted by an
underscore.

In thermal equilibrium, the distribution function is given by the Fermi
function

no = folen} =3[1— (ep/Ep)yl )
where ¢ is the qp energy matrix
o_(& A )
Ep = ( 5
RV (5)

with the normal quasiparticle energy measured from the Fermi level,
& =p°/2m* —pu, and the gap parameter A,. The single-particle energy is
given by

E,=[¢&+3tr Ay A5]'7 (6)
and
tp=tanh (Ep/2T) (7)

assuming A, to be proportional to a unitary matrix. Note that the
quantity E, in general depends on the magnitude and direction of the
momentum p.

The linear response of the system to an external disturbance of wave
vector q and frequency w can be calculated from the linearized distribution
function 8n, = np,—ny. The time evolution of &, is governed by a matrix
kinetic equation,*® describing the change in the gp distribution due to
streaming, transitions from the normal to the superfluid component and
vice versa, and due to collisions between the quasiparticles. It turns. out
that the collision integral operates on the part of the distribution function
characterizing the deviation from local equilibrium 8np = én,— Sy,',, where
én ,’, is the local equilibrium distribution function. It is also necessary to
distinguish between particle-like and hole-like excitations, by introducing
two distribution functions® (u = +1)

o d '
(@)= | 500

e sl Dend-9])
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the sum of which is the distribution function &f, defined by Eq. (1), and
analogously for 6g5. In Eq. (8), 6(x) is the step function. &n¥ and on%'
obey the following set of kinetic equations’:

UHonp}t—80; = Iy {dnp}

Qon"} -804 —10f,lay, Sep+Sgpan 1=0 ®
where
Qdnp}=wony —ep, Snp +8npep_ (10)
8Q} =3ulty.ay. 8cp— Sepap 1] (11)
Here the g, are the single-particle spectral weights
=3[1+peo/Ey) (12)
and f}, = —(1/4T) sech® (E,/2T) is the derivative of the Fermi function.
The change in the quasiparticle energy is given by
= (5, et 0
where 8¢, and 84, are related back to the distribution functions via
8€p=§fpk of (14)
and
6Ap=§gpk LoT4% (15)

Here fo and gpi are the Fermi liquid and pair interactions, respectively.
The matrix collision integral appearing in Eq. (9) may be split into an
outscattering and an inscattering contribution

= (.I: )out+ (_I: )in (16)
The outscattering term is given by
(3 Jou = —32i[L}, Sng ]+ (17)

Here [, is a generalized matrix quasiparticle relaxation rate, derived from
the microscopic theory’ as

, 1
Lo = 1. 2%.4 Qm)'8°(p+p2—p3—ps) S(LE + ur2E2 — usEs
P Tx=

—M4E4)prfpz(1—-fl)s)(l_flu)' {G z‘t’r" (18)
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where

1
(G¥r =3 T {AAllas b a5 [ak o,

G2...04
o304

—2A,1AMap? 50001,k 158 (19)

The summations in Eq. (18) extend over momenta p; and partlcle—hole
md1ces i for i =2, 3, 4, keeping the particle-hole indices p, p’ fixed, and
=[exp (Ep/T)+1]7".
The qp scattering amplitudes A, and A, are approximated by their
normal state values Ay

A =An(pio1, pro2; P303, Ps0s)
! ! 7 7 ' (20)
A>=Ax(piol, ~PaCa; P303, —P202)

The changes in the scattering amplitude due to pair correlations are
confined to a relatively small portion of momentum space and will be
neglected. A prime on A, indicates spin variables o .
The inscattering term has the form
U3 )hn=3i[Cy. ap). 21

where

{Co f;‘;'z ) (277')453(P+P2_P3_P4)5(#E+#252”M353—M4E4)
2.3,4

Xfofo. (1= fo X1~ fo,) - {G™ {88 ooy 22)

with

(Gron' =1 T A AL([885 10 a1l ake 12,

(72...(74
ey

+[a.,, o8 1l ant 15

Ay.4

+an: 155053 1503800 1)

—2A,A5(-[8453 1,55l @53 150 lans 1622

+[ap; aza”,[ﬁﬁ‘” 15oilap2 10

+lap21o%ae3 1550852 1650 (23)

and the same summations as in Eq. (18) are implied. In Eq. (23) we have
introduced the abbreviation

1 1

®’o_ l-l-

=R O T ™

(=2
S
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Note that the whole matrix structure with respect to particle-hole and spin
variables is contained in the quantities G™ and G.

We now perform a Bogoliubov transformation U/ on the kinetic equa-
tion. U diagonalizes the equilibrium energy matrix

UpesUy = Epps (24)

(here p3= 7 ®7°% and {r'}, i=0,x,y, z, is the system of Pauli matrices,
including the unit matrix) and is found as

S
with
172 1/2
o R 1

Note that in the case of triplet pairing v, is a nontrivial matrix in spin space,
depending on both the magnitude and direction of the momentum p.
The transform of the spectral weights g, is given by

50
~ wrrt 1 0 O ’ g
dp = UpapUy =2[1+pps]= (27)

(o ) v

Let us define Bogoliubov-transformed distibution functions by

. (87ip )+ (8p )+-
8t = Up dniU, = " ) 28
Zln ~p Kll) = P <(8ﬁ:)~+ (511:)4~ ( )
and correspondingly
8y =Up 82,Up (29)

Multiplying the kinetic equation (9) by U,, from the left and by U,_ from
the right and expanding in veq/|A|, one first observes that

(8™ e =8~ =0 (30)

as a consequence of the projection property of a.
(87} )+ is found to be independent of & and decoupled from (84} ).,

@)+ 03 5 =) 31)

8"#" = — > s
(81p) 7 A ACTA

where the collision integral has been characterized by the relaxation rate
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1/7. In this limit (84} ).— is equal to the local equilibrium distribution
(84%'),_ and consequently drops out of the collision integral. This cor-
responds to the fact that the superfluid component is in a local equilibrium
state provided the conditions w, veq, 1/7 < A are satisfied.

There is only one nontrivial component of the matrix distribution
function left, namely

Svp=(82"")un (32)

8v, characterizes the occupation of single-qp eigenstates of energy Ej.
The scalar kinetic equation for dv, reads

w 8vp—qV Ep bvp = —(i/ 7p) v} +iCL ™ {60} (33)
where
8v) = 8vp — 8v, = 8vy — fodE, (34)
is the deviation of 8y, from local equilibrium, and
SE,=(6€p)- - (35)
Here 1/7, is the quasiparticle relaxation rate,
Ure=2tr, (VL5 ™ Up)es] (36)
and C’,, is the inscattering collision integral,
Co=(UaCy ™' Up ) (37)

It should be emphasized that the kinetic equation (33) is quite general in
that it is valid for both spin-symmetric and spin-antisymmetric distribution
functions dv,.

3. COLLISION INTEGRAL FOR THE SPIN-SYMMETRIC CASE

Performing the Bogoliubov transformation on the particle-hole
matrix [y, one obtains

(UL Up)--
:%{(1+§—:)(f5)+++(1——§£p> iﬂ%—“—h(r:»%?g—i(m*}

(38)
C‘p is given by an analogous expression.

As seen from Egs. (18) and (22) for I' and C, the transformation
involves only manipulations with the quantities G and G"™{8A’}. We first
eliminate 87’ in favor of 8»' by performing the reverse transformation on
the transformed matrix distribution function !
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1 7
o a1+
ont =(2( w)dvy . 0 ’T)

0 —2(1—u) 8vy
Assuming that 8v,, is either even or odd under the sign reversal of p (which
is the case in all later applications), we can write

(39)

S, =58vp; s==%1 (40)
Then 8n% can be written in the compact form
dny' = Uy vy Up=piay v, @1
where
Pu=Q1+p)/2-s(1-pn)/2 (42)

In deriving (41) we have specialized the distribution function v, to be
spin-symmetric.

Substituting Eq. (41) into Eq. (22), one immediately finds that the
matrix structure of C reduces to that of T, viz.,

{Co z‘c"”= )X (277)453@+P2—P3‘P4)5(#5"‘#252—[/«353—#454)

2,34
. 4
X fofos(1= fo X1 = o XG Yoo T (—1)%2p}, 85, (43)
i=2
with 87 defined by
1 1
by = ~Svp = Sy
DR T fO-f) T

In order to evaluate Eq. (43) further, it is convenient to introduce the
spin-rotation invariant representation of the scattering amplitude in terms
of the dimensionless singlet and triplet components A, and A,, respec-
tively,
NeAN(P101, P202;P3073, P40s)
1 (1]

= A +3A)T 00,0200 VilA ~ AWiorory * Topa,  (44)
where 7={7%, 77, 7°} is the vector of Pauli matrices, 7° is the unit matrix,
and

NF =m *pp/'n'z

is the density of states at the Fermi level for both spin projections.
Also, the following abbreviations for the spectral weights are intro-

duced:
1/ ap D:)
== 45
gp 2<(D:)T a;u ( )
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where
ay =1+ puép/Ep, Dy =p Ap/Ey

Substituting Eqs. (44) and (45) into the expression for G, Eq. (19), and
performing the spin sums, one obtains

{GYss= (1/87NeX Wazasas — Wizast tr [D3 Dyl}on (46a)

{GYer = (1/87Ne}{ W3 tr [D3 Dyl Dsgo+ W3 tr [D3 D3] Dy (46b)
+ W, [D3D3D4loo — Wia2a4D300}

{Gloo = (Glos) [ap: > ap] (46¢)

{Glow =((GY Y [ap > ap/] (46d)

where several traceless terms have not been written down explicitly. The
functions W abbreviate various combinations of scattering amplitudes

W =im[3AI+A2] (47a)
Wi =17[(As+ ANAx + Az)+4A,A5] (47b)
Wi, =ir[A, + A (47¢)
(=)
W._=im[A] - AZ] (47d)

By a well-known argument,11 the dependence of the qp scattering
amplitude on the magnitudes of momenta can be neglected and A, and A,
are only functions of § and ¢, where ¢ is the angle between p; and ., and
¢ is the angle enclosed by the planes containing (p;, po) and (Ps, Ps),
respectively. The amplitude A, can be expressed in terms of 8 and ¢ by

NFAZ = %(3142[ + AZS)T2103T?720'4 + 4L(A2t - A?_s )70'103 * Toyos (48)

where
A8, b)= A (D @)
and
6 .,0 cot’ 30 —sin” 3¢
cos ¢ = —COSZ 5'1' Sll‘l2 5 cos ¢, Cos ¢ = m (49)

The spin traces in Egs. (46) may be performed after introducing the vector
representation for triplet pairing3

Apoo =d(B) * [7i7%)00 (50)
As can be seen from Egs. (45), (46), and (50), the vector d(p) appears
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exclusively in the combination
Dy = nd(p)/E, (1)

Also, the sums on momenta are decomposed into energy and angle
integrations according to

Y Qu)Y&@+p-ps—ps)

P2.P3.P4

_ Nt Y decos8® (*"dé (Tddy1([® o ©
h (47T)28F J‘-l 2 cos (G/Z)J:) 29 J; 27 8 J:oc de J_m d‘f3 J;oo d§4 e
(52)

The Bogoliubov quasiparticle relaxation rate for arbitrary (unitary) triplet
pairing is finally obtained as

11 2 e
O, D) 7T (-T)f, L de2dbsdis o

H2H3a
X{B(E +p2E2~u3Es— usEs)

1

W (53)

Xfpfl)z(l _fl’3 )(1 —flu)Q(pa P27 ety P4)>

Here the angular brackets (- - -) denote averaging over angles according to

1 ' deos@ (*"do [*"dob,
<A>—zf_l——cos(e/z)fo EL 25 A0 & b2) 4)

where ¢; is the azimuthal angle of p, about the axis p;. The function Q
contains angular dependences via the qp scattering amplitudes and the
energy gap and is defined by

QP - - - pa)= W—Wy,[Dy, - Dg: +Dg2* - D] + W._Dg, - Dp2*Dgs - D
+2 W, D5, - DD - Dyt +2W, D, - DDz - Dy (55)
where
W, =inA(A,+A,), W,=imA(A—A,) (56)

Q thus depends on p1, 6, &, and b, as well as on &, &, &3, and &,. In Eq.
(53), 7~(0, T) is the quasiparticle lifetime at the Fermi surface in the
normal state

T\?
(0, T)= 5 =3 =m0, T)( ) (57)

The inscattering term of the collision integral in Eq. (33) is evaluated
in complete analogy. It is convenient to assume definite parity of v with
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respect to & For 8v even in £ one finds
i 2

Ie _”[C o = O D) T

Y J dé; dEs déy
Taado

1
< (BB + = 3Bs ~ HaEa)fofon (1= o)

XA Fo)[ 0000 CDRLSE]) 58)

For év odd in £ the expression in square brackets in Eq. (58) has to be
replaced by

oo 2] S g s, Dt D R Wesn, ] 69)
Py P3

The expressions for the collision integral can be further simplified for
definite pairing states, i.e., given d(p). In this paper we only consider the
pseudo-isotropic or Balian-Werthamer state, for which the simplification is
particularly pronounced. In this case the order parameter is given by

d)=A(T)R-p (60)

where R is a rotation matrix and A(7T) is the temperature-dependent
magnitude of the gap. Since in Eq. (55) only scalar products of d enter, the
rotation matrix R drops out. Indeed, spin-symmetric properties should not
depend on the relative orientations of spin and orbital variables.

Since the scalar products p; - p; do not depend on the angle &, the
&»-integration in Eq. (53) is trivial. The angular average of ( is given by

Q1 - - pa)) =(W)—=[D1 D3+ DD W)+ D\ D;D3Dy(Wp) (61)

where we have defined
D; =i A(T)/E,, (62)

and
W, =317[(As + A)(Ass + Az)+4A,Az][cos’ 18 +sin” 360 cos §]  (63a)
Wp = %w[A,Z(4 cos* 10 +4 sin* 36 cos® & —cos’ 9)
+2A,A, sin” 8 cos b+ Al cos” 6] (63b)
Introducing dimensionless isotropic energy integrals
2 1
Xfofo. (1= fo X1 = fo, )Kn (64)

L.(E)= L dé> dés dEy B(E + p2Ex— p3Es— uaEs)
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with
A% A3 A§
K,=8,0tms—""5b.1 802+ —_— &
.0 MZE,”EPZ P«z#sEmEm 2T H2M3Ma Ep1Eszp3Ep4 3

we can write the quasiparticle relaxation rate in the BW state as

1_ AAT), o AYT)
- —_TN(O, T)[Io+‘Yo(11+12) AZ + 60l Al } (65)
Here we have defined
Yo ={(Wp)/(W) (66)
and
8= (WD)/<W> (67)

and Ag=A(T =0).

The inscattering term of the collision integral in the BW state is
obtained analogously from the general expressions (58) and (59) by insert-
ing (61). The resulting expressions may be further simplified by inter-
changing variables such that I} operates on Svp,(£2) only. Defining energy
integrals

e o)

B (&1, «fz)— Z Pl % J; dés déy
w3rsg
4 E,
X8(E:+uaEa-waBa—waE) I (sech 22)6,  (68)
j=3
where
A 2
bn=6n,0+ D36n1 D3D46n2

A(T) AZ(T)
and expanding () in terms of spherical harmonics, one finally obtains

[ = i 1 cosh (E»/2T)
Pt #n(0, T) TNgp. cosh (E,/2T)

XE.O QI+ 1Py - P2)Si(£1, £2) 80y, (69)
where
. TA.. A __7A
Si(&y, £&2)=A1 Bg +al[—E—1B —E;B ]A—o
A? A? A% A?
+ o’1—8;° —— —=B>5° 70
7’[A§B B ED 0] ' E\E, ALC? (702)
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for 6v'(£) even and

. A
fl éz (A IBO +'Yl A2 Bz ) (70b)

Si(é1, &)=
for 8v'(£) odd in & In all later applications 82’ will be odd in &
The angular dependence of the collision operator is contained in the
parameters Aj, aj, vy, and 8§}, defined by

AL = (L/AWIXW(O, O =Py * B2)+ Pild1 - B3)+ Pi(pr - Ba)]) (1)
ai =1/ W)XW,(6, &) —sPi(p: - Bz)+ Pi(p1 - Pa)]) (71b)
v =A/AW)IXWi(8, d)Pi(B1 - Ps)) (71c)

=1/ {W)XWp(8, &) —sPu(p1 * D2)+ Pi(P1 * B3)+ Pidi - pa)])  (71d)

For s =+1 we shall omit the superscript + on A;. a;, and 8; in the
following.

The parameters A; and A; are identical with the ones characterizing
the normal-state collision integral, which is obtained as the limit as A 0 of
Eqgs. (65) and (69). This limit is equivalent to the exact low-temperature
result of Sykes and Brooker.'?> The component even in £ is, for instance,
given by

i 1 cosh (£;/2T)

== e 720 TG comh (6./2T)
& (72)
X Z (21+1)P1(p1 pz)B( ZT")AI(Sf;,Z
where
X
BO)= e

8fp, is the deviation of the normal-state distribution function from local
equilibrium and 7' (£,) is the limit as A0 of (65):

TNL:» TNl(O)[1+( - ) ] (73)

The first few parameters are fixed by the conservation properties of normal
quasiparticle collisions,

Ao=2A;=1, Ag =3

The parameters A, ¥,, and A1, y: entering in the cases of shear viscosity
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and thermal conductivity are given in a more explicit form by
AL =142/ WKW, d)cos 9)
A2=1—(3/(W)XW(8, d)sin® 36 sin’ &)
y1=(1/{WX W (8, d)[cos® 30 +sin” 36 cos b])
2= (1/(W)XWi(6, $)[3(cos” 36 +sin” 36 cos &)° —3])

The two parameters A and A; can be determined from measurements of
these transport properties in normal *He, provided the quasiparticle
relaxation time on the Fermi surface in the normal state 75 (0) is known
independently.

The inscattering term of the collision integral satisfies a number of
exact relations. Substituting 8v, = f, Yim (6 )d:i(£,) into Eq. (69), one obtains
after some rearrangement

(74)

i

IL“{f;y,m(ﬁ)¢z(§p)}=;N—((;)f;.m(ﬁ)w,(ep); 1=0,1,2,... (79)
with
Ji (Ep) 1, lodd
3EoJ 1 (Ep) E,. leven
()= (& EDKT (E,) for &u(é)= Ejt, leven
36K 7 (Ey) E2/&, 1odd
where

J(EY= AL+ [af +y][L; + 1)(A/ o) + 8513(A/ Ao)?
Ki(E)=Ailo+vil2(A/ Aoy
and I,(E), n=0,1,2,3, is defined by Eq. (64). Conversely, due to the

symmetry of the collision operator, the following sum rules complement
the above relations:

T Yim B)b1(&) =;’(O—)§ W) YimB) vy 1=0,1,2, ...

(76)
4. QUASIPARTICLE RELAXATION RATE

The gp relaxation rate is a measure of the effect of qp collisions on the
damping of nonequilibrium processes. In the normal state, the dependence
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of 1/7, on temperature and energy &, is given by (73) and thus is rather
simple. 7, cannot be measured directly in the normal state. However, it has
been possible recently to determine 7 (0) from the various relaxation
effects in the superfluid state near 7. The values for the temperature-
independent quantity 7x(0)7° obtained in this way range from 0.31 to
0.26 usec - mK? for pressures from about 20 bar to the melting pressure. '’
The corresponding value for 1/75(0) for 20 bar at T, = 2.4 mK expressed
in temperature units is 1/75(0)=0.15 mK. The condition 1/7« T for the
validity of the quasiparticle description is seen to be amply satisfied.

In the superfluid state the dependence of 1/7, on temperature and
momentum p is much more complex. In the BW state the relaxation rate is
isotropic, as in the normal state. It is seen from Eq. (63) that the tempera-
ture dependence of the qp relaxation rate at the Fermi surface (¢, =0) is
given by a universal function of A(T")/T. In general, the expression (65) for
1/7, has to be evaluated numerically.

However, in the limit of low temperatures the energy integrations may
be done analytically. Expanding the qp energy as

E,=A[1+(¢/24M+- - 1] (77)

and inserting this into Eq. (64), it is seen that the lowest order contribution
in e 7 is given by those terms in the sum on w,, w3, ms for which
wm2+us+ps=—1, guaranteeing a cancellation of the zeroth-order energies
in the energy delta function. The energy integrals are easily done in lowest
order in T/A and e *'", with the result

3 A
10:31123122[3=_—‘Y0(T) (78)
2 T

where

oo

Yo(T)=lim Y(T)=lim | dé,[~fy]=(2ma/T]"? &7

is Yoshida’s function for T—0. The function Y(T) is a measure of the
number of thermally excited quasiparticles.
Substituting Eq. (78) into Eq. (65), we obtain the gp relaxation rate in
the BW state at low temperatures
3/2

L__ L3 AN e
m(E) (0, T) (277)1/2(T> € Wo (79)

where

wo=1-3%yo+6o
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with 8¢ and v, defined by Egs. (66) and (67). Thus 1/7, tends to zero
exponentially fast for T - 0, as opposed to the T~ behavior in the normal
state.

In the opposite limit T - T, an expansion in lowest order in A% T?
leads to the following result for the qp relaxation rate6'

1 1 E\? A E,\?
LA 1+(—£) ~( )(61 2+—+3 3( ))] 80
Tp TN(O)[ T «T n =T (80)
The averaged cross sections (W), (W;), and (Wp) are of importance
for the quantitative evaluation of Eq. (65). We have estimated these

quantities in the so-called s—p approximation, in which only the /=0 and
=1 components of the scattering amplitudes are kept, viz.,

As(8,$)=So+Si1cos 8, A6, d)=(To+Ticosf)cosd  (81)

In terms of the four parameters Sy, S1, Ty, T the averages are found as
T 2 7 3 7
w =—(52——s S1+—=S}+>T—T,T +-—T2)
< ) 2 0 3 o1 15 1 2 0 041 10 1

a1 29
<W,>=3[§sé Tssosl—ﬁsl+ s(,ro——s(,r1

+§(25 —~361n2)T3 +(84—-1201n2)T,T; +%(173 —-2521n 2)T%] (82)

[ 7 107 8 8
W=—[—2 —80S1+-——=81 +—=SoTo———(SoT1 +5: T
( D) 2 ISSO 3 0 l 315 1550 0 1OS(SO 1 Sl 0)

8 29 19 33 _,
+—=8 1 +—T5——ToT, + }
35 DrgpTogg oo T
S; and T; are related to the spin-symmetric (antisymmetric) Landau
parameters F| (F{)by Si;=A]—3A7 and T, = A] + A{, with
F;.a
As.a:
C1H[F QL+ 1))
TABLE I

Components and Angular Averages of the Quasiparticle Scattering Amplitude in *He at Two
Different Pressures As Defined in the Text

So S, To T, Yo 8o Wo (W)
20 bar 9.5 5.1 -1.8 1.5 0.12 0.29 1.21 T97/2
34 bar 11.0 5.2 —-2.34 1.54 0.16 0.39 1.18 1097/2
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Fig. 1. Quasiparticle relaxation rate 1/ at the Fermi surface in the BW
state normalized to the normal-state value 1/7y vs. A(T)/T.

Taking the values of F§“ appropriate for *He at 20 and 34 bar, respec-
tively one obtains the results listed in Table I.

The terms involving (W;) and (Wp) cancel partially in this approxi-
mation. Thus we can conclude that the term involving I, in Eq. (65)
dominates.

In Fig. 1 the result of a numerical evaluation of the qp relaxation rate
normalized to the normal-state value at the Fermi surface (¢ = 0) using the
parameters appropriate for P =20 bar is plotted as a function of A(T)/T.
The dependence of the normalized gp relaxation rate on pressure is weak.

The relaxation rate of the superfluid state is seen to fall off rapidly with
decreasing temperature relative to the normal-state value. This is due to
the appearance of the gap in the single-particle excitation spectrum.

We have used the following interpolation formula for A(T") to extract
values for 1/7 as a funtion of temperature from the result of Fig. 1:

- 2 A 1/2 T 1/2
T)=1.76T. [— Zo= —5—1) ] 83
A(T)=1.76T, tanh 1.76(3 . (T (83)

Equation (83) is consistent with a relative specific heat discontinuity
AC/Cy and tends to the weak coupling value for T - 0.

Given the gp lifetime 7,, we may also calculate the mean free path [ of
Bogoliubov quasiparticles by taking the root mean square of the average
distance traveled by a quasiparticle of momentum p, whichisl, =7,V,E, =
7p¥,&p/ Ep. This is given by

1 p 12 d p 5 TIZV 127 E; p vz
)= [Zz”f ] ZUFTN(O)[I;” 3 (}n /dg)](cf/ B )
p/p i) plp
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Fig. 2. Mean free path I(T) as defined by Eq. (84) normalized to
vern (0, T.) exp (A/ T) vs. reduced temperature 1— T/ T...

where f, is the Fermi function. In the limit of low temperatures / diverges
as
1/2 5
lim I(T)= vern (0, TC)&(E) ML (85)
T-0 3 A Wo
The result of a numerical evaluation of Eq. (84) is plotted in Fig. 2.

In order to obtain values for the mean free path I(T) itself, we need an
estimate of the quantity vern (T,). We take vr from Wheatley’s table,'® but
with an effective mass ratio scaled down by 5% for 21 bar and 11% for
melting pressure. 7n(T.) is taken from Ref. 14, The results are listed in
Table II.

One immediately recognizes that for reduced temperatures T/T.
lower than 0.2, the mean free path of Bogoliubov quasiparticies becomes
comparable with a typical size of the experimental apparatus, in essential

TABLE 11

Mean Free Path of Bogoliubov Quasiparticles in the B Phase of *He at 21 bar for
Difterent Values of the Reduced Temperature T/ T,

T/T, l,cm T/T. I,cm
1.0 1.70x 107* 0.3 1.17x1072
0.6 4.68x107* 0.25 3.99x 1072
0.5 9.13x 107 0.2 2.45%x 107!
0.4 2.42x107° 0.15 4.87

0.35 4.78x1072 0.1 1.82x10°
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agreement with the result of Ono’s estimate."” Generally speaking, the
temperature range for which a transport theory accounting for only
quasiparticle collisions is valid is bounded from below in a way which
depends upon geometry and size of the sample container. In order to get
correct answers for lower temperatures, one has to account for quasi-
particle scattering processes at the wall of the container.
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