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The kinetic equation for Bogoliubov quasiparticles for both the A and B 
phases of superfluid 3He is derived from the general matrix kinetic equation. 
A condensed expression for the exact spin-symmetric collision integral is 
given. The quasiparticle relaxation rate is calculated for the B W  state using 
the s-p approximation for the quasiparticle scattering amplitude. By using 
the results for the quasiparticle relaxation rate, the mean free path of Bogol- 
iubov quasiparticles is calculated for all temperatures. 

I. INTRODUCTION 

Since the discovery of the superfluid phases of 3He and their 
subsequent interpretation as pair-correlated Fermi liquids, considerable 
effort has been spent in studying the dynamics of this system. One expects 
that at least for not too high frequencies ~o and wave vectors q, such that 
w <A and q <Alvv  (here A is the energy gap and VF the Fermi velocity) a 
two-fluid description along the lines set forth by Landau and others I in the 
case of 4He should be applicable. Here the role of the superfluid 
component  is played by the condensate of Cooper pairs, while the normal 
component  is represented by the gas of thermal excitations, most 
importantly the Bogoliubov quasiparticles. In this low-frequency, low- 
wave vector regime the condensate is characterized by the local structure 
of the order parameter,  which is completely determined by the variables 
corresponding to the various broken symmetries. 

The normal component,  on the other hand, is described by a dis- 
tribution function in momentum space of Bogoliubov quasiparticles (or any 
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other elementary excitations that happen to be of importance). For 
frequencies so low that the gas of thermal excitations is in a local equili- 
brium state, completely characterized by a set of local thermodynamic 
variables, the motion of the system is described by a set of hydrodynamic 
equations. The structure of these equations can be derived from rather 
general arguments involving transformation properties and the symmetry 
of the ground state. 1.2 These equations contain a number of 
phenomenological parameters, such as thermodynamic derivatives and 
transport coefficients. 

The purpose of this paper is to derive the scalar kinetic equation for 
Bogoliubov quasiparticles, which is the starting point for the calculation of 
the transport coefficients. A matrix kinetic equation was first discussed in 
detail by Betbeder-Matibet and Nozi~res 4 for the case of s-wave pairing in 
the collisionless limit. The effect of quasiparticle collisions on the matrix 
kinetic equation and its application to the sound propagation problem in 
superfluid 3He has been extensively studied by Wolfle. 5'6 

The collision integral of the scalar kinetic equation was first derived by 
Shumeiko 7 for the case of s-wave pairing. Bhattacharyya, Pethick, and 
Smith s'9 have given the collision integral for p-wave pairing for tempera- 
tures close to the transition and in the low-temperature limit. Ono et al. l~ 
have derived the collision integral for isotropic quasiparticle scattering in the 
BW state, 

The plan of the paper is as follows. In Section 2 the scalar kinetic 
equation for the distribution function of Bogoliubov quasiparticles is 
derived from the microscopic theory. The collision integral for the spin- 
symmetric case is discussed in detail in Section 3. The quasiparticle 
relaxation time and mean free path are evaluated and discussed in Section 
4. 

2. SCALAR KINETIC EQUATION 

The state of a pair-correlated Fermi liquid is completely described by 
the quasiparticle (qp) distribution function 

I d3q [exp (iqr)](a~_~(t)a,+~,(t)) (1) 

and the pair amplitude 

gp~,,,(r, t )= I d3q [exp (iqr)](a_p_~(t)ap+,,,(t)) (2) 

Here the subscript on p~: denotes p+q/2 .  The observable densities and 
currents are obtained by averaging the respective operators over the dis- 
tribution function fp. 
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It is convenient to combine the two correlation functions in a 4 x 4 
matrix distribution function in particle hole and spin space: 

rip= (fP gP ) (3) 

4 x 4  matrices of this type are here and in the following denoted by an 
underscore. 

In thermal equilibrium, the distribution function is given by the Fermi 
function 

0 
_ n p  = - 2[! -- ( e ~  (4) 

where _e ~ is the qp energy matrix 

o__ ,p) a; (5) 

with the normal quasiparticle energy measured from the Fermi level, 
~:p = p2/2m*-~x,  and the gap parameter  Ap. The single-particle energy is 
given by 

2 1 "t" 1/2 Ep = [~:p +.~ t r  Ap Ap] (6) 
and 

tp = tanh (Up/2 T) (7) 

assuming Ap,~, to be proportional to a unitary matrix. Note that the 
quantity Ep in general depends on the magnitude and direction of the 
momentum p. 

The linear response of the system to an external disturbance of wave 
vector q and frequency w can be calculated from the linearized distribution 
function 8_np =_np-_n ~ The time evolution of 8_np is governed by a matrix 
kinetic equation, 4"5 describing the change in the qp distribution due to 
streaming, transitions from the normal to the superfluid component  and 
vice versa, and due to collisions between the quasiparticles. It turns, out 
that the collision integral operates on the part of the distribution function 
characterizing the deviation from local equilibrium 6_n~, = 6-np-8-n~, where 
6-n~ is the local equilibrium distribution function. It is also necessary to 
distinguish between particle-like and hole-like excitations, by introducing 
two distribution functions 5 (tz = + 1) 

1 "~ dw' 

1 , t' t' 
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the sum of which is the distribution function alp defined by Eq. (1), and. 
analogously for ag~. In Eq. (8), 8(x) is the step function, a_n~ and a_n~ l 
obey the following set of kinetic equations5: 

where 

9{a_n p } -  aO~ - I , ,  {a_n. } 

9{an_.  } -  a O .  - ~o~f. [a_ .+ ae_. + a~_ pa_ ~_ ] = o 

9{a_n $ } = ,,, 8_,,; - o _ep+ a_n~ . o +Snp_ep_ 

6 Q ;  = �89 [tp+a ~_ 6_ep - 6ep_a $_tp_] 

Here the _a~ are the single-particle spectral weights 

_a, =1[_1 o " 4"/./._6 p / E p ]  

(9) 

(10) 

(11) 

(12) 

and f~, = - ( 1 / 4 T ) s e c h  2 (Ep/2 T) is the derivative of the Fermi function. 
The change in the quasiparticle energy is given by 

( ae~, a a , , ~  
ae_p= \aA *p -aer_p} (13) 

where aep and aAp are related back to the distribution functions via 

6ea = Efpk 8fa (14) 
k 

and 

6 A p  = ~" gpk 6gk (15) 
k 

Here fpk and gak are the Fermi liquid and pair interactions, respectively. 
The matrix collision integral appearing in Eq. (9) may be split into an 

outscattering and an inscattering contribution 

_/~ = q~)out+ q~) i .  (16) 

The outscattering term is given by 

(_l~)o.t a. . _ = -~_t[Fp, an~]+ (17) 

Here _F~ is a generalized matrix quasiparticle relaxation rate, derived from 
the microscopic theory 5 as 

. op' 1 ~,. ( 2 ~ r ) 4 a 3 ( p + p 2 _ p 3 _ p n ) ~ ( i z E + l z 2 E 2 _ l ~ 3 E  3 
{Fp},~, = (-T)f; 2,3,4 

�9 {G},,, , ,  (18) -~4E4)  fdp2 (1 - fp~)(1 - f p , )  oo' 
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where 

pp' = 1  ~ { A  ' fJ'2 P'P Is'3 PP' 11" 4 PP" 

{ _G}~., 2.= ..... 
o-~...,7,i 

- 2 a , A ' [ _ a p :  -o'.o ,., oo' ,q o,-o' 
]o-j-2[_ap 3 ]o-3.~[_ap4 ]o-4o-.r ( 1 9 )  

The summations in Eq. (18) extend over momenta p~ and particle-hole 
indices tx~ for i = 2, 3, 4, keeping the particle-hole indices p, 0' fixed, and 
fi = [exp ( E p , / T ) +  1] -1. 

The qp scattering amplitudes Al and Az are approximated by their 
normal state values AN 

A1 = AN(plO'I ,  !)20"2; p30"3, !)40"4) 
(20) 

A "  = AN(pto"l ,  --p40"~ ; p30"3, -I)20"" ) 

The changes in the scattering amplitude due to pair correlations are 
confined to a relatively small portion of momentum space and will be 
neglected. A prime on A L2 indicates spin variables o-~. 

The insc'attering term has the form 

(_~p)in-2/[_Cp, ap]+ (21) 

where 

/.L pp '  - -  
{_Cp }r162 Y. (2rr1463(p+p2-p3-p4) ~(#E+p.2E2-/z3E3-/a.4E4) 

2.3,,4 

Xfpfp=(1--fp,)(1--fp,,) �9 {Gi" {8_n'}}~,,,P~ 

with 

(22) 

{G~"(6_n' op' ~ V { A t A ' t  ~ '~  p'p . ,  po' .+ op' 
0"2...o" 4 
,~_~...,,~ 

;: ] 
I~ 2 P 'p IY* 3 p p ' ~ t.s 4' top' + [_a.2 b;.2[_a.3 l , : : [a_n. ,  

t *~ '2 '  --P"P ~3 PP" , ~ 4  P'--P" - 2 A , A 2 ( - [ 6 n _ p ,  l.~%[_ap, l~:,[_ap. ]~.~a 
+ [ a ~  -o'a ^**,' oo' -4 p.-o' 

_ ].4< 
/~2 - -P '~  /*3 pp '  A.U-4' P,-P" +[_ap= ]~...=[_ap. ].3.~[6_np. ]~,.~)} (23) 

and the same summations as in Eq. (18) are implied. In Eq. (23) we have 
introduced the abbreviation 

1 1 
6 8 ;  - ( -  T)f----~p 6n_ p -/p(1 - : p ~  6_n~ 
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Note that the whole matrix structure with respect to particle-hole and spin 
variables is contained in the quantities _G ~" and _G. 

We now perform a Bogoliubov transformation _U on the kinetic equa- 
tion. _U diagonalizes the equilibrium energy matrix 

0 r _Up_ea_Up = Epe3 (24) 

(here p3 = ~3 | zo and {z~}, i = O, x, y, z, is the system of Pauli matrices, 
including the unit matrix) and is found as 

with 

_Up=( UPt Vp) (25) 
\ - - / ) p  Up 

~p~t'] 1/2 Ap I"1/ fp, ~1/2 

Up=[ l ( l+~-~p)J  ,  p=l .lL kl- )J (26) 

Note that in the case of triplet pairing Vp is a nontrivial matrix in spin space, 
depending on both the magnitude and direction of the momentum p. 

The transform of the spectral weights _a~ is given by 

~/.t ~ # 
a_ p = U p a p  U p  = �89 + ~p3]  = 

0 ' /~=1  

(0 01) 0 ' t z = - I  

Let us define Bogoliubov-transformed distibution functions by 

=-upan_pUp \(a6~)-+ (a,~)__/ 

(27) 

(28) 

and correspondingly 

6fp = _Up 6_ep_U~ (29) 

Multiplying the kinetic equation (9) by _Up+ from the left and by _Up*_ from 
the right and expanding in vFq/IA[, one first observes that 

((~O~ =--1 )++ = ( ~ 6 ~  =.+l )__  = 0 (30) 

as a consequence of the projection property of _a o.'~' 
(66~)+- is found to be independent of ~ and decoupled from (6_~)++, 

) (8_~)§ = - 2E----ptp (Sip)§ + O ( X , _  vFq,A..fA1 (31) 

where the collision integral has been characterized by the relaxation rate 
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1/r. In this limit (8_~).- is equal to the local equilibrium distribution 
(6_~)+_ and consequently drops out of the collision integral. This cor- 
responds to the fact that the superfluid component is in a local equilibrium 
state provided the conditions to, vzq, 1/r  << A are satisfied. 

There is only one nontrivial component of the matrix distribution 
function left, namely 

8~,p-= (8_~ =~)++ (32) 

6Vp characterizes the occupation of single-qp eigenstates of energy Ep. 
The scalar kinetic equation for 3Up reads 

o) 6Vp- qVpEp 6V'p = -(i/'rp) 6v; + iC~ =~ {6v'} (33) 

where 
t t 8~,p = 6up - 6 u  I = 6up - f p6Ep (34) 

is the deviation of 6up from local equilibrium, and 

8Ep =- ( 6 i p ) . .  (35) 

Here 1/~-p is the quasiparticle relaxation rate, 

1/Zp=�89 tr= ~,=1 * [(_Up_Fp _Up)++] (36) 

and C~ is the inscattering collision integral, 

Cp = (Up_C~ = t _U; )++ (37) 

It should be emphasized that the kinetic equation (33) is quite general in 
that it is valid for both spin-symmetric and spin-antisymmetric distribution 
functions 6Up. 

3. COLLISION I N T E G R A L  FOR THE S P I N - S Y M M E T R I C  C A S E  

Performing the Bogoliubov transformation on the particle-hole 
matrix _F~, one obtains 

tx  + ( _Up_Fp _Up )~ 
~z t t 

, _ p , +  - -  - -  ( F ~ ) - +  

(38) 
Cp is given by an analogous expression. 

As seen from Eqs. (18) and (22) for F and C, the transformation 
involves only manipulations with the quantities _G and _Gin{8_~'}. We first 
eliminate 60' in favor of 6~' by performing the reverse transformation on 
the transformed matrix distribution function 
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0 - � 8 9  )Sv~, r (39) 

Assuming that 8v'~ is either even or odd under the sign reversal of p (which 
is the case in all later applications), we can write 

8v'-p = s S v ' p ;  s =:i:1 (40) 

Then 8_n~ can be written in the compact form 

~ n ~ '  t v. '  s v- I = Up 8rp -Un=p.-ap 8/~p (41) 

where 
p~. = (1 + . ) / 2  - s (1 - . ) / 2  (42) 

In deriving (41) we have specialized the distribution function 8v'p to be 
spin-symmetric. 

Substituting Eq. (41) into Eq. (22), one immediately finds that the 
matrix structure of C reduces to that of ['. viz., 

}o,o' E ( 2 7 r ) 4 t $ 3 0 0 + P 2 - p 3 - p 4 ) 8 ( b t E  + ~ 2 E 2 - t z 3 E 3 - I . t 4 E 4 )  
oo,= 

2,3 ,4  

4 
X ao' ~ 1x~/2 s ~ ,  f p fp2(1 - fp3) (1 - fp , ) {G_  },,,, ' E t -  ) "  p j , ,ovp,  (43) 

i=2 

with 8P defined by 

1 1 At ~ t - -  ~ t 

8 ,p f p (1 - f . )  ''p 

In order to evaluate Eq. (43) further, it is convenient to introduce the 
spin-rotation invariant representation of the scattering amplitude in terms 
of the dimensionless singlet and triplet components As and A, ,  respec- 
tively, 

NFAN(plO'I, p 2 0 " 2 ; P 3 0 r 3 ,  p 4 0 " 4 )  

= ~(As o o 1 + 3A,)r . . . .  r~2~, + ~(At  - As ) x~ l~  ~ �9 "t~2~ 4 (44) 

where ,r ={z ~, r y, r ~} is the vector of Pauli matrices, r ~ is the unit matrix, 
and 

NF = m * Pv /17" 2 

is the density of states at the Fermi level for both spin projections. 
Also, the following abbreviations for the spectral weights are intro- 

duced: 

1/' a~ O $ ]  (45) 
-a~'=2k(D$)* a ;  ~'] 
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where 

tz = 1 +/.t,~p/Ep, D~ =/.t, / k p / E p  O~p 

Substituting Eqs. (44) and (45) into the expression for _G, Eq. (19), and 
performing the spin sums, one obtains 

+ +  - -  + 0 
{G}o-,r' = ( l / 8 7 r N F ) { W o t 2 a 3 a 4  Wt2a3�89 tr [D2D4]}T,r~' (46a)  

%-- + + 

{G}~, = (1/8rrNF){W+�89 tr [D2D~]D3,~,,,+ W_~ tr [OzD3]D4,~,~. (46b) 

+ W+ [D3D~D4],~,,,- Wlza2a4D3,~'} 
+-- t ~. --AL. {_G}~. = ({_G}~,,.) [ap~' ~ O~p, '] (46c) 
+ +  t ~ .  --~. {_G}2,,~, = ( { G } )  [C~p~ ~O~p~ '] (46d) 

where several traceless terms have not been written down explicitly. The 
functions W abbreviate various combinations of scattering amplitudes 

I 2 W = ~r + A~] (47a) 

I V I 2  i = ~Tr [(As + A,)(A2s + A2,) + 4A,A2,] (47b) 

i4,/~-) 1 =aTr[A, + As] z (47c) 
(-) 

1 "~ IV+_ = zrr[A7 - A~] (47d) 

By a well-known argument, ~1 the dependence of the qp scattering 
amplitude on the magnitudes of momenta can be neglected and As and A, 
are only functions of 0 and 4), where 0 is the angle between Pl and ~2, and 
4) is the angle enclosed by the planes containing (~1, 02) and (~3, ~4), 
respectively. The amplitude A2 can be expressed in terms of 0 and 4) by 

N F A 2  -- l ( 3 A 2 t  o o _ + A 2 s ) r ~ l c r 3 r c ~ 2 ~  , + � 8 8  A ~ s ) l r ~ L ~  3 " T~2c~ , (48) 

where 

and 

A2;s.,(O, 4)) = As.,(O. r  

. 2  8 
c o s  a = - c o s  2 ~ + s ,n  ~ c o s  +, 

cot  2 t o --  sin 2 �89 
COS ~p = cot2 �89 + sin 2 ~b (49)  

The spin traces in Eqs. (46) may be performed after introducing the vector 
representation for triplet pairing 3 

Ap~. = d(d3) �9 [xizz]~ , (50) 

As can be seen from Eqs. (45), (46), and (50), the vector fl(#) appears 
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exclusively in the combination 

Op = iz d(/~)/Ep (51) 

Also, the sums on momenta are decomposed into energy and angle 
integrations according to 

X (2"n')383(P + P2 -- P3 -- P4) " " " 
P2,P3 ,P4  

r 1 ,co , 

- (4 r r )~  2--~Jo ~ 8 - 
(52) 

The Bogoliubov quasiparticle relaxation rate for arbitrary (unitary) triplet 
pairing is finally obtained as 

1 1 2 1 r ~ 
rp "rN(0, T )  7r2T 2 ( -T) f ' p  J 0  d~2 d~3 d~:4 

/~ 2 M- 3/d,4 

• ( 8 ( E  + /~2E2 - / . t  3E3 - / ~ 4 E 4 )  

1 
Xfpfp= (1 - f p ,  )(1 -fp4)fl(P, P2 . . . . .  P4)) - -  (53) (w) 

Here the angular brackets (. �9 .) denote averaging over angles according to 

<a>=!f  I _ayosO /'~'~d* f :'* 
J_~ cos (0/2) Jo ~ Jo d~bZA(O'2rr +, +2) (54) 2 

where (b2 is the azimuthal angle of 02 about the axis ~1. The function f~ 
contains angular dependences via the qp scattering amplitudes and the 
energy gap and is defined by 

[~(,Pl " " " P4) = W -  W,2[D* 1 �9 n , ' ,  4-n~'=* -4 * * I ' ~ lu ' 2* ] l ' ~bL3  bt4  ~ P 3  - -  ~ P 2  " D p 4  ] + W + - D m  v P 2  v P 3  " Dp4 

+2 W, Dp*I n-3n~*2* ~,4 * . 1"~",*!~"2" ~,3 �9 ~ P 3  ~ P 2  * D p 4  +2 WbDpl ~ p 4 ~ P 2  " D p 3  ( 5 5 )  

where 

IV, = �88 + A , ) ,  Wb = �88 - As)  (56) 

f~ thus depends on ~1, 0, (b, and d~2 as well as on ~1, so2, ~:3, and ~4. In Eq. 
(53), rN(0, T) is the quasiparticle lifetime at the Fermi surface in the 
normal state 

rN(0, T ) =  Ir2(W) T2 = rN(O, To) (57) 

The inscattering term of the collision integral in Eq. (33) is evaluated 
in complete analogy. It is convenient to assume definite parity of 8v with 
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respect to s e. For 6v even in s e one finds 

i T~) zr2T~22 Io ~ I~" = / t r [ C p ]  = ~ ' N ( 0 , z  uz 2. u, d~2d~3d~4 

( + ,2e2-,3e3-..e4)r. p2(1-r. ) 

4 , 1 ̀ 8'2 , ~ " ] \  
• --tip4) ~-~(P, P2 . . . . .  p4) E [-- ) ' Pu', Vp,J/ (58) 

i=2 

For 6v odd in ~5 the expression in square brackets in Eq. (58) has to be 
replaced by 

[ " "  ] ~ P - , - L - -  W ~ p ,  i~ ~1.3 o p 2  " Dp4 W+--  ~/~P3 (59)  
i 2 

The expressions for the collision integral can be further simplified for 
definite pairing states, i.e., given d(O). In this paper we only consider the 
pseudo-isotropic or Balian-Werthamer state, for which the simplification is 
particularly pronounced. In this case the order parameter is given by 

d(O) = A(T)R �9 0 (60) 

where R is a rotation matrix and A(T) is the temperature-dependent 
magnitude of the gap. Since in Eq. (55) only scalar products of d enter, the 
rotation matrix R drops out. Indeed, spin-symmetric properties should not 
depend on the relative orientations of spin and orbital variables. 

Since the scalar products ~ .  1~ i do not depend on the angle ~b2, the 
+z-integration in Eq. (53) is trivial. The angular average of I) is given by 

( ~ ( P l " ' "  P4))=(W)-[D1D3+D2D4](Wt)+DtD2D3D4(WD) (61) 

where we have defined 
D~ = Ix~ A(T)/Ep, (62) 

and 

W~ = Xzr[(A~ + A,)(A2, + Az,) + 4A~A2~][cos 2 �89 + sin 2 �89 cos qb] (63a) 
1 2 4 1~_{_ Wo = zTr[A~ (4 cos ~v 4 sin 4 �89 cos 2 ~b- cos 2 0) 

+2A~A~ sin 2 0 cos qb + A 2 cos 2 0] (63b) 

Introducing dimensionless isotropic energy integrals 

2 1 V d~2 d~:3 d~4 8 (E  + p.2E2 - p.3E3 -/,/,4E4) I, ,(E) = , .2T2 ( -T ) / ' ,  ~,~.'V.,, 

xfffl ,  ~ (1 -fa~ )(1 - f p ,  )K~ (64) 



30 D.  Einzel  and P. Wiii l le  

with 
A2 2 4 

K,, = 8,, o + I.L2 ~ ~ ~  8rt 1 --  A ~  / s  8n '2-[- /s163 ~ A O  --  6n 3 
�9 , ~ ' p l , ~ ' p 2  ' ~ P 2 ~ P 3  , ~  p 1 ,~----, p2 ~---, p3 ,t~ p4 ' 

we can write the quasiparticle relaxation rate in the BW state as 

1 1 [ _. AZ(T) _ _ A'(T)I 
"r--~ ='rr, r(0, r~) L t~ + y~ lE)---TY-+ ~o ~ (65) 

Here we have defined 

and 

3,o = ( WD / ( W) (66) 

80 = (WD)/ (W)  (67) 

of the collision integral in the BW state is 

where 

where 

A 0 A 2 
b. = 6. o + ~ D 3  8., + ~ D 3 D 4  8. 2 

' �9 A ( T )  

and expanding ~ in terms of spherical harmonics, one finally obtains 

iip~ = i 1 ~ cosh (EE/2T) 
zN(6, T) TNF cosh (E~/2T)  

x ~ (2l + 1)P,(~1 �9 Oz)St(r ~2) 8#;2 
1=0 

[ a  , aB_,  ] s,(e,,r ~ B , - ~  , j ao 

A A 2 A 2 A 2 

(69) 

(70a1 

and Ao = A(T = 0). 
The inscattering term 

obtained analogously from the general expressions (58) and (59) by insert- 
ing (61). The resulting expressions may be further simplified by inter- 
changing variables such that I~" operates on 8v~2 ((z) only. Defining energy 
integrals 

1 f0 ~176 

X ~ ( E 1  -[-.2E2-Is ~ (sech Ep3 i=3 -~ )b , ,  (68/ 
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for 6v'(r even and 

r A z 
r \( A StBo s + 3"l-'~oB2 s) (70b) St(C1, r = E1  

for 6v'(r odd in r In all later applications 6v' will be odd in r 
The angular dependence of the collision operator is contained in the 

parameters ~ ,  a~, 3't, and 6~, defined by 

A~t = ( 1 / ( W ) ) ( W ( O ,  d~)[-sPt(Ot" 02)+Pd01  �9 03)+Pt (0 ,  �9 04)]) (71a) 

otl = (1/(  W))( Wt (0, d~)[-SPl(01" 02) + Pt(01 �9 04)]) (7 lb )  

yt = ( 1 / ( W ) ) ( W t ( O ,  +)Pt(01" 03)) (71c) 

6st = ( 1 / ( W ) ) ( W o ( O ,  ~b)[-sPt(Oa" 02)+Pt(0a �9 03)+ Pt(l~i" 04)]) (71d) 

For s = + l  we shall omit the superscript + on A[, at,+ and 6[  in the 
following. 

The parameters At and At are identical with the ones characterizing 
the normal-state collision integral, which is obtained as the limit as A -, 0 of 
Eqs. (65) and (69). This limit is equivalent to the exact low-temperature 
result of Sykes and Brooker. 12 The component even in r is, for instance, 
given by 

Ipl 
i ' 4 i 1 cosh ( r  

rN(r 6fp, r~-(O) TNF ~ cosh (~1/2T) 

• ~ (21+ 1)P~(Ol.02)B(~)At6f~ 2 
1=O 

(72) 

where 

X 
B ( x )  = 

sinh (x/2) 

8f~, 2 is the deviation of the normal-state distribution function from local 
equilibrium and r~vl (G) is the limit as A ~ 0  of (65): 

1 1 [ (~T) 2 ] ~'N(G)- ~-N(0) 1 + (73) 

The first few parameters are fixed by the conservation properties of normal 
quasiparticle collisions, 

Ao=Al = 1, Ao =3  

The parameters A2, 3'2, and A1, 3"1 entering in the eases of shear viscosity 
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and thermal conductivity are given in a more explicit form by 

h i- = 1 + (2/( W))( W(O, ~)cos 0) 

,~2 = 1 - ( 3 / ( w ) ) ( w ( o , ~ )  "41~sm ~v s,n" 2 ,b) 
(74) 

3'1 = (1/( W))(Wt(0, ~b)[cos 2 �89 + sin 2 �89 cos ~b]) 

"Y2 (1/(W))(W,(O, 3 2 = qb)[~(cos �89 + sin 2 �89 cos ~b) 2-�89 

The two parameters h2 and ,l i- can be determined from measurements of 
these transport properties in normal 3He, provided the quasiparticle 
relaxation time on the Fermi surface in the normal state r~r(0) is known 
independently. 

The inscattering term of the collision integral satisfies a number of 
exact relations. Substituting 3v ~ = f', Yt,,, (~)rbt (G) into Eq. (69), one obtains 
after some rearrangement 

in  i , y  A 
Ip {f'pYt.,(~)6t(G)}=----~.,fp t.,(ff)q/t(G); / = 0 ,  1,2 . . . .  (75) 

zN~u) 

with 

where 

{ J~- (Ep) 

�89 (E.)  

6t(G) = (G/Ep)K~- (Ep) 
for 

1, I odd 

Ep, I even 

r Ev/ G, l even 
2 Ep/~v, I odd 

J~ (E)  = h ~Io + [a  ~ + 3,,1111 + I2](A/Ao) 2 + 3713(A/Ao) 4 

g 7 (E) = A ~Io + VlI2(A / AO)2 

and In(E), n = 0, 1, 2, 3, is defined by Eq. (64). Conversely, due to the 
symmetry of the collision operator,  the following sum rules complement 
the above relations: 

i t 

Ep Yt, , ,(~,(G)I~" r~(O) r / = 0 , 1 , 2  . . . .  

(76) 

4. Q U A S I P A R T I C L E  R E L A X A T I O N  R A T E  

The qp relaxation rate is a measure of the effect of qp collisions on the 
damping of nonequilibrium processes. In the normal state, the dependence 
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of 1 / r v  on tempera ture  and energy ~v is given by (73) and thus is rather 
simple, r ,  cannot be measured directly in the normal state. However ,  it has 
been possible recently to determine r~(0)  from the various relaxation 
effects in the superfluid state near To. The values for the tempera ture-  
independent  quantity rN(0)T 2 obtained in this way range from 0.31 to 
0.26 tx sec �9 mK 2 for pressures from about 20 bar to the melting pressure. 13 
The corresponding value for 1/rN(0) for 20 bar at T~ --- 2.4 mK expressed 
in temperature  units is 1 / rN(0)=  0.15 mK. The condition l /r<< T for the 
validity of the quasiparticle description is seen to be amply satisfied. 

In the superfluid state the dependence of 1/rp on temperature  and 
momen tum p is much more complex. In the BW state the relaxation rate is 
isotropic, as in the normal state. It is seen from Eq. (63) that the tempera-  
ture dependence of the qp relaxation rate at the Fermi surface (~:p = 0) is 
given by a universal function of A ( T ) / T .  In general, the expression (65) for 
1/rp has to be evaluated numerically. 

However ,  in the limit of low temperatures  the energy integrations may 
be done analytically. Expanding the qp energy as 

Ep-= zx[1 + ( r  . .  .1 (77) 

and inserting this into Eq. (64), it is seen that the lowest order contribution 
in e - a / r  is given by those terms in the sum on Ix2, Ix3, Ix4 for which 
Ix2 + #3 + Ix4 = - 1, guaranteeing a cancellation of the zeroth-order  energies 
in the energy delta function. The energy integrals are easily done in lowest 
order in T / A  and e -A/T, with the result 

where 

3 A 
Io = 3 I ,  = 312 = [3 = : - -  ~ Y o ( T )  (78) 

zT"r 1 

f_ , Y o ( T )  = lim Y(T)= lrim d~:.[-fp] = [ 2 r r A / T ]  '/2 e - a I r  
T ~ O  ~ o~  

is Yoshida's function for T->0.  The function Y ( T )  is a measure of the 
number  of thermally excited quasiparticles. 

Substituting Eq. (78) into Eq. (65), we obtain the qp relaxation rate in 
the BW state at low temperatures  

1 1 3 ( A~ 3/2 e_~/TWo 
=  N(O, r) (2 7 (79) 

where 
9 

Wo = 1 - ~yo + 60 
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with 8o and yo defined by Eqs. (66) and (67). Thus 1/rp tends to zero 
exponentially fast for T--> 0, as opposed to the T 2 behavior in the normal 
state. 

In the opposite limit T-* Tc an expansion in lowest order in A2/T 2 
leads to the following result for the qp relaxation rate6: 

1 1 1 + ( - " ' ~  - ( - - ' ~  (61n2+]-~+3.3  (80) 
rp 7"s \rrT/ \rrT) \ 

The averaged cross sections (W), (Wr), and (WD) are of importance 
for the quantitative evaluation of Eq. (65). We have estimated these 
quantities in the so-called s-p approximation, in which only the l = 0 and 
l = 1 components of the scattering amplitudes are kept, viz., 

A~(O, d~)= So+ $1 cos 0, A,(O, 6)= (To+ Tl cos 0) cos d;, (81) 

In terms of the four parameters So, St, To, Tt the averages are found as 

7r( 2 2 + 7  S 2 + 3 T 2 _ T o T I + 7 T 2 ' ~  
, 2 1 0 /  

(Wr) = .~.L. ~rr[1 $2o -t-2SoS1--~05 $2 +2SoTo-2SoTI3 5 

+5 (25-361n2)T2 +(84-1201n2)ToTl+5 (173-2521n2)T]] (82) 

zr 7 2 18 107 2 8 8 
+-~ SoTo-]-~(SoT, + St To) - SoSl 

+8SxTI 29 2 19 33 T2 ] + Vo roT,+  
St and Tt are related to the spin-symmetric (antisymmetric) Landau 
parameters F~ (F~) by St = A~-  3A~ and Tt = A~ + A~, with 

F~ .a s , a  At = 
1 + [F~'a/(2l + 1)] 

TABLE I 

Components and Angular Averages of the Quasiparticle Scattering Amplitude in 3He at Two 
Different Pressures As Defined in the Text 

So St To T1 3'o 60 Wo (W) 

20 bar 9.5 5.1 - l . 8  1.5 0.12 0.29 1 .21  79rr/2 
34 bar l l .0  5.2 -2.34 1.54 0.16 0.39 1.18 109~'/2 
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1 I 
2.0 Z..0 6.0 8.0 A_E_) 

T 
Fig. 1. Quasiparticle relaxation rate l / r  at the Fermi surface in the BW 
state normalized to the normal-state value 1/rN vs. A(T)/T. 

Taking the values of F~ "a appropriate  for 3He at 20 and 34 bar, respec- 
tively one obtains the results listed in Table I. 

The terms involving ( W  r) and (Wo> cancel partially in this approxi- 
mation. Thus we can conclude that the term involving I0 in Eq. (65) 
dominates.  

In Fig. 1 the result of a numerical evaluation of the qp relaxation rate 
normalized to the normal-state  value at the Fermi surface (s r = 0) using the 
parameters  appropriate  for P = 20 bar is plotted as a function of A(T) /T.  
The dependence of the normalized qp relaxation rate on pressure is weak. 

The relaxation rate of the superfluid state is seen to fall off rapidly with 
decreasing tempera ture  relative to the normal-state  value. This is due to 
the appearance of the gap in the single-particle excitation spectrum. 

We have used the following interpolation formula for A(T) to extract 
values for 1 / r  as a funtion of tempera ture  from the result of Fig. 1: 

A ( T ) =  1.76Tc tanh [ ] - - ~ ( ~  C--~N} -T--  (83) 

Equation (83) is consistent with a relative specific heat discontinuity 
AC/CN and tends to the weak coupling value for T ~ 0. 

Given the qp lifetime 7-~, we may also calculate the mean free path I of 
Bogoliubov quasiparticles by taking the root mean square of the average 
distance traveled by a quasiparticle of m om en t um p, which is lp = % V f p  = 
,Gvfljp/Ep. This is given by 

12 1/2 l g  d~p 2 2 2 2 l/2 

t Z . D  ] = af . f .  ] 
(84) 
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-A/T 0.8 
I(T)e 

VF'[ N [0' "[c I 
0.6 
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I I I I 

Mean free path of 
Bogotiubov Quasiparticles 

in 3He- B 

I I I I 
0.2 0.6 0.8 

i-T/re 
Fig. 2. Mean free path l(T) as defined by Eq. (84) normalized to 
OFZN(0, Tc) exp (A/T) vs. reduced temperature 1 - T/Tc. 

where fp is the Fermi function. In the limit of low temperatures l diverges 
as 

(217") 1/2{Tc\ 2 a / r  1 
l ira I ( T ) =  VF~'N(0, T c ) ~ l - - ~ )  e ~ (85) 

The  result  of a numer ica l  eva lua t ion  of Eq. (84) is plot ted in Fig. 2. 

In  order  to ob ta in  values for the m e a n  free path l(T) itself, we need  an 
es t imate  of the quan t i ty  VFZN(Tc). We take VF from Whea t l ey ' s  table,  13 bu t  

with an effective mass rat io scaled down by 5% for 21 bar  and  11% for 
mel t ing  pressure.  ~-~r(T~) is t aken  from Ref. 14. The  results are listed in 
Table  II. 

O n e  immedia te ly  recognizes that  for reduced  t empera tu res  T/T~ 
lower than  0.2, the m e a n  free path  of Bogol iubov  quasipart icles  becomes  

comparab le  with a typical size of the exper imenta l  apparatus ,  in essential  

T A B L E  II 

Mean Free Path of Bogoliubov Quasiparticles in the B Phase of 3He at 21 bar for 
Different Values of the Reduced Temperature T/Tc 

T/ Tc l, cm 

1.0 1.70 x 10 .4 
0.6 4.68 x 10 .4 
0.5 9.13 x 10 .-4 
0.4 2.42 x 10 -3 
0.35 4.78 x 10 .3 

T/Tc 1, cm 

0.3 1.17 x 10 -2 
0.25 3.99 x 10 -2 
0.2 2.45 • 10 -1 
0.15 4.87 
0.1 1.82 X 103 
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agreemen t  with the result  of O n o ' s  est imate,  t5 Genera l ly  speaking,  the 

t empera tu re  range for which a t ranspor t  theory account ing  for only 
quasipar t ic le  collisions is valid is b o u n d e d  from below in a way which 
depends  upon  geomet ry  and size of the sample conta iner .  In order  to get 

correct  answers for lower tempera tures ,  one  has to account  for quasi-  

particle scat ter ing processes at the wall of the container .  
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