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Abstract 

This paper models balanced-budget redistribution between socio-economic groups as the 
outcome of electoral competition between two political parties. Equilibrium is unique in the 
present model, and a sufficient condition for existence is given, requiring that there be enough 
'stochastic heterogeneity' with respect to party preferences in the electorate. The validity of 
Hotelling's 'principle of minimum differentiation', and of 'Director's Law', are examined 
under alternative hypotheses concerning administrative costs of redistributions, and voter's 
possibilities both of abstaining from voting and of becoming campaign activists for one of the 
parties. The policy strategy of expected-plurality maximization is contrasted with the strategy 
of maximizing the probability of gaining a plurality. Incomes are fixed and known, so lump- 
sum taxation is feasible. However, constraints on tax/transfer differentiation between indivi- 
duals are permitted in the analysis. 

1. Introduction 

The driving forces behind government - induced  redis t r ibut ions of  income 

and  wealth are still not  well unders tood.  Theoretical  models t rying to ex- 

pla in  such redis t r ibut ions have emphasized changes in the size-distr ibution 

of  income,  i.e. 'ver t ical '  redis t r ibut ions,  with the Median  Voter Theorem 

perhaps being the most  impor t an t  achievement.  This paper  instead focuses 

on  redis t r ibut ions  between (socio-economic) groups of  individuals  in gener- 

al, permi t t ing  both  'ver t ical '  and  ' hor izon ta l '  redis t r ibut ions.  The Median  

Voter Theorem does not  apply because of the mul t i -d imens iona l i ty  of such 

redis t r ibut ions:  with m groups and  one government  budget  constra int ,  every 

redis t r ibut ion scheme has d imens ion  m-1. 

More specifically, we consider the compet i t ion  for votes between two po- 

litical parties in a representative democracy by means  of political programs,  

*The authors are grateful for comments on an earlier version of the paper (Lindbeck and 
Weibull, 1985) from Nils Gottfries, Richard Jackman, Bo Larsson, Lars-G6ran Mattson, Tor- 
sten Persson, Agnar Sandmo, Lars-Gunnar Svensson and from the participants in seminars at 
the Institute for International Economic Studies and at Lund University. 
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part of which are schemes for (balanced budget) fiscal redistribution of  in- 
come (or wealth) across the electorate. Since we want to focus on the parties' 
selection of such schemes, other parts of their programs are assumed to be 
fixed. However, as we shall see, also differences between the parties con- 
cerning other aspects than their redistribution policies are important for the 
outcome of party competition. In this study, we take gross incomes (or ini- 
tial endowments of wealth) to be fixed and known. Hence, first-best (in- 
dividual) lump-sum redistributions are in principle feasible. However, for 
realism we permit the possibility that the electorate is subdivided into 
groups, with the requirement that taxes and transfers should be uniform 
within groups. This classification into groups could be based on any criteria, 
e.g. income, family size, residential location etc. 

A basic assumption of the analysis is that voters derive utility both from 
consumption (in the mandate period) and from policies that are not related 
to consumption (in the same period). Thus, one component of every voter 's 
welfare depends on fiscal policy through its effects on his consumption. 

This component is known by both parties. The other component of  his wel- 
fare, derived from other policies in the parties' political programs, or from 
personal attributes of the candidates, is only imperfectly observed by the 
parties. Therefore, they assign probability distributions to individuals' 
party preferences. 1 Both parties are assumed to make the same probability 
assignments, an assumption which is natural if they have access to the same 
information concerning the party preference distribution in the electorate, 
e.g. via opinion polls (perhaps disaggregated in terms of socio-economic 
and geographic characteristics). The feature of  the real world which we want 
to catch by assuming complete information concerning consumption prefer- 
ences but incomplete information as to political preferences is that con- 
sumption is a relatively simple and visible phenomenon, whereas many 
aspects of politics, frequently related to ideological considerations and poli- 
ticians personalities, are much more difficult to define and observe. 

Every individual votes for that party which best promotes his own wel- 
fare, and each of the two political parties selects its redistribution policy so 
as to maximize its expected plurality. Hence, the voters make use of the par- 
ties to obtain a government that promotes their welfare and the parties make 
use of the voters to get power - the political system thus being formed by 
the interaction between two categories of self-interested, maximizing 
agents. 

In other words, we investigate the explanatory power of the 'economic 
man'  paradigm in the context of  political competition: ' . . .  the social mean- 
ing or function of parliamentary activity is no doubt to turn out legislation 
and, in part, administrative measures. But in order to understand how 
democratic policies serve this end, we must start from the competitive 
struggle for power and office and realize that the social function is fulfilled, 
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as it were, incidentally - in the same sense as production is incidental to 
the making of profits' (Schumpeter, 1950:282 - quoted in Downs, 1957: 
29). 

This is the basic setup of our model, developed in Sections 2 - 4  below. 
Section 5 considers some extensions covering administrative costs asso- 
ciated with the implementation of redistribution schemes, as well as the pos- 
sibility of abstenation from voting and the need for active party supporters 
in order for the policies to be known by the electorate. Section 6 analyzes 
the equilibria that arise if the parties instead strive to maximize the probabil- 
ity of gaining a plurality, i.e. of 'winning' the election. The conclusions are 
summarized in Section 7, where some directions for further research are also 
discussed. Mathematical proofs are collected in an appendix at the end of 
the paper. 

To the best of our knowledge, balanced-budget redistributions across 
socio-economic groups have rarely been analysed in terms of political 
equilibrium, perhaps partly due to the easily encountered non-existence of 
equilibrium when the policy space is multi-dimensional (cf. the example in 
Section 3 below). An exception is Kramer (1983), who actually analyses elec- 
toral competition between an incumbent party and an opposition by means 
of non-distortionary balanced-budget redistributions, such as in the present 
model. However, his model differs from ours in two important respects: he 
assumes complete information about voters' preferences, and the incum- 
bent party must commit itself to a policy before the opposition does. 

A two-party probabilistic voting model, in which both parties strive to 
maximize their expected votes, is developed in Enelow and Hinich (1982). 
Though their model belongs to the Downsian tradition of 'spatial' political 
modelling, it is similar to ours in the sense that voters' utility is additively 
separable in two components, one deterministic, relating to the policy ques- 
tion under consideration, the other stochastic and exogenous. In contrast 
to our approach, Endow and Hinich treat a one-dimensional policy space 
in which the voters evaluate a policy by its Euclidean distance from an 'ideal 
position'. Moreover, they restrict the analysis to the case of two homogene- 
ous groups of voters, and to the case of normally distributed random utility 
components. 

The existence of (pure strategy) expected-plurality equilibria in prob- 
abilistic voting models have earlier been studied by Hinich, Ledyard and 
Ordeshook (1972), Denzau and Kats (1977), Coughlin and Nitzan (1981), 
and Wittman (1983). 2 However, these studies do not explicitly examine 
redistribution policies but mainly focus on the question of existence of polit- 
ical equilibrium in general, while our primary goal is to identify specific 
properties of  redistribution equilibria. While their models are more general 
than ours in some respects, they are, as will be seen below, less general in 
others. 
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2. The basic model  

There  are n voters,  indexed by i. The  exogenous and fixed gross incomes (or 
initial endowments )  are given by the vector  ~0 = (a~ 1 . . . .  , ~0n) > 0. Let  I = 
[ 1 . . . .  , n I, and suppose  I is par t i t ioned into m disjoint subsets,  where the 
k: th  subset I k contains  n k individuals (r.n k = n). We assume 2 <_ m <__ n 
and each n k positive. The  subset o f  individuals I k is referred to as group k 
(a special case being m = n, i.e. one voter  in each group) .  A balanced- 
budget redistribution is a vector  z = (z 1 . . . .  Zm) ER m, where z k (k = 1, 
. . . .  m) is the t ransfer  to each m e m b e r  of  g roup  k, and z satisfies the budget  
equat ion  r.nkz k = 0 and the requi rement  tha t  every individual ' s  consump-  
t ion (or net income) be positive. Let  X = {zERm; c0 i + z k > 0 for  all k and 
iEI k } and X o = [ zEX; Enkz k = 01, i.e. X o is the set o f  (feasible) balanced-  
budget  redistr ibutions.  Finally, let k(i) signify the group  identi ty of  in- 
dividual i. 

Before  the election, the two parties,  A and B, promise  ba lanced-budget  

redis tr ibut ions x and y, respectively. Each voter  i derives utility Vi(Ci)  f r o m  
consumpt ion ,  where c i = 6o i q- Xk(i) if par ty  A wins and  c i = w i + Yk(i) if 
B does. We assume vi'(ci) > 0 and v['(ci) < 0 for  i and c i > 0, i.e. increasing 
utility and decreasing margina l  utility of  consumpt ion .  Moreover ,  to avoid 
corner  solutions,  we suppose  that  the margina l  utility falls f rom infinity to 
zero as consumpt ion  rises f rom zero to infinity. 

The  individual ' s  total  welfare is assumed to be addit ively separable  as 
follows: 

ui(x, a) = Vi(co i + Xk(i) ) + a i if A wins 

u i = (1) 
ui(Y, b) = vi(w i + Yk(i)) + bi if B wins 

where a i is the utility that  individual  i derives f rom other  policies in par ty  
A ' s  polit ical p r o g r a m  and likewise with bi.3 Individual  i is assumed to vote 

for  pa r ty  A if ui(x, a) > ui(Y, b), for  B if ui(x, a) < ui(Y, b), and otherwise 
abstain.  Hence ,  his choice is deterministic,  and it is a d iscont inuous funct ion 
of  the utility differential  between the two par ty  p rograms .  However ,  the 
parties,  which cannot  observe the terms a i and b i exactly, t reat  them as 
r a n d o m  variables when selecting their redistr ibut ion policies. Each  r a n d o m  
utility differential  b i -  a i is assigned by bo th  part ies a twice cont inuously  
different iable probabi l i ty  dis tr ibut ion funct ion Fi, with everywhere posi- 
tive density fi = F1- Then  the par t ies '  p robabi l i ty  ass ignment  for  an in- 
dividual  i to vote for  par ty  A is a cont inuous  funct ion of  the 
consumpt ion-ut i l i ty  differential  between the policies: 

Pi = Pr((ui(Y, b) < ui(x, a)) = Fi[vi(oJ i + Xk(i) ) -- vi(w i + Yk0))]' (2) 
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the probability that he will vote for B being qi = 1 - p i  .4 

Let n A denote the associated random number of  votes for party A and n B 
the votes for B. Then the plurality expected (by both parties) for party A is 
E(nA-rib) = E(Pi--qi) "5 Viewing the expected outcome as a function of 
both promised redistributions, we call a pair (x*, y*)EX 2 a (pure strategy) 

Nash equilibrium (NE) in the expected-plurality game if E(n A - n B I x, y*) 
< E(n A -  n B I x*, y*) < E(n A -  n B I x*, y) for all x and y in X o. 

When interpreting subsequent results, it is sometimes useful to refer to the 
special case of  unimodal, symmetric and translate symmetric density func- 
tions. We call a density function fi unimodal if it has a unique maximum, 
to the left (right) of  which it is strictly increasing (decreasing). It is said to 
be symmetric if f i ( -  t) = fi(t) for all t~R. If  there is a (unimodal and) sym- 
metric density function f and scalars t~ i such that fi(t) -- f(t + oq) for all i 
and t, then we say that the fi:s are translates of a common (unimodal and) 
symmetric density. In this case, each oq is both the mean value and the me- 
dian of the parties' probability assignment for the party bias a i -  b i of  in- 
dividual i. Hence, ot i may be referred to as the expected party bias of  
individual i in favour of  party A. 

Two particular types of  such densities are especially useful: the logit and 
probit models. In both models, a i and b i are random variables of  the form 
o~ i d- eil a n d  ei2, respectively, where oq is a scalar. In the logit model, eil and 
ei2 a r e  independent and identically distributed (i.i.d.) according to the dou- 
bly exponential distribution function ~(t) = e x p ( - e x p ( - t ) ) .  It can be 
shown that then F i ( t - a i )  = et/(et+ 1) (cf. e.g. McFadden (1973)), so in 
this case f i ( t -oq)  = (e t/2 + e-t /z)  -2. In the probit model, all differences 

e i l -  ei2 are i.i.d according to the normal distribution, so then f i ( t -  c~i) = 
(2701/2 exp( - t2 /2 ) .  In each case, the fi:s are translates of  a common uni- 
modal and symmetric density function. More generally, it is readily verified 
that if a i and b i are i.i.d., then fi is symmetric, and if moreover their com- 
mon density function is unimodal, then so is fi (cf. Lemma A in the ap- 
pendix). 

3. Characteristics of equilibria 

Suppose (x, y) is a NE. Since there is no abstention from voting, z = x then 

maximizes E(n A I z, y) subject to zEX o, and z = y minimizes E(n A I x, z) 
subject to ZEXo, where E(nA) = ~Pi and X o = {zeX; r~nkz k = 0}. Each 
goal function being continuously differentiable on the open set X, there are 
Lagrangians k, /~ > 0 such that for all k 

V((W i + Xk)f i (t  i) = kn k (3) 
iEI k 
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~] vi'(w i + yk)fi (ti) = #n k (4) 
i~I k 

where the probability densities are evaluated at the corresponding 

consumption-utility differential: t i = vi(c0 i + Xk) - vi((.0 i + Yk)" These 
equations state that, from the viewpoint of parties A and B, respectively, 
the per capita marginal gain in expected votes, with respect to marginal 
shifts in transfers, should be equal for all groups; otherwise the expected 
number of votes on a party could be improved without violation of the pub- 
lic budget constraint. 

It follows from these first-order conditions that the ratios 

E V((W i + X k) fi(ti) 
i¢I k 

Ok = (k = 1 . . . . .  m) 
V((C°i + Yk) fi(ti) 

iEI k 

should be equal for all k. Now suppose x ~ y. Then the budget requirement 

Enkx k = ~nkY k = 0 implies that there are groups k and h such that x k < Yk 
and x h > Yh" However, since the marginal utilities v i' are assumed to be 
decreasing functions, this would imply Ok > 1 > 0h, contradicting the re- 
quirement that the ratio be equal for all groups. Hence, x -- y is a necessary 
condition for equilibrium. Inserting this equality into eq. (3), we have 
proved the following multidimensional analogue of Hotelling's 'principle of 
minimum differentiation' :6 

Theorem 1: If (x, y) is a NE in the expected-plurality game, then x = y, and 

there is a X > 0 such that for all k 

E vi'(c i) fi (0) = nkk. (5) 
ifiI k 

Let us consider two special cases of preference variations across the elec- 
torate. First, if all individuals have been assigned the same party preference 
distribution, then all factors fi(0) in eq. (5) are identical, so in this case the 
average marginal utility of consumption is equal in all groups. The resulting 
political equilibrium is thus identical with the utilitarian optimum achieved 
when maximizing the social welfare function ~vi(ci) subject to x~X o , where 
individual consumer preferences are represented by the cardinal utility func- 
tions employed in the probability assignments (cf. note 5). In other words, 
in this special case democratic electoral competition f o r  the votes o f  selfish 
individuals produces the same income distribution as wouM an omnipotent  
Benthamite government. 7 
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Figure 1. Equilibrium in the expected-plurality game. Consumpt ion  as a function of  the expect- 

ed party bias. 

Secondly, suppose all individuals have the same consumption preferences 
(i.e. v i = vj for all i and j), while party preference distributions differ be- 
tween groups but are identical within groups (i.e. fi = fj iff  k(i) = k(j)). 
Further, assume that all fi:s are translates of  a unimodal and symmetric 
density function f. Then eq. (5) implies that the levels of  consumption in a 
group are functions of the expected party bias of  the group members: 

Ev'(ci) /n  k = k/f(cq) (where iEIk). Since the marginal utility of  consump- 
tion by assumption is decreasing, the per capita transfer to a group is a 
decreasing function of  the absolute value of  the expected party bias in the 
group, in this special case (cf. Figure 1 above). In other words, in equilibri- 
um both parties will favour those groups in the electorate whose expected 
partisan biases are weak, i.e. 'marginal'  voters (or 'swing' voters). 

As a further illustration of this special case, suppose gross incomes are 
equal within groups but differ between groups. If furthermore low-income 
groups have an expected bias in favour of  party A (oq > 0) and high in- 
come groups an expected bias towards B (cq < 0), then in equilibrium both 
parties will favour  middle-income earners at the expense o f  both low- and 

high-income earners, and to such an extent that the middle income earners 
will have the highest net income o f  all. This corresponds, in an extreme 
form, to what George Stigler has termed 'Director's law' (Stigler 1970)). 8 

A general consequence of  Theorem 1 is that in equilibrium E(nA) = 
~pO = SFi(0) ' where each term p°is the 'prior '  probability that individual 
i votes for party A (cf. eq. (2)). In particular, if there are no party biases 
(more exactly if all Fi(0 ) = 1/2), then the expected number of  votes is 
n /2  for both parties. 9 In fact, there is a direct and intuitive argument that 
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E(n n I x, y) : Ep°is a necessary condition for any pair (x, y) of balanced- 
budget redistribution policies to be an equilibrium. For if this condition 
were not met, then one of the parties could gain votes by adopting the other 
party's redistribution policy. 

4. Existence and uniqueness 

It is straightforward to show uniqueness of equilibrium in the expected- 
plurality game analyzed above. For suppose that both (x, X) and (x ' ,  X') 
satisfy the necessary first-order condition (5) in Theorem 1. If k = X', then 
x = x '  by (strict) concavity of the utility functions v i. On the other hand, 
if k < X' would be the case, then x > x'  by the same property. However, 
this would exclude the possibility that both x and x '  are balanced-budget 
redistributions. Hence there can be at most one solution (x, X)~X o x 
(0, + oo) of eq. (5). 

The presence of uncertainty is crucial for existence of equilibrium in our 
model. For if both parties knew in advance and with certainty every in- 
dividual's party preferences a i and bi, then the 'expected' number of votes 
would be a discontinuous function of the party policies (each F i would be 
a step function, cf. eq. (2)). Suppose, for example, that there were no party 
biases in the electorate (i.e. a = b), and that each group consisted of only 
one individual (i.e. m = n). Then, for any balanced-budget policy y that 

party B might suggest, party A could obtain n - 1 votes by choosing e.g. the 
balanced-budget policy x = (Yl - e, Y2 + d ( n  - 1) . . . . .  Yn + e / ( n -  1)), for 
some e in (0, ~o 1 + Yl)" This would give party B an incentive to change its 
policy, since it could switch from 1 to n -  1 votes in the same way. Hence, 
for n > 2 no equilibrium exists in this deterministic example. 

In the present model with uncertainty, however, infinitesimal shifts in 
policies give rise, not to finite, but to infinitesimal shifts in votes. Of the 
usual four sufficient conditions for existence of (pure strategy) equilibrium 
in zero-sum games, viz. (i) compactness and (ii) convexity of  the individual 
strategy sets, (iii) continuity and (iv) concavity/convexity of the pay-off  
function (cf. e.g. Rosen (1965, Th. 1) or Owen (1982, Th.IV.6.2)), only two 
are fulfilled in the present model, viz. (ii) and (iii). However, for certain 
preferences and probability distributions, (iv) is also met, i.e. E(n A -  n B I 
x, y) is concave in x and convex in y ('decreasing marginal returns' in votes 
to redistribution promises, cf. Lemma B in the appendix). Even though (i) 
is not fulfilled, existence can then be shown directly by means of the first- 
order conditions (3), (4), and (5). 

Theorem 2: If condition C1 below holds, then there exists a (unique) NE of 
the expected-plurality game. 
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C l: fii ~ 3/i for  all i, 

Where/3 i = sup I fi'(t) I/fi(t) and ~'i = inf Iv;' (s) I/(vii(s)) 2. (A weaker condi- 
tion, but still sufficient for existence, is given in the appendix, cf. proof of 
Lemma B.) 

For given probability density functions, condition C1 requires every util- 
ity function v i to have a concavity index exceeding Bi, in the terminology of 
Debreu and Koopmans (1980). 1° For given consumption preferences, on 
the other hand, the condition is more easily satisfied, the larger is the degree 
of uncertainty about (or 'stochastic heterogeneity' in) individual party 
preferences.ll For if one lets all random utility terms a i and b i be increased 
by a factor a > 1, then each index/3 i becomes a factor 1/a smaller. In this 
sense, condition C1 defines a critical degree of uncertainty (for some utility 
functions and probability distributions infinitely high) above which equi- 
librium exists. 12 For example, the condition is fulfilled for logarithmic util- 
ity functions in the logit model, since then ~'i = ~ = 1 for every i, while no 
utility functions satisfy C1 in the probit model, since then j3 i = + o o  for 
every i (cf. the discussion of the logit and probit models in Section 2 
above). 13 

What if, at given consumption preferences, the actual degree of uncer- 
tainty falls short of the critical level in condition CI? Actually, it is not 
difficult to establish a necessary second-order condition for existence of 
equilibrium, a condition that essentially requires this degree to exceed 
another (lower) critical level. Suppose (x, y) is a NE. Then x = y by Theorem 
1, and with c i (as usual) denoting the consumption of individual i in equi- 
librium: 

C2: (i) ~ (z k - Xk  )2 ~ [v~ t (ci) fi(O) + (vir(Ci)) 2 fir(O)] ~ 0 for all z~X o, 
k iEI k 

(ii) ~ (z k -Xk)2 ~] [vi' (ci) fi(O) -- (vi'(ci)) 2 fi'(O)] _< 0 for all zEX o 
k iEI k 

(cf. Lemma C in the appendix). This necessary condition is met trivially 
in the special case of symmetric party-preference distributions, since then 
fi'(0) = 0 for all i. 14 More generally, it holds if I fi'(0)l fi(0) _< I v(' (ci) 
J/(vi'(ci)) 2 for all i. Consequently, condition C1 implies C2, and a multipli- 
cation of  all random utility terms by some scalar a shows, just as in the case 
of C1, that C2 is more easily satisfied the larger is the degree o f  uncertainty. 

Similar conclusions as to the role of uncertainty, or 'stochastic hetero- 
geneity', in establishing the existence of equilibrium have been reached in 
another context by de Palma, Ginsburgh, Papageorgiou and Thisse (1985), 
who analyzed the validity of Hotelling's 'principle of minimum differentia 
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tion' under multi-firm competition in one-dimensional location space. 
Their study was inspired by the discovery by d'Aspremont,  Gabszevicz and 
Thisse (1979) of an important error in Hotelling's analysis, implying that his 
principle in fact is invalid in the deterministic (price and location) model he 
used. De Palma et al. assume that firms cannot observe individual prefer- 
ences exactly, and that they therefore endow consumers with a probabilistic 
choice rule according to the logit model. In this setting, Hotelling's principle 
is restored provided consumers' preferences are sufficiently heterogenous, 
as expressed by the scale parameter a discussed above. 

5. Extensions 

The basic model outlined above is very simple and it abstracts away many 
real-life complications. Here we investigate, in three examples, the robust- 
ness of the results with respect to some extensions in the direction of in- 
creased realism. 

5.1 Admin&tration costs 

Suppose that there is an aggregate cost of the additive form ]~gi(Zk(i)) asso- 
ciated with the implementation of any redistribution vector z in X, restrict- 
ing the analysis to the case in which each component gi(zk) depends 
smoothly on the amount transferred in such a way that neither the cost nor 
the marginal cost diminishes as the transferred amount increases. More pre- 
cisely we assume each gi :R--R+ to be twice continuously differentiable 
with gi'(t) >__ 0 for t > 0, gi'(t) _< 0 for t < 0, and gi' (t) >_ 0 for all tER. The 
administrative costs are assumed to be drawn from the public budget, so the 

previous budget equation Enkz k = 0 is generalized to 

E (nkz k + E gi(zk)) = O, (6) 
k iEI k 

and accordingly X o is now the subset of redistributions in X satisfying eq. 
(6) (the basic model being the special case gi = 0 for every i). 

Since nkz k + ~gi(Zk) is the cost of a per capita transfer z k to group k 
(summing over iEIk), one would expect all marginal costs of public funds, 

n r + gi'(Xk) and n k + ~g((Yk) (k = 1 . . . . .  m), to be positive in equilibrium, 
since otherwise one of the parties could gain votes by 'costlessly' increasing 
the transfer to a group with a negative marginal cost. In fact, a proof  of this 
conjecture is easily given (see proof  of Theorem 3 in the Appendix). 

In view of  the egalitarian character of  the equilibrium obtained in the ab- 
sence of administrative costs, one may wonder whether the competition for 
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votes now induces both parties to suggest excessively costly redistributions. 
However, it can be shown that Theorem 1 remains valid in this more general 

case under the natural qualification that the right-hand side in the first- 
order condition (5) should be multiplied by the corresponding marginal 
cost: 

Theorem 3: If (x, y) is a NE in the expected-plurality game with administra- 
tive costs, then x = y, and there is a X > 0 such that for all k 

vi'(Ci) fi(0) = [n k + ~ gi'(Xk)]~. (7) 
iEI k iEI k 

In other words, electoral competition in the absence of  party preference 
variations (fi(0) = fj(0) for all i and j) still leads to a utilitarian welfare opt# 
mum: eq. (7) then is the first-order condition associated with the maximiza- 
tion of  the Benthamite social welfare function ~Vi(Ci) subject to xEX o 
(recall the particular cardinalization of preferences, cf. note 4). More gener- 
ally, eq. (7) shows that, for any probability assignments fi, the equilibrium 
redistribution vector is (constrained) Pareto efficient. 15 In this sense, com- 
petition for votes does not induce the parties to promote excessively costly 
redistribution programs. Note also that now it is not the average marginal 
utility per unit of  transfer that should be equal for all groups, but the more 
general notion of  average marginal utility per marginal unit of  societal cost. 
Thus, when administrative costs are introduced, then the previous equili- 
brium redistribution is modified so that groups for which marginal costs are 
relatively high receive less. 

5.2 "Exit" and "voice" 

Two important features of  the electoral process which have been neglected 
so far are (i) the possibility of  abstaining from voting, i.e. 'exit', and (ii) the 
possibility for an individual of becoming an active supporter, or promotor ,  
of  the party in the sense that he actively 'voices' his opinions to induce 
others to vote for the party (to use a general terminology by Hirschman 
(1970) in a somewhat special meaning). In both cases, an element is in- 
troduced that may counteract the 'Hotelling tendency' towards 'the middle 
ground' .  

For the purpose of  analysing the exit option, suppose that there for every 
individual i is a nonnegative welfare threshold e i, such that he votes for 

party A if ui(x, a) - ui(Y, b) > e i, party B if ui(x , a) - ui(Y, b) < - e i , and 
otherwise abstains. In other words, the utility differential between the two 
parties' policies must now exceed a certain level in order for the voter to find 
it worthwhile to vote at all, i.e. 'nonvoting due to indifference'. With the 
basic model as the special case e i = 0 for all i, we have defined an expected- 
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Figure 2. Equilibrium in the expected plurality game with 'exit'. Consumption as a function 
of the expected party bias. 

plurality game with "exit'. In the present model, the effect of this extension 
is not strong enough to prevent the parties from still selecting the same 
policy in equilibrium: 

Theorem 4: If (x, y) is a NE in the expected-plurality game with 'exit ' ,  then 
x = y, and there is a X > 0 such that for all i 

]~ Vil(Ci ) [ f i ( - -e i )  + fi(ei)] = nkX. (8) 
iEl k 

To illustrate this result, suppose consumption preferences are identical 
and that all density functions fi are translates of a unimodal and symmetric 

density f. It then follows that each factor [ f i ( -g )  + fi(g)] = [ f ( a i -  g) + 
f(c~ i + ci)] is a two-peaked symmetric function of  the expected party bias ai,  
for sufficiently large thresholds ei (in the sense of Fi(Ei) being close to one), 
with the two maxima placed close to - e i  and + c i (cf.  Figure 2 above). 
Hence, if the party preference distributions are identical within groups, the 
most favoured groups (by both parties) in equilibrium are partitioned into 
two distinct classes, viz. those that are expected to be in favour of either 
party A or B with an absolute bias I oq I close to g - contradicting Direc- 

tor's law. 
Note however, that the favoured groups are still those consisting of 'mar- 

ginal' voters, this time not in the sense of  indifference between the parties 
(such voters tend not to vote when e i is large), but in the sense o f  indiffer- 
ence between voting and not voting. 16 
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In the real world, political parties rely heavily on active support  of  a 
group of  loyal party workers and sympathizers. This leads us to the opposite 

reaction to 'exit ' ,  viz. 'voice ' .  For the purpose of  analyzing this aspect of  
the electoral process, we assume that individual i becomes an activist for 

party A if ui(x, a) - ui(Y, b) > c3 i and of party B if ui(x, a) - ui(Y, b) 
< - 6i, where 6 i > 0 is another welfare threshold. As a simple way of  in- 
troducing 'campaign activists' we assume that, in order for its policy to be 

known by the electorate, each party must select its policy so that the expect- 

ed number  of  activists is at least un (u _> 0). Let s A and s R be the random 
number  of  activists o f  party A and B, respectively. Then party A faces the 

additional constraint E(s A I x, y) ___ un, and party B E(s B [ x, y) _> un. 17 

In this expected-plurality game with "voice' (with the basic model as the spe- 
cial case u = 0), Hotelling's principle of  minimum differentiation ceases to 

be generally valid, since if the inequality 

min { ~Fi( - 6i), n - ~Fi(6i) } < un (9) 

holds, then at least one of the parties has an insufficient expected number  
of  promotors  in any potential equilibrium in which both parties'  policies 

coincide. Hence, if (9) holds and (x, y) is a NE in the expected-plurality game 
with 'voice ' ,  then necessarily x g y. 

6. Alternative policy strategy: Maximizing the probability of winning 

So far, it has been assumed that both parties strive to obtain as large expect- 
ed plurality as possible. In the analytical literature on electoral competit ion 

this is the most  common assumptions as to party objectives, a natural alter- 
native for which is the maximization of the probabili ty of  gaining a plurali- 

ty. Therefore,  a comparison of  the equilibria of  these two games seems 
highly relevant. 18 In particular, one may wonder whether an equilibrium 
policy which maximizes the probabili ty of  obtaining a majori ty favours a 
smaller fraction of  the electorate than does an equilibrium policy that maxi- 

mizes the expected number  of  votes. 
For technical reasons, we f rom now on assume that all random utility 

differentials b i - a~ are statistically independent (which is the case e.g. in the 
logit and probit  models). Secondly, and more importantly,  we assume 
m = n, i.e. that all groups consist of  only one individual. Albeit unrealistic, 
the latter assumption does not seem to hamper  the possibility that the 
equilibria of  the two games differ. (In this sense, the assumption does not 
seem to reduce the explanatory power of  Theorem 5 below.) 
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6.1 Exact specification 

In a first, exact app roach  to this quest ion,  we also assume that  the number  n 
o f  individuals in the electorate is odd.  For  every voter  i, we int roduce a ran-  

d o m  variable tha t  indicates whether  tha t  part icular  individual  votes for  A or 
not:  let e i = 1 or 0 according to whether  his vote is cast for  par ty  A or B (cf. 
note  5). Then  the probabi l i ty  tha t  par ty  A will gain a plural i ty  can be wri t ten 

7r A = Pr(~e  i > n/2) ,  with 7r B = 1 - r A '  defining a cons tan t - sum game.19 
Viewing 7r A as a funct ion of  the p romised  redis tr ibut ions x and y, we call 
a pair  (x*, y*)~ X 2 a (pure strategy) equi l ibr ium of  theprobability-of-winn- 
ing game if 7r A (x, y*) _< 7rA(x*, y*) --< 7rA(x*, y) for  all x and y in X o. 

It is not  difficult  to show that  in equi l ibr ium bo th  part ies will again select 

the same policy in this game.  For,  by the assumed independence of  the in- 

dividual r a n d o m  utility differentials  b i - a i, any two vote  variables e i and ej 
are statistically independent .  Focusing on a par t icular  voter  i, one m a y  

hence write the probabi l i ty  that  pa r ty  A gains a plural i ty as the sum o f  two 

terms,  one being the probabi l i ty  that  all other votes together  give a plural i ty  
for  A, the other  being the probabi l i ty  tha t  they result in a tie, mult ipl ied by 
the probabi l i ty  tha t  i votes for  A: 2° 

7rA(x,y) = P r [ E  ej > n / 2 ]  + Pr[ E ej = ( n - 1 ) / 2 ] p  i. (10) 
j¢i j;~i 

Here  only Pi depends on x i and Yi since by assumpt ion  every group  has only 
one member .  Hence ,  if a pair  (x, y) o f  ba lanced-budget  redis tr ibut ions is a 

NE,  then there are Lagrangians  X, /x > 0 such that  for  all i 

Pr  [ E .  e i = ( n - 1 ) / 2 ] v i ' ( w  i + xi)fi(ti) = ;x (11) 

Pr  [ ~.  ej = (n-1)/2]vi ' (~0 i + Yi) fi(ti) = /z (12) 
j ~  

(cf. eqs. (3) and (4)). By the same a rgument  as in the p r o o f  o f  T h e o r e m  1, 

this implies x = y. Moreover ,  when x = y and the ' p r io r '  vot ing probabi l i -  
ties pO = Fi(0 ) are identical,  then all r a n d o m  variables e 1 . . . .  , e n are not  
only independent  but  also identically dis tr ibuted (Pr(e i = 1) = Fi(0 ) when 
x = y). Consequent ly ,  all p robabi l i ty  factors  (for i = 1 . . . .  , n) in eqs. (11) 
and  (12) are then identical. In other  words ,  i f  "prior' voting probabilities are 
identical, then the necessary first-order condition is the same as in the 
expected-plurality game. In sum, we have proved  

Theorem 5: Suppose  n is odd,  m = n and [b  1 - a i }  independent .  I f  (x, y) 
is a NE in the probabi l i ty-of -winning  game,  then x = y. I f  moreove r  pO = 

o for  all i and j, then x satisfies eq. (5) for  some k > 0. Pj 
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Hence, under the hypothesis of  this theorem an equilibrium policy which 
is aimed at obtaining a majority does not favour a smaller (or larger) frac- 
tion of the electorate than does a policy aimed at obtaining as many votes 
as possible. 

6.2 Approximate specification 

What if there are differences in 'prior '  voting probabilities in the electorate? 
Unfortunately, the first-order conditions for the equilibria of the probabil- 
ity-of-winning game seem analytically intractable in the presence of  such 
variations. However, if the electorate is large, then the number of  votes on 
each party is approximately normally distributed by the Central Limit 
Theorem, so then tractability can be obtained by way of  approximation of  
the probability distribution for the number of  votes for each party. More 
precisely, by Liapounoff 's  version of  this theorem, the divergence con- 
dition. 

C3: !2~piq i - oo as n -- oo 

is sufficient (and in the present case also necessary) for lee i to be asymptoti- 
cally normal with mean ]2pi and standard deviation (~piqi) 1/2 (cf. e.g. 
Cramer (1946, Section 17.4)). In the present model, there is no reason to as- 
sume that the individual choice variances Piqi decrease as the number of  in- 
dividuals in the electorate increases, so condition C3 seems justified. Hence 

~rA(x, y) can be approximated by 

~A(X, y) = (2~r)- 1 / 2  f + oo e x p ( -  t2/2)dt, (13) 

@(P) 

where p = (Pl . . . . .  Pn) and 

~(p) = (n/2 - IJpj)(r.Pi(1 - Pi)) - 1/2. (14) 

Substituting ~'A(X, y) for ~-A(X, y) in the above definition of  equilibrium, we 
have constructed an approximate-probability-of-winning game. 21 As be- 

_ O fore, let pO = Fi(0 ) and qO = 1 Pi" 

Theorem 6." If (x, y) is a NE in the approximate-probability-of-winning 
game, then x = y and there is a X > 0 such that for every i 

t 0 0 0 0 vi(ci) fi(O)[~Pjqj + ( P i - q i ) E ( p ~ - q ~ ) / 4 ]  = X. (15) 
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In other words, the Hotelling convergence result is not affected by the ap- 
proximation o f  probabilities, but the necessary first-order condition (15) 
generally differs from the corresponding condition (5) in the expected- 
plurality game by a factor depending on 'prior '  voting probabilities, z2 If all 
individuals are assigned equal probabilities, then eq. (15) collapses to condi- 
tion (5) - in agreement with the exact result in Theorem 6. The present 

theorem shows that this equivalence between the two games can be extended 
to all situations in which the parties are equally popular: i f~p ° = EqO then 
the first-order conditions of  the expected-plurality and approximate- 
probability games are identical. 

On the other hand, if one of the parties is more popular than the other, 
then the first-order conditions of the two games generally differ. For exam- 
ple, suppose that party A is more popular than B, i.e. Ep~ > Eq~, and that 
all fi:s are translates of a symmetric density function f. Suppose also that 
there are two voters i and j who have identical consumer preferences, and 

equally strong (expected) partisan biases but in opposite directions: v i = vj 
a n d  c~ i = - ~j > O. It then follows from Theorem 1 and symmetry of  f that 
they receive the same net income in the equilibrium of  the expected-plurality 

game (fi(0) = f(cq) = f(ccj) = fj(0), so c i = cj by eq. (5)), while in the 
approximate-probability-of-winning game voter i is favoured at the expence 

O O of voter j: we still have fi(0) = fj(0), but now pO _ qO > pj _ qj, so by eq. 

(15) vi'(ci) < vj(cj), i.e. c i > cj since i and j have the same consumption 
preferences. 

If fi(0) = fj(0) for all i and j (e.g. cq = + c~ for all i), then this would 
mean that the (symmetric) utilitarian equilibrium of the expected-plurality 
game would be 'tilted' in favour of the sympathizers of the more popular 
party if the parties instead were to maximize the probability of  obtaining a 
plurality. In this sense, the latter type of equilibrium favours a more narrow 
fraction of the electorate than does the expected-plurality equilibrium. 

In sum: parties that strive to maximize the probability o f  gaining a plurali- 
ty tend to favour, in equilibrium, those voters that are partisans o f  the more 
popular party, as compared with the corresponding equilibrium o f  the 
expected-plurality game. In particular, Director's law does not apply gener- 
ally when parties strive to maximize the probability of gaining a majority, 
but only if 'prior '  voting probabilities are sufficiently balanced. 

A heuristic explanation for this, somewhat surprising, result can be given 
in terms of eq. (10). By differentiation, 

07rA(X, y)/0X i = Pr[ E ej = ( n - l ) / 2 ] 0 P i / 0 x  i = 
j ¢ i  

Pr[ ~] ej = ( n -  1)/2]c3E(n a I x, y)/0x i (16) 
j ¢ i  

(recall m = n). In other words: the 'marginal return'  to the probability of 
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gaining a plurality, from a marginal increase in the transfer to any individ- 

ual i, is proportional to the corresponding return to the expected number 
of votes, the proportionality factor being the probability that all other votes 
together result in a tie, i.e. that individual i becomes a 'pivot '  voter. Now 
suppose both parties have chosen the same redistribution policy (x = y). 
Then individual i is more likely to be a pivot voter the stronger is his bias 
in favour of  the more popular party, since the exclusion of  such an individ- 
ual from the electorate leaves the remaining electorate as little biased as pos- 
sible, and hence also as likely as possible to produce a tie. 

7. Conclusions and directions for further research 

Assuming that each of  two competing political parties tries to maximize its 
number of votes from selfish voters, an equilibrium solution for a redis- 
tribution policy has been shown to exist, provided a sufficient degree of  un- 
certainty prevails concerning party preferences in the electorate. It was also 
found that in equilibrium both parties will select the same redistribution 
policy, a conclusion which may be regarded as a multi-dimensional version 
of  Hotelling's well-known 'principle of minimum differentiation'.  

In the special case when no systematic variations in party preferences are 
observed, while consumption preferences are known to vary, redistributions 
will be pursued until the average marginal utility of consumption is equal 
in all (socio-economic) groups, implying that democratic electoral competi- 
tion results in the same distribution of  income as would be imposed by an 
omnipotent Benthamite government maximizing a utilitarian social welfare 
function. In the opposite special case of  identical consumption preferences, 
but with observed differences in party preferences between groups, both 
parties will instead in equilibrium favour groups with weak party prefer- 
ences, i.e. 'marginal voters'. If  moreover gross incomes do not vary within 
groups, and low-income groups are biased in favour of one party while high- 
income groups are biased in favour of  the other, then both parties will 
favour middle-income earners, and indeed to such an extent that these 
voters will get the highest net income of all. This conclusion corresponds, 
in an extreme form, to what George Stigler has called 'Director's Law' of  
redistribution policy. 

It turns out that the conclusions are basically the same if redistributions 
entail administration costs, financed from the government budget (provided 
marginal redistribution costs do not fall with the volume of  redistribution). 
One modification of  the previous conclusions, though, is that groups for 
which marginal costs of  redistribution are high will receive relatively less 
than low-cost groups. 

It was also found that the conclusions did not change much if it is as- 
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sumed that people abstain from voting (hence 'exiting' from the electoral 
process) when the utility differential between the programs of the political 
parties is small. Both parties will still propose identical programs, though 
now the tendency to favor voters with weak partisan preferences disappears; 
thus while Hotelling's principle still holds, Director's Law is not generally 
valid. Instead, both parties tend to favour voters who are 'marginal' in the 
special sense of being indifferent vis-a-vis voting at all. 

Alternatively, if it is assumed that parties need active supporters ( 'party 
activists') for a successful election campaign, and that voters require a cer- 
tain utility difference between the parties to be willing to support a party ac- 

t ively i.e. by 'voicing' their opinions to other members of the electorate) 
Hotelling's principle of minimum differentiation ceases also to be generally 
valid. 

It was finally established that HoteUing's principle also holds in the basic 
set-up (without administrative costs, 'exit' or 'voice') when the assumption 
of maximization of expected plurality is replaced by the assumption that the 
parties maximize the probability of gaining a plurality. Moreover, in the ab- 
sence of party preference variations in the electorate, it was found that the 
first-order condition for equilibrium is identical to that of the expected- 
plurality game. As a consequence, there is no tendency in this case for par- 
ties to favor a smaller fraction of the electorate than they would do if they 
instead aimed at attracting as many voters as possible. In the case of varying 
party preferences in the electorate, some further conclusions were derived 
for large electorates, in which the sum of votes for a party is approximately 
normally distributed. It then turns out that the first-order conditions for 
equilibrium coincide with the corresponding conditions of 'expected plurali- 
ty maximization', assuming both parties are equally popular (in the sense 
of expecting equally many votes if their redistribution policies were identi- 
cal). If  instead one of the parties is more popular than the other, then, while 
Hotelling's principle still holds, in equilibrium both parties will favour those 
voters who are biased in favor of the more popular party - as compared 
with the situation when the parties' objective is to maximize the number of 
votes. In this special sense, an equilibrium policy which maximizes the prob- 
ability of obtaining a plurality favours a narrower fraction of the electorate 
than does an equilibrium policy that maximizes the expected plurality. 

The analysis in this paper, which may also be applied to certain internal 
decision processes within organizations (such as trade unions), rests on a 
number of restrictive assumptions. For instance, redistribution has here 
been visualized as a simultaneous 'one-shot' process, while in the real world 
only s o m e  redistributions are considered at a time (for instance during a 
single election campaign). Thus a model of redistribution as a recursive 

process may be preferable (cf. e.g. Kramer (1977)). In that case it would also 
be natural to consider the consequences of 'irreversibilities' in the sense that 
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the removal of  a grant  is valued different ly by the voter than  never getting 

the grant  to begin with, Moreover,  it is of ten asserted that  voters have non-  

symmetric  react ions to taxes and  transfers,  in the sense that  a reduct ion in 

taxes buys fewer (or more)  votes than  does an equal ly large increase in t rans-  

fers. Also the existence of  ' react ion thresholds '  has been asserted, implying 

that  for ins tance more  votes are gained by large transfers to a minor i ty  than  

are lost by small tax increases, of  the same total value, for a major i ty  - the 

reason being that voters do not  notice or f ind it worthwhile to react to small 

changes in taxes and  transfers  (for a discussion of these and  related issues, 

see Lindbeck,  1985). 

It would certainly be of  interest to extend the analysis to mul t i -par ty  sys- 

tems. However  the difficulties seem substant ia l  in view of the possibili ty of  

par ty  coali t ions,  and  hence also the difficulty of  specifying what  a vote for 

a (small) par ty  actual ly supports  (cf. Downs,  1957: 9 . I I .A) .  En t ry  of new 

parties, or just  the threat  of  entry,  may inval idate  the Hotel l ing principle 

(but not  necessarily so, cf. de Pa lma  et al., 1985). It is, of  course, also of  

great impor tance  to extent the analysis to political parties with a broader  in- 

terest than  just  getting votes and  related political power, as well as to con- 

sider the costs of redis tr ibut ions which arise due to dis tort ions of  the 

a l locat ion of  resources in addi t ion  to admin is t ra t ion  costs. 

These various extensions of  the present model  certainly seem worth study- 

ing, as some of  them may change the possibili ty and mean ing  of  equilibri-  

um,  as well as efficiency properties of  the political process. 

NOTES 

1. This stochastic approach is in line with the random-utility approach to discrete choice 
theory, cf. the seminal contribution in McFadden (1973) and the survey in Small and Rosen 
(1981). 

2. Kramer (1978) provides sufficient conditions for the existence of mixed strategy equilibria 
in deterministic voting games with a continuum of voters. 

3. The net party bias a i - b i plays a similar role as the 'incumbency premium' P i  in the deter- 
ministic model in Kramer (1983), a variable representing the extra credibility attached to 
a promise by a party which already is in power during the election campaign. 

4. Ties can be ignored since ui(y, b)-ui(x, a) is a random variable with density. Note also 
that, for any given distribution funct ions Fi, the preference representations v i are cardinal, 
invariant only under addition of a constant. What really matters, however, is that the 
resulting probability assignments Pi' as functions of x and y, are the same. 

5. Let e i be a random variable indicating the vote of individual i as follows: e i = 1 if his/her 
vote goes to A and = 0 if it goes to B. Then E(nA) = E(~;ei) = Y~E(ei) = ZPi and E(nB) 

= ~qi" 
6. In Hotelling's original model the two players compete in two dimensions, location and 

price, while here they compete in m - 1 dimensions (since each of them selects a vector in 
R m satisfying the budget equation). 

7. A similar conclusion, obtained under other assumptions and in a different model, is Result 
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3 in Hinich, Ledyard and Ordeshook (1972). For a general class of  probabilistic voting 

models, Coughlin (1982) shows that whenever there is an electoral equilibrium, this is Pare- 

to efficient. 

8. According to Stigler (1970), Aaron Director proposed that  'public expenditures are made 

for the primary benefit of  the middle classes, and financed with taxes that are borne in con- 

siderable part by the poor and rich' (op. cir., p. 1). 

9. Note however, that the actual outcome in most  cases gives one of the parties a majori ty 

- always when n is odd and for almost all combination of  vectors a and b if n is even and 

large. For in equilibrium the actual number  of  votes for party A is # [i(I;  a i > b i ] and for 

#{i~I; a i < bi}, cf. eq. (1). 
10. They define a convexity index which has the property that for a twice continuously 

differentiable function v on R, with v '  > 0, it takes the value sup v " / ( v ' ) 2 .  Cf. also the 

notion of  'r-convexity'  in Lindberg (1980). 

11. The term 'stochastic heterogeneity'  might be preferable to 'uncertainty ' .  For suppose that  

the electorate were represented as a cont inuum,  partitioned into discrete groups within 

which taxes and transfers were not  allowed to vary. Then  an analogue condition to C1 

would be sufficient for existence of  equilibrium even in the absence of  uncertainty. In this 

situation, C1 would be a requirement on heterogeneity within groups.  

12. After  we had finished our study, cf. Lindbeck and Weibull (1985), a manuscript  by Melvin 

J. Hinich came to our attention, in which the model of  Enelow and Hinich (1982) is gener- 

alized in certain respects. In this new paper (Hinich, 1984), preferences are still Euclidean, 

but the policy space is multidimensional and the random components  of  voters'  prefer- 

ences are identically distributed, according to a general probability density function. In this 

context, sufficient conditions are given for the existence and uniqueness of  Nash equili- 

brium; some of these conditions together play a similar role as our condition C1. 

13. The most  general result on the existence of expected-plurality voting equilibria that  we have 

found is due to Denzau and Katz (1977). The present model satisfies their conditions (A. 1), 

(A.2) and (A.3), but  (A.4) only in the special case when every density fi is symmetric. Our 

condition C1 implies their condition (A.2 ' ) .  Moreover, their result, as well as those of 

Hinich, Ledyard and Ordeshook (1972) and Wit tman (1982), require both parties'  policy 

sets to be compact ,  which they are not in the present model since X o is an open set. As a 

consequence, their equilibria may be corner solutions while ours are always interior. 

14. As a by-product,  this shows that the counter-example against existence of  equilibrium, in 

the deterministic version of  the model discussed above, does not  apply as soon as there is 

any amount  of  (symmetric) uncertainty in the parties' assessment of  individual party 

preferences. 
15. Clearly the solution x of eq. (7) maximizes the (Paretian and concave) social-welfare func- 

tion ~fi(0)vi(c0i + Xk(i) ) s.t. xEX o (recall fi(0) > 0 by assumption).  Hence [vi(e0 i + Zk(i) ) _> 

vi(w i + Xk(i) ) for all i] implies [z = x]. 
16. The probability of  voting in equilibrium is Pi + qi = F(ai - el) + 1 - F(~ i + ei)" Hence, if 

c~ i = 0 and f is symmetric, then Pi + qi = 2(1 - F(ei)), which is close to zero if e i is relative- 

ly large. Likewise, if I c~il = e i and f is symmetric, then Pi + qi = 1/2 + 1 -F(2ei) ,  which 

is close to 1/2 if ei is relatively large. 

17. Formally, a pair (x*, y*)EXA(Y) × XB(X) is a NE of the expected-plurality game with 

'voice' if E(n A - n B Ix, y*) _< E(n A -  n B I x*, y*) ___ E(n n - n13 I x*, y) for all (x, y)~XA(Y) 

× XB(x), where Xn(y ) = [X~Xo; E(s n I x, y) >_ un] and Xs(x) = [Y~Xo; E(s B I x, y) 
-> un }. Ideally, we would like to make the number  of  votes for a party a monotone  func- 

tion of the size and 'enthusiasm'  of  the group of 'p romotors ' .  However, for analytical rea- 

sons we have chosen a more primitive formalization. 

18. In his seminal contribution, Downs (1957) does not  make a clear distinction between the 

two objectives: ' . . .  each party seeks to receive more votes than any other. Thus  our 
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reasoning has led u s . . .  to the vote maximizing government . . . '  (op. cit. p. 31). However, 
this question has later been analyzed by Aranson, Hinich and Ordeshook (1974). 

19. For n even, 7r B = Pr(~e i < n/2) = 1 -7r A -  Pr(Ee i = n/2). 
20. In models such as this one, a voter has an incentive (within the model framework) to partic- 

ipate only if his vote affects the outcome of the election. In deterministic models of voting 
participation in majority elections, this is the case only if all other votes together result in 
a tie. In contrast, the present stochastic formulation always gives every voter an incentive 
to vote, since his vote will in all situations influence the probability that his preferred party 
wins. However, the influence is miniscule and we would not argue that this is the main rea- 
son why people vote; see Riker and Ordeshook (1968) for a discussion of various motives 
for voting. 

21. With n not necessarily odd, but preferably large to make the approximation reasonable. 
22. A necessary and sufficient condition for eq. (15) to have a solution is that the expression 

~t i in square brackets be positive for every i. For clearly no solution exists if these factors 
have different signs, and moreover ~/i > 0, so all must be positive. Sufficiency follows 
from the argument given in the proof of Theorem 2. A sufficient condition for all 7/i to 

O O " be positive is clearly I E(p ° -  q°)l < 4Epiq i' i.e. that the over-all party bias should not be 
'too strong' in either direction. 
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APPENDIX 

First note that  Pr(n  A + n  B = n) = 1 in all but one cases studied - the exception being 
Theorem 4. Hence,  in all other  cases E(n A - n B) = 2E(n A) - n, so maximizat ion (minimiza- 
tion) of  E(n A - n B) is equivalent to maximizat ion (minimization) of  E(nA), and E(n A - nB) is 
cont inuously  differentiable,  concave etc. whenever E(nA) is. 

L e m m a A :  Let a and b be i.i .d, r andom variables with cont inuously different iable density 
funct ion ~, and let f be the density funct ion of  a -  b. Then f is symmetric .  Moreover ,  if 

is symmetric  and 0 ' ( t )  > 0 for t <  0, then f is also unimodal .  

Proof." For  symmetry ,  note  that  f(t) = 
jO(u) 4~(u + t)du = f(t). For  unimodali ty ,  note  that  for  any t~R: 

i f 0 S f '  (t) = q~' (s + t) 4~(s)ds = 4 / ( r )  q~(r - t)dr + O' (r) O f f -  t)dr 

m O O  m O O  

° f ° $ ' ( s )  0 ( s - t ) d s  + 

- - O O  - - O 0  

f ° S O = 4)' (s) q~(s - t)ds - 

- - ~  - - O O  

= f 0 0 ' ( s ) [ 4 K s - t ) - O ( s + t ) ] d s .  

~0(s+t)  0(s)ds, so f ( - t )  = ~ 0 ( s - t )  0(s)ds = 

0 

0 '  ( - u) ~b( - u - t)du 

0 '  (u) ~(u + t)du 

(A1) 

For  any s < 0: q~(s-t)  < 0 ( s + t ) f o r  all t > 0, by unimodal i ty  and symmetry  of  0, so f ' ( t )  
< 0 f o r a l l t  > 0 a n d  > 0 f o r a l l t  < 0. 

Lemma B: I f  condi t ion  C1 holds,  then E(n A I x, y) is concave in x (on X), for any fixed 
y E X, and convex in y (on X), for  any fixed xeX.  

Proof." For  every k and i~I k : 

a2pi/(aXk )2 = vi' (wi + Xk) fi(ti ) + (vi' (¢°i + Xk)) 2 fi' (ti) (A2) 

a2pi/(aYk )2 = - vi' (wi + Yk) fi(ti ) + (vi' (¢°i + Yk )) 2 fi' (ti) (A3) 

where t i = vi(¢o i + Xk) - vi(¢0 i + yk). Moreover ,  0pi /ax k ~ 0 for  all i not  in I k and  02pi/(aXkaXh ) 
------ 0 for  all i and  h # k, Hence  E(n A I x, y), def ined on X 2, is concave in its first a rgument  
and convex in its second if, for all x, y(~X and k: 

E 
i~I k 

i~I k 

[vi' (wi + Xk) fi(ti ) + (Vi' (wi + Xk))2 fi' (ti)] -< 0 

V t! [ i (¢°i+Yk) fi(ti ) - (vi'(wi+Yk))2 fi'(ti )1 < 0. 

(A4) 

(A5) 

Condi t ion  C1 implies that  every term in (A4) and (A5) is nonposi t ive.  
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Proof of  Theorem 2: First, we prove the existence and uniqueness of  a solution (x, h)EX o x 
(0, + oo) of  eq. (5). By assumption every function v i' is a strictly decreasing homeomorphism 
of  (0, + oo) onto itself. Hence, for every XE(0, + oo) there exists a unique x(k)EX satisfying eq. 
(5). Moreover, ~(X) = 12nkXk(X) is continuous and strictly decreasing with ~(0) = + oo and 
~(+ oo) = - 12k(nkminl~oi; iEIk} ) < 0. Thus, ( has a unique zero. In sum: eq. (5) has exactly 
one solution (x*, X*) in X o x (0, + oo). As for the existence of  a NE, we proceed to show that 
(x*, x*) is a NE under condition C1. For this purpose, consider the program max E(n A I x, 
x*) s.t. xEX o. Since E(n A I x, x*) is concave in x by Lemma B, the necessary first-order condi- 
tion (3), with y = x* in the definition of t i, is also sufficient for x to be a (global) maximum. 
However, as shown above, (x*, X*) solves eq. (5), and hence also eq. (3) when y = x*, so z 
= x* indeed maximizes E(n A I z, x*) s.t. zEX o. The same argument applied to the convex pro- 
gram rain E(n A I x*, y) s.t. yEX o gives condition (4), with x = x*, as necessary and sufficient 
for y to be a (global) minimum. Clearly (x*, X*) also solves this equation, so z --- x* indeed 

minimizes E(n A I x*, z) s.t. zEX o. 

Lemma (2." If (x, y) is a NE in the expected-plurality game, then C2 holds. 

Proof." Suppose (x, y) is a NE, and let zEX o be arbitrary. Since X o is convex, z(E) = z + e(z - x) 
belongs to X o for every e in (0, 1). Let h(e, z) = E(n A I z(e), y). By Theorem 1, y = x and 
hi(0, z) = 0 for all zEX o. Moreover, h~(0, z) ___ must hold for every zEX o, since otherwise x 
would not be an optimal policy for party A, contradicting that (x, y) is a NE. This second-order 
condition is equivalent to C2 (i), and C2 (ii) is the corresponding condition for optimality of  y. 

Proof o f  Theorem 3: The first-order conditions (3) and (4) are modified to 

~v((60 i + Xk) f(ti) = 12(1 + gi'(Xk)))X (A6) 

12Vl(W i + yk) f(ti) = ~(1 + g((yk))/z (A7) 

where all summations are made over i~I k. Hence, if (x, y) is a NE, then both I2(1 + gi'(Xk))X and 
12(l+gi'(Yk))/z are positive for all k. Suppose ~(1 +gi'(Xk)) < 0 for some k. Since hk(t ) = 
~(t +gi(t)) (still summing over Ik) by assumption is continuous on R and unbounded on R+ 
(gi' >- 0 on R+),  there exists some x~ > x k such that hk(Xl~) = hk(Xk). Substituting x~ for x k, 
we obtain a new vector x '  EX o. Since each Pi' for iEIk, is strictly increasing in Xk, E(nAI x ' ,  
y) > E(n A Ix, y), contradicting that (x, y) is a NE. Hence r.(1 + gi'(Xk)) > 0 for all k, and by 
symmetry also I2(1 +g((yk) ) > 0 for all k. Let 

Pk = 
Evi'(~o i + Xk) fi(ti) Z(1 + gi'(Yk)) 

• ( A 8 )  

~v~(w i + yk) fi(ti) 12(1 + g((Xk) ) 

(still summing over iEIk). All factors being positive, and g~' >__ 0 by assumption, Pk is strictly 
decreasing in x k and strictly increasing in Yk' Suppose (x, y) is a NE and x k < Yk for some k. 
If it were the case that x ~ y, then E(n A I x, y) < E(n A I y, y) by monotonicity with respect 
to Xk, and (x, y) would not be a NE. Hence x h > Yh for some h. But then Pk > 1 > Ph' con- 
tradicting (A6) and (A7). Thus x = y, and t i = 0 for every i. 

Proof o f  Theorem 4: In this case Pi = Fi(ti - ci) and qi = 1 - Fi(t i + el)" Hence E(n A -nB)  = 
E[Fi(t i - el) + Fi(t i + ei) ] - n, so the necessary first-order conditions (3) and (4) are modified to 

vi'(c°i + Xk)[fi(ti - ei) + fi(ti + ei)] = nkX (A9) 
iEI k 
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(A10) Vi'(c0i+Yk)[fi(ti-e i) + fi(ti+ei)l = nk#. 
i~I k 

By the same argument  as in the p r o o f  of  Theorem 1, x = y and t i = 0 for  all i. 

P r o o f  o f  Theorem 6: First note  

O~'A(X , y)/aX i = -- ( 2 r ) -  1/2 (0•(p)/0Pi) exp[--  ¢/2(p)/2]0Pi/0xi (A11) 

0~rA(x ' y)/Oy i = _ (270-1/2 (0~(p)/0pi) e x p [ -  ~2(p)/2]0Pi/Oy i . (A12) 

Hence,  if  (x, y) is a NE, then there are Lagrangians  ~, and t~ such that  for all i 

- (O~b/OPi)OPi/Ox i = ~ (A13) 

(O¢,/Opi)OPi/Oy i = /z (A14) 

(Note that  exp[-~b2(p)/2]  is positive and independent  o f  i.) Different ia t ion of  eq. (14) gives 

0~/OPi = - [~Pjqj + ( P i -  qi ) ~ ( P j -  qj)/4)]/(]SPjqj )3/2 (A15) 

Thus EO~b/0pj < 0, i.e. 0~b/0pi < 0 for some i. But then 0~/0pi  < 0 for  all i at equil ibrium, 
by (A13). Consequent ly  ~, tz > 0, and (A13) and (A14) together  imply vi'(o~ i + xi)/v((w i + Yi) = 
~/~ ,  which gives x = y by the same argument  as in the p r o o f  o f  Theorem 1. Now x = y implies 

O Pi = pO and  qi = q i '  so eq. (15) follows directly f rom eqs. (A13) and (A15). 


