
Journal of Low Temperature Physics, Vol. 42, Nos. 1/2, 1981 

On Pinning of Superconducting Flux Lines by 
Grain Boundaries* 

Giinter Zerweckt 

Max-Planck-Institut fi~r MetaUforschung, Institut fiir Physik, Stuttgart, West Germany 

(Received August 13, 1979; revised May 8, 1980) 

A simple model is developed which describes the reduction of the mean free 
path of conduction electrons in metals near a grain boundary. This leads to a 
decrease of the self-energy of flux lines in a layer which is considerably thicker 
than the perturbed zone of the boundary itself. The model yields pinning forces 
which agree, within an order of magnitude, with recent measurements on 
niobium bicrystals, and with observed values of grain boundary pinning in 
Nb3Sn. 

1. INTRODUCTION 

The critical current in polycrystalline, type tI superconductors has 
frequently been found proportional to the inverse of the mean grain size.l-ll 
This is generally interpreted as arising from flux line pinning by grain 
boundaries. Because of the complicated metallurgical states of the speci- 
mens, however, it is usually difficult to distinguish between the acting 
elementary pinning forces. 

Recently Das Gupta et al.12 published measurements of critical currents 
in niobium bicrystals which, because of the simple geometry, allow a clear 
separation of grain boundary pinning from surface and bulk pinning. They 
find elementary pinning forces per unit length of a flux line of about 
7 • 10 -6 N/m and a symmetric pinning potential on both sides of a plane 
grain boundary. 

None of the various proposed theoretical explanatiQns of grain bound- 
ary pinning has achieved general acceptance. Essentially two models have 
been discussed. The first mechanism, as proposed by Nembach 11 and further 
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elaborated by Pande and Suenaga,13 is based on the stresses emerging from 
the grain boundary. The second idea, put forward by Campbell and Evetts,14 
takes into account the anisotropy of the self-energy of flux lines. Since the 
induction in adjacent grains has different crystallographic orientations, this 
leads to a net pinning force in polycrystals. 

Das Gupta et aL,12 however, present a number of convincing arguments 
against both of these theories. On the one hand, a dislocation wall which 
forms a symmetric tilt boundary does not give rise to any long-range stress 
fields which could yield observable pinning forces. The anisotropy model, on 
the other hand, explains neither the value of the observed pinning force nor 
the symmetry of the pinning potential. Considering the drastic reduction of 
the He2 anisotropy with increasing impurity content, is it is even more 
difficult to understand how anisotropy effects could be responsible for grain 
boundary pinning in compound superconductors. 

The present paper shows that the reduction of the electron mean free 
path due to a grain boundary is effective not only within the perturbed zone 
of the boundary itself, but in a much thicker layer. The associated variation 
of superconducting parameters leads to a considerable pinning interaction 
between grain boundaries and vortices. This idea was first mentioned, 
although not elaborated quantitatively, by Van Gurp. 2 Our model gives the 
correct order of magnitude of the pinning force and describes its dependence 
on induction, temperature, and impurity concentration. 

2. M E A N  F R E E  P A T H  N E A R  A G R A I N  B O U N D A R Y  

The model does not make any specific assumptions about the micro- 
scopic structure of a grain boundary. The only property used is the fact that 
at a grain boundary the periodicity of the lattice is disturbed drastically so 
that conduction electrons cannot pass it without being scattered. We only 
consider the simplest case of diffuse isotropic scattering. 

For the quantitative treatment, a plane grain boundary in the y-z  plane 
is considered. In order to estimate the mean free electron path at a distance x 
from the grain boundary we consider an electron passing through a certain 
point A at that distance. An effective mean free path is defined as the mean 
distance l which this electron will travel before suffering its next collision 
(which is the same as the mean distance which it has traveled since its 
preceding collision). 

Let us first calculate the mean free path lo along one arbitrary straight 
line which passes through A and crosses the grain boundary forming an 
angle zr/2 - 0 with its plane. Calling Ib the mean free path in the bulk, the 
probability for the electron to travel a distance r without being scattered is 
exp (-r/lb) if the grain boundary is not within the distance r; otherwise this 
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probability is zero. Using the abbreviation 

s = x/cos 0 for 0 < ~'/2 (1) 

where s is the distance between A and the grain boundary along the line 
considered, the distribution function takes the form 

r 

P ( r ) = | P 2 ( r ) = l - P l ( s )  for r = s  (2) 
/ 

I. P 3 ( r ) - 0  for s < r < o o  

Thus the mean free path lo becomes 

io o lo = (1/lb) r exp (--r/Ib) dr+s[1 -P l ( s ) ]  (3) 

which after a straightforward calculation yields 

lo = /b[1 - exp (-s/Ib)] (4) 

Half of the electrons will travel into directions with this reduced mean 
free path (those with 0 <~r/2); the mean free path along the directions 
0 > ~-/2 remains unchanged, equal to lb. Averaging over the solid angle 4~r 

t" r r 7r 

l = � 8 9  losinOdO+�89 sinOdO (5) 
J0 ~r/2 
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Fig. 1. Variation of the local mean  free path I with the distance x f rom the 
grain boundary  both normalized to the bulk mean  free path lb. 
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the effective mean free path l of all outgoing electrons becomes finally 

l = lb --~/b exp (--X/lb)--~X Ei ( -x / la )  (6) 

Ei(u) is the exponential integral. 16 
Figure 1 shows I/lb as a function of X/lb. Since Ei(u) diverges logarith- 

mically for u --> 0, the last term in Eq. (6) vanishes for x --> 0. Thus the mean 
free path at the boundary becomes half of its bulk value, 

l-->�89 1 - ~ x  In (X/lb) for x << Ib (7) 

For  large negative arguments (u<<- l ) ,  on the other hand, the 
exponential integral can be approximated by exp ( u ) / ( - u ) .  For large dis- 
tances x, the mean free path l thus approaches lb asymptotically as 

l-->Ib[1--exp(--x/lb)] for x>>lt, (8) 

3. COHERENCE LENGTH, FLUX LINE ENERGY, A N D  
PINNING 

In order to estimate the self-energy of flux lines in a region with varying 
mean free path Goodman's  interpolation formula 17 may be used, which 
relates the Ginzburg-Landau coherence length ~ with the mean free path l, 

= ~o/(1 + 1.44~o/l) 1/2 (9) 

Provided that this relation remains locally valid even for varying mean free 
path, a combination of (6) and (9) yields a spatially varying coherence length 

~ . ~  ~ ' 
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Fig. 2. Variation of the coherence length s e relative to its bulk value ~b 
with the distance x from the grain boundary, for different impurity 
parameters a. 
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~, which is shown in Fig. 2 for different impurity parameters a = 0.882 ~o/lb. 
The reduction of ~ relative to its bulk value ~b, is weak for metals of high 
purity and strong for impure materials. In rather pure niobium, e.g., with a 
residual resistivity ratio F =  1500 (a = 10-2), the reduction of ~: at the 
boundary is only 0.8% as compared to its bulk value, whereas it amounts to 
almost 30% in very impure niobium (F = 2, a = 10). 

For low and medium purities, the main part of the variation takes place 
for x ~< ~:b. Therefore the self-energy of a flux line at a grain boundary is 
mainly affected through its core. The core energy, defined as the product of 
the "core cross section" S (= ~ 2  in the bulk) and the condensation energy 
density, izoHZ~/2, is accordingly reduced at a parallel grain boundary. 

For a flux line parallel to the z direction, it can be estimated that its 
"radius" in the x direction remains almost unchanged relative to its bulk 
value ~b, whereas in the y direction it is equal to the local value of ~(x). 
Therefore an elliptical cross section should be a reasonable approximation 
to the real flux line core, with an area S = ~b~(X). Still using strictly local 
relations, the core energy sc relative to its bulk value Scb would become 

ec/er = f(X)/fb (10) 

Thus the curves of Fig. 2 could be interpreted directly as sections through the 
valleys of the pinning potential along a parallel grain boundary. At  this 
point, however, it is necessary to discuss the validity and the limitations of 
this local model. Undoubtedly, a strictly local value of the coherence length 
(and of the mean free path) cannot be used if it varies spatially over short 
distances. This is best illustrated by the infinite slope of the curves of Fig. 2 
for x -+ 0, which is due to the logarithmic term in Eq. (7). Thus something like 
an average over the core of a flux line should be used instead. 

For a first estimation of the elementary pinning force fpL of a flux line in 
z direction, the difference in its self-energy between the two positions at 
x = 0 and at x = ~b, divided by ~:b, is caluclated. This corresponds to a partial 
substitution of the curved potentials in Fig. 2 by straight lines (the dashed 
line in Fig. 2 illustrates this for a = 1). In dimensionless form, the elementary 
pinning force )~pL thus becomes 

zr~:otLoH~ =~o ~x (11) 

Figure 3 showg this pinning force as a function of the logarithm of the 
impurity parameter a. The most interesting feature of this curve is the 
maximum of fpL at a ~ 1.4. In very pure metals, d~/dx is very small, and the 
pinning force of grain boundaries also becomes small. With increasing 
impurity, fpL initially increases together with the mean slope. In very impure 
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Fig. 3. Reducedelementarypinningforce~L=2fpU1r~otzoH~ 
as a function of the logarithm of the impurity parameter a. 

materials, on the other hand, the coherence length in the bulk ~b is already so 
small that its further reduction due to the boundary has little effect. 

4. D I S C U S S I O N  

Das Gupta et al. 12 observed in niobium a typical elementary pinning 
force of 7 • 10 -6 N/m.  The two specimens studied had residual resistivity 
ratios of 97 and 76, respectively, which correspond to values of impurity 
parameter  ot of 0.15 and 0.2. As expected from the model, the critical 
current of the purer specimen was lower than the critical current of the more 
impure one. For these values of a, the present model predicts pinning forces 
of 5.3 x 10 -5 and 6.9 x 10 -s N / m  [with ~o = 430 ~ ,  Hc = 1.27 x 105 A / m  = 
1.6 kOe (ref. 18)]. 

In Nb3Sn, with ~ 0 - - 5 0 A  and H c = 6 . 4 x 1 0 5 A / m  (8kOe),  the 
calculated pinning forces range from 1 •  -4 to 4 . 4 •  for 
a > 0.1. The observed values are between 6 x 10 -5 and 1 • 10 -4 N / m  (a not 
given). 8-1~ 

The fact that the observed pinning forces are smaller than those 
calculated by the present model up to a factor of 10 can be caused by 
different reasons. First, the model may still suffer from an overstress of 
locality, despite the averaging procedure described in Section 3. Averaging 
not only over the slopes but, in any reasonable way, already over the 
absolute values of I or ~:, would reduce considerably the calculated values of 
the elementary pinning forces, without affecting the general properties of 
the curve of Fig. 3. Second, the present model provides a sort of upper limit 
for the pinning forces in that it assumes that all electrons are scattered at the 
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grain boundary into random directions. If this scattering probability was 
less than 1, the pinning effect would be smaller, in the direction of the 
experimental data. On the other hand, Das Gupta et al. 12 had to assume 
ideal conditions (a single dense row of straight, parallel flux lines interacting 
with an exactly plane and parallel boundary) in deducing the numerical 
value of the pinning force from their critical current measurements. 

The calculations of Section 3 were made for single flux lines. Thus the 
results should be correct for low and medium magnetic fields. They have to 
be modified, however, for higher flux densities when the flux line cores begin 
to overlap. In a first approximation, this can be done by inclusion of a factor 

2> into the expression for the core energy. This modifies the pinning 
force by the same factor. 

As shown by Abrikosov, 19 the factor < l j,/ decreases linearly to 
zero when the mean flux density approaches Be2. Thus it is expected that the 
elementary pinning force is independent of the applied field for low and 
medium fields, and decreases linearly to zero near the upper critical field. 

Combining the results of Das Gupta et  al. (Fig. 5 of Ref. 12) with the 
magnetization data of Finnemore et  al., ~8 we obtain the points of Fig. 4. The 
elementary pinning force indeed is approximately constant for inductions 
/z0H --- 0.2 T, and decreases for higher fields. Unfortunately no data exist for 
fields very close to He2, because of perturbations by the peak effect. ~2 

The temperature dependence may be estimated by the following 
considerations: From (11), the pinning force depends on the temperature- 
dependent quantities Ho ~:b, and ( d ~ / d x )  = ( d ~ / d l ) ( d l / d x ) .  It follows from 
(9) that 

2 for ~0<< lb pure limit (12) 
[ [ ~:~b ? for ~ >> [b dirty limit 

d~/  dl  OC 
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Fig. 4. Observed field dependence of the elementary pinning force in 
niobium of medium purity (calculated from Refs. 12 and 18). 
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On the other hand, the upper  critical field He2 is proport ional  to ~b2. 2~ Thus 
it is expected that the scaling law will be of the form 

fpL = H ~  ( T ) H T ~  ( T ) Z ( B /  Bc2) (13) 

with n between 1.5 (pure limit) and 1.0 (dirty limit). 

5. C O N C L U S I O N  

Despite  the simple assumption applied in the development  of the 
model,  the comparison with experimental  results shows agreement  not only 
in the order of magnitude of the e lementary pinning force between a flux line 
and a parallel grain boundary  but also in its field and impurity dependence.  
This is an encouraging result for further experimental  tests of the model,  
preferably in bicrystals. Measurements  of the impurity dependence of the 
pinning force seem to be especially interesting. 

At  the same time one should try to justify the model  itself by a 
microscopic theory of the space-dependent  mean free electron path near a 
grain boundary,  as well as by an improved calculation of the self-energy of 
flux lines in such a region. 

It  is expected that the described mechanism also contributes, at least 
partially, to the surface barrier  for flux lines, since the mean free electron 

2 path near  the surface should be reduced in a similar way. 
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