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1. Introduction 

In a sequence of papers culminating in [9, 10], J. Lepowsky and R. L. Wilson 
have given a Lie theoretical interpretation and proof of the Rogers-Ramanujan 
identities. The product sides of the identities were obtained from a 'principal' 
specialization of the Weyl-Kac character formula for the level 3 integrable high- 

est weight modules of the Lie algebra Al l) . The sum sides were obtained by 
constructing an explicit basis of the modules parametrized by partitions. 

In this paper, we summarize recent work [11] leading to an explicit basis for 

each integrable highest weight module over the Lie algebra AI 1). In contrast to 
[9, 10], this basis is associated to the so-called 'homogeneous'  gradation of the 
modules. Combining our results with the Weyl-Kac character formula, we obtain 
a series of apparently new combinatorial identities. 

After introducing some notation we formulate in Section 2 the end result 
(Theorem 2) by giving the conditions required on the 'colored' partitions that 
parametrize the basis. Vertex operator algebras (VOA) enter into the proof of 
Theorem 2 and in Section 3 we give a definition of VOA and describe some of 
their properties. We also announce Theorem 4 giving a way to construct VOA's 
by a kind of generators and relations. Section 4 then outlines part of the proof 
of Theorem 2. The details will appear elsewhere. 
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2. Bases of Integrable Highest Weight Modules 

Let g be a finite-dimensional simple complex Lie algebra. In the associated affine 
Lie algebra 

-- g ® c[~, t -1] • c e  ~ Cd 

we introduce the notation x(n) -- x @ t ~ for x E g, n E Z, and identify g as the 
subalgebra g ® C ° of ~. Set b = ~0 ~ Cc ® Cd, with b ° a Caftan subalgebra of g. 
Let Ao E b* denote the linear form satisfying 

Ao(b °) = 0, Ao(d) = 0, Ao(e) = 1. 

Then Ao is a fundamental weight. For arbitrary A E b*, let M(A) be the Verma 
module with highest weight A, and let L(A) be the unique irreducible quotient 
of M(A). We shall also need the Heisenberg algebra 

6 = G ~ ° ® ~ n e c c ,  
n#O 

and its Abelian subalgebra 

n<0 

There is then an irreducible (Fock) representation of 0 on S((C) with c acting 
as the identity operator. Let Q be the root lattice of g with respect to ~o. 

THEOREM 1 ([5]). If ~ is of type ADE then the fundamental ~-module L(Ao) 
can be realized as 

L(Ao) = S(~-)®C[Q]. 

The operators xa(n) (xa root vectors of (g, O°)) are then determined from the 
generating function X(a ,  z) = ~nEzxa(n)z  -~-1 through the vertex operator 
formula 

x ( ~ , z )  : E - ( ~ , z ) E  + (~,z)  ® ~ z  ~(°), 

( E ±(~,z )  = e~V - ~ -~ ) ,  
nEZ 

4-n>O 

where ea up to a +l-valued cocycIe is muhiplication by a group element in the 
group algebra C[Q]. 
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Let ~ = g(2,  C) and consider the case g = ~ of Theorem 1. The special case 
eAe B = eBeAe [A,B] of the Baker-Campbell-Hausdorff formula in a Heisenberg 
group gives 

X ( o ~ , Z l ) Z ( o ~ , z 2 )  

-- (Zl z2)2E-(o~,z l )E-(a ,  z2)E+(o~,zl)E+(a, z2) ~ ' 2  a(o) a(o) 
- -  - -  v._v ~ o / "  1 ~ 2  

on L(A0). This shows that it is well-defined to take Z 1 = Z 2 in X ( a ,  z l ) X ( a ,  z2) 
and implies that X ( a , z )  2 = 0 on L(A0). A similar argument shows that 

X ( a ,  z) 2 = 0 on L(A1), A1 the other fundamental weight of Al l). Let A = 
]~0A0 -J- ~ l A l ,  ]~0, kl C N be a dominant integral weight of ~, and set k = k0 + kl. 
One can then realize 

L(A) C L(A0) ®k° ® L(A1) ®k~ 

as the submodule generated by the tensor product of highest weight vectors. Then 

X(oe, z) ~+1 = 0 on L(A) (1) 

follows from 

J~ +"'+Jk =k+ 1 

since by the Dirichlet box principle some jr  ~ 2 in each term. 
Let { x , h , y }  be the usual basis o f ~ =  s[(2, C), set 

B = { x ( n ) , h ( n ) , y ( n ) l n  • Z}, 

B_ = { x ( n ) , h ( n ) , y ( n ) [ n  < 0} t2 {y(0)}, 

5O(B_) = {rr: B_  -+ N lrr has finite support}. 

Order B_  so that x(n - 1) < y(n) < h(n) < x(n) and let for lr • ~ ( B _ ) ,  
u(rc) = 1-[b~-~_ U(b) (ordered product) be an element in the enveloping algebra 

U(~). Our main result then states: 

THEOREM 2. For dominant integral A • 0", the }-module L(A) has a basis 
consisting of the v e c t o r s  u(Tr)VA (VA a highest weight vector), where 7r • 79(-B_ ) 
satisfies 

 (y(j - 1)) +  (h(j - 1)) + < k, 

7r(h(j - 1)) + 7r(x(j - 1)) + lr(y(j)) <~ k, 

7r(x(j - 1)) + ~r(y(j)) + ~r(h(j)) <~ k, 

7r(x(j - 1)) + ~r(h(j)) + ~r(x(j)) <~ k, 

< ko, < k,. 
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Note that since x(j  - 1)ax(j) k+l-a is a coefficient in X(c~, Z) k+l, (1) implies 
part of the 4th constraint on rr. 

3. Vertex Operator Algebras 

The proof of Theorem 2 uses calculations in an associated vertex operator alge- 
bra. Vertex operator algebras (VOA), also known in the physics literature under 
names such as chiral algebras and meromorphic conformal field theories, were 
introduced in mathematics in [1, 4, 6] in connection with the 'moonshine' mod- 
ule for the monster sporadic group. A vertex operator algebra is a quadruple 
(17, Y, 1, co) where 

V :  0 Vn, d i m V n < o O ,  
n ) - N  

is a graded complex vector space, l, co E V are distinguished vectors and 

Y: V ~ (EndcV)[[z,z-l]] 

V , ) Y ( v , z )  m_ ~ Vnz-n-1 
nEz 

is a linear map. The formal series Y(v, z) are called vertex operators. Let V t = 
(~)n~>-N Vn be the graded dual to V. The main axiom of a VOA, then states that 
to any u, v, w E V, w I E W there is a rational function 

__ z2)n , g ( Z l , Z 2 )  e C [Zl,Z2],  

such that as analytic functions of (zl, z2), 

(w',Z(u, zl)Y(v,  z2)w) = f(zl ,z2) when Iztl > 1~21, 

(w',Y(v,  z2)Y(u,z,)w) = f(z, ,z2) when Iz21 > Iz~l, 

(w' ,Y(Y(u ,  z l -  z2)v, z2)w)= f(zl,z2) when [ Z l -  z2l < Iz21. (2) 

Other axioms demand 

v_l l  = v, v n l = O  f o r n ) O ,  v E V, 

Y(co, z) = ~_, Ln Z-n-2,  
nEZ 

where the operators L~ generate a Virasoro algebra 

m 3 -- m 
[Lm, Ln] = (m - n)Lm+n + ~m+n,O 12 - - c I ,  c =  rank(V) E C. 
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Furthermore 

[L-I, Y(v ,  z)] = d y ( v ,  z) = Z(L_iv ,  z), (3) 

Lo[v~ = n idvn. 

Some consequences of the axioms are the formulas 

[um, v~] = ~ i uiv)m+n-i,  (4) 
i=0  

~,n(vp) c vp+~_,~_~ for v e Vm, 

z/= (/djdz/n'/  ,/, Y/u 

( ' ) +Y(v,z) ~ :  F)i Y ( u ' z ) +  ' n ~ 1, (5) 

for u, v E V, where we set 

Y(u , z )  + = ~ u~z -~- l ,  Y ( u , z ) -  = Y(u , z )  - Y(u , z )  +. 
n>~O 

In the affine Lie algebra ~, let 

~>o = ~ ® c[t] ® Cc • Cd 

be a parabolic subalgebra. For k E C consider the generalized Verma module 

N(kA0) = U(~) ®u(~>o) CVkAo. 

Let h v be the dual Coxeter number of g. 

THEOREM 3 ([7]). For k ~ - h  v there is a unique structure of YOA on N(kA0) 
such that 1 : V k A  o and 

Y ( x ( - 1 ) l , z )  = ~ X(n)Z - n - l  
nCZ 

for x E o. 

The VOA of Theorem 3 is related to the Wess-Novikov-Zumino-Witten 
model in the physics literature. In [11], Theorem 3 is derived as a corollary of a 
'generators and relations' type construction of vertex operator algebras that we 
proceed to describe. 
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Let V be a complex vector space, and assume given operators Lo, L_~ on V 
such that [Lo, L_l] = L_1. Set 

Vn = {v E V I roy = nv}, 

and assume that 

v=®v  
n>>- N 

Let 1 E V0. For the following theorem cf. [3, 8, 12]. 

THEOREM 4. With V, Lo, L_ 1,1 as above, let U be a subspace of V and assume 
there is a linear map 

Y: U ) (Zndc V)[[z,z-~]] 
> = Z: ,s n - '  

nCZ 

such that 

[L_,,Y(u,z)] = ~---~Z(u,z), (6) 

u _ l l = u ,  unl-~O f o r u E U ,  n>lO, (7) 

]:or all ul, u2 E U there is N = N(ul,  u2) E N such that 

(Zl - -  z 2 ) N [ y ( U l ,  Z l ) ,  Y(Tz2, z2)]  = 0,  (8 )  

V=C-span{u(~l)".u~)k l l k e N,u (i) E U, ni e Z}. (9) 

Then Y has a unique extension to V making V into a VOA (except that we only 
get the operators Lo, L_ 1 out  o f  the Virasoro algebra). 

Theorem 3 follows by taking V = N(kA0), U = ~( -1)1  ~ ~. 
There is a natural notion of module over a VOA V. A V-module W is a 

graded complex vector space 

W =  ~ Wn,. q E C ,  d i m W n < o o ,  
nEq+N 

together with a linear map 

YW: V ) (EndcW)[[z,z-l]] 

v , Y w ( v ,  z )  = 
nEZ 

satisfying the same properties as the vertex operators on V except that we do not 
require the existence of a distinguished 'vacuum vector' 1 in W. The operators 
Yw 'represent' the structure V through the appearance of Yv in the analogue of 
(2) 

(w' ,Yw(Yv(u,  zl - z2)v, z2) q.13) : f(zl ,z2),  for IZl - -  z21 < Iz2[. 
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THEOREM 5 (cf. [7]). Let W be a highest weight ~-module of highest weight 
A and level k = A(c). If k ~ - h  v then W has a structure of VOA-module over 
N(kAo) such that 

Y w ( x ( - 1 ) l , z )  = ~ X(?~)Z - n - l  
nCZ 

for x E ~. 

The proof of Theorem 5 is based on a construction of 'intertwining' operators 
Y: W --+ Hom(V, W)[[z,z-1]] that are 'local' with respect to the operators 
Y ( x ( - 1 ) l , z ) ,  x e ~. 

4. Relations on Integrable Modules 

We shall now describe how the VOA-stmcture enters into the proof of Theorem 
2. Let from now on 9 = ~ = 5[(2, C) with the standard basis (x, h, y}. Let 
N 1 (kAo) be the kernel of the quotient map N(kAo) ~ L(kA0) so that we have 
an exact sequence 

0 > N l (kAo) > N(kAo) > L(kAo) )0.  

Take k E Z, k >/ 1. As is well known, N l (kAo) is then generated by the vector 

rk+l ---- x( - -1)k+l l  ~k+l N l = ]o VkA,, E (kA0). 

By (5) the vertex operator associated to rk+l is 

= "  

since all operators x(n),  n G Z commute. As X(c~, z) k+l vanishes on L(A) for 
A = k0A0 + klAl, k0, kl G N (1), it follows from (5) that Y(r, z) vanishes on 
L(A) for each r E Nl(kA0), in particular for each r E R where R = U(e)rk+l 
is a 2k + 3-dimensional irreducible ~-submodule. As R is the subspace of highest 
degree in N 1 (kA0), (4) implies that 

= (a"  )m+n 

f o r a E t ~ , r E R ,  m, n E Z s o t h a t  

R:(rn  ] r e R ,  n e Z } ~ _ R ® C [ t , t  -1] 

is an irreducible loop module for ~. The fact that R .  L(A) = 0 can be alter- 
natively seen as a consequence of a theorem of Chaff and Pressley [2]: if R is 
an irreducible loop module and L(A) an integrable highest weight module, then 
R ® L(A) is (except for a small number of exceptions) irreducible. Since clearly 
R ® L(A) ;~ L(A) this forces R-  L(A) = 0. 
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Let M l (A) be the maximal submodule of the Verma module M(A). It is 
easy to show that the set {u(rr)rnVa I u(rr) E U(~), r E R,  n E Z} C M(A) 
spans M 1 (A). To prove Theorem 2 we must reduce this spanning set to a basis. 
This requires nontrivial relations among the operators rn, r C R, n E Z, acting 
on M(A). These are produced by expressing suitable vectors in N(kA0) in two 
different ways and then identifying the associated vertex operators. 

First, from 

L_lX(-1)k+21 = (k + 2)X(--2)X(--1)k+ll 

it follows from (5) and (3) that, with the notation x(z)  = ~ n e z X ( n ) z  - '~-l ,  
h(z )  = h ( n ) z  y ( z )  : 

d (  = (k + 2) " ( d x ( z ) ) r k + l ( Z )  • . (10, 

In addition, the Sugawam construction of the Virasoro algebra 

1 
Ln - 2(k + 2) ~ 2" x ( m ) y ( n -  m)  " + 

mEZ 

+ :  h ( m ) h ( n -  m ) :  + 2 :  y ( m ) x ( n -  m):  

implies that 

L_xr.i - 
1 

2{(k + 2 - i ) x ( -1 ) r~_ l  + i h ( - 1 ) r i  + 
k + 

+(k  + 2 + i ) y ( -1 ) r i+ l  } 

for a suitable basis {ri I - k  - 1 <<. i <<. k + 1} of R. Formulas (5) and (3) give 

dY( i, z) 

- k + 2  ( k + 2 - i ) ' x ( z ) Y ( r i - l , z ) ' +  (11) 

+i " h ( z )Y ( r i ,  z) " +(k  + 2 + i ) '  y ( z ) Y ( r i + l , z )  :}. 

Extracting the coefficients of z n in (10) and (1 l) gives enough relations among 
the operators rn, r E R, n E Z to prove Theorem 2. The proof of Theorem 2 
can now be completed by combinatorial arguments involving a total order on a 
Poincare-Birkhoff-Witt type basis of M(A). 
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