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A B S T R A C T  
Stress intensity calculations are presented for cases of combined tensile and shear loading for a linear elastic 
material. Using functions of a complex variable, a theory is developed to determine the direction of maximum 
energy release rate. A finite element method using virtual crack extensions is also used to determine the energy 
release rate for crack extensions in various directions and in particular that which gives the maximum energy release 
rate. 

Except when shear is more significant than tension, these results give good agreement with available experimental 
evidence. When shear is most significant, plasticity effects are probably becoming important, thereby invalidating 
the results of any linear theory. However, the results may still be used to determine K I and Kit numerically from 
virtual crack extension calculations of J~ and Jz for general two-dimensional geometries. 

I. Introduction 

The main aim of fracture investigations is to be able to predict the size of crack which will 
propagate under a given loading in a given material, from measurements of the size of crack 
which propagates under another loading in the same material, temperature and environ- 
ment. The relationships between these sizes is dependent on the conditions near the tip of the 
crack, where non-elastic effects are significant. However, provided that such a region is small 
compared with the crack dimensions, a linear elastic stress field may be assumed around the 
crack tip. In these circumstances, the onset of fracture is controlled by the magnitude of the 
stress intensity factors K~, K n and K m (relating to tensile, in-plane shear, and out-of-plane 
shear respectively). These are the coefficients of r -  ~ in the singular part of the expansion of 
the stresses ahead of the crack as a function of r, the distance from the tip. 

For arbitrary cracked geometries, it is necessary to calculate the stress intensity factors for 
the geometries of interest, to obtain a relationship between the critical values of K~, Kil  and 
KIH, and to determine the direction of crack propagation. Such calculations may be carried 
out by finite element methods as shown in the paper, use being made of virtual crack extension 
methods. The relationship and direction of propagation has to be determined experimentally 
for each material of interest at each relevant temperature. However, a number of such rela- 
tionships have been proposed on the basis of simplified assumptions, and in particular the 
virtual crack extension method described determines the change in energy for small tip 
displacements by a fixed amount in varied directions around the tip. A natural alternative to 
these previous simplified assumptions is the possibility that the crack begins to propagate 
at a critical value of this quantity and does so in that direction corresponding to the maxi- 
mum energy change. However, even when this assumption is inappropriate for the material 
of interest, the results of the present investigations may be used to relate the stress intensity 
factors to the energy release rates when angles of propagation are known from experiments. 

Stress intensity factors at the tips of two-dimensional cracks under asymmetric loading 
may be determined from the results of a finite element stress analysis either by a comparison 
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of the value of displacements near the crack tip with those of the known analytic solutions 
for a crack under uniform tension or by calculating the strain energy for a number of sizes of 
crack in order to determine its rate of increase as a function of crack size. Pian and Pin 
Tong [1] have recently proved that the rate of convergence as the element size decreases 
is greater for the strain energy release rate method. Rice [-2] showed that the energy release 
rate for a two-dimensional crack extending in its plane in a homogeneous material was 
equal to a path independent integral J formulated by Eshelby [-3] and applied to crack 
problems by Cherepanov [4]. Knowles and Sternberg [-5] subsequently generalised J to be 
a vector Jk corresponding to the energy release rate for movement in any direction of the 
crack edge. In the two-dimensional case one component is zero and it is still a path indepen- 
dent integral for contours around the tip provided the contour begins and ends at the tip in 
directions tangential to the faces. Budiansky and Rice [6] have shown how the formula may 
be simplified for a homogeneous isotropic material by use of the theory of functions of a 
complex variable. 

The aims of this paper are to relate J to the stress intensity factors K, and K n for a two- 
dimensional crack in such a material, and to consider its relevance to theories of the angle 
at which a crack begins to propagate. Also a finite element analysis using virtual crack ex- 
tension techniques is discussed and compared with the theoretical developments. 

2. Theory of J~ and J2 integrals 

For  a two-dimensional crack 

Jk = .£', |'Vnk-- Ti~ui/Oxk} ds (1) 

where W is the energy, u i the displacement components and T~ the components of traction. 
The contour touches each surface of the crack at the tip and contains no other singularity. 
For  in-plane loading J = J 1 -  iJz may be written as 

m 

J--,{  zaS} (2) 

where z = x + i y ,  D = u + i v  and T =  Tx+iTy and a bar denotes the complex conjugate. 
It is well known (see e.g. Green and Zerna [7]) that the stress components may be written 

as the second derivatives of the Airy stress function 4) which satisfies the biharmonic equa- 
tion and hence may be written as 

q5 = z~ (2) + 2f2 ( z ) -  I z dr2 (z) - I ~ d~  (2) + I)~ (z)dz + I )~ (2) dz (3) 

where (2(z) and Z(z) are functions of z and 

I Tds  = - 2i(~?q5/02) 

Thus J simplifies to 

J = ~  i W d ~ - 2 i  d ~ z  + c ? z d ~  . 

By differentiating Eqn. (3) twice it is found that 

ay, + i ax, = 2~' (2) + 2)((z) + 2 ( 2 -  z) f2' ' (z) 

a,y + axx = 40'  (~,) + 4Q' (z) 

(4) 

(5) 

(6) 
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and then on use of  the stress-strain relationship and integrating, the displacement D can be 
expressed as 

ED/[2 (1 + v)] = ~:~2 (z) -  ~(2) - zO' (2) + 20'  (2) (7) 

where E is Young's modulus, v Poisson's ratio and ~c is 3-4v for plane strain and (3 - v)/(1 + v) 
for plane stress. Also the strain energy density 

W=gl Affy)/E]ttTxy..~g(tYxx_(Tyy ) f  2 1 2 +~(~_a a)(t~xx+Cryy)2} 

becomes on use of Eqn. (6) 

W =  [[4 (1 + v)]/Ej[ [•' (2) + ( 2 -  z)~" (2) - #'(2)] [£2' (z) + (z - 2)Q"(z) - Z'(z)] 

+ ½ ( ~ -  1)[~2'(z)+~'(2)]2}. (8) 

On substitution from Eqns. (3), (7) and (8) in Eqn. (5) it becomes when written fully 

J = [[4i(1 + v)]/E] ~ { IX' (z) + (2 - z) Q" (z ) -  (2' (z)] [Z' (z) + (z - 2)~" (z) - ~'(Z,)] d2 + 

+ ½(K - 1) [~2'(z)+ ~'(~)] 2 d 2 -  [X'(z)+ ( 2 -  z)~2" (z ) -  ~2' (z) ] IX' (2)+ (z - 2)~" (2)-  ~ ' (~)]d2-  

- [Kf2'(z)- ~'(~)] [~2'(z) + ~ ' (2 ) ]d~-  [X'(z) + ( 2 -  z)t2"(z)- Q'(z)] [~2'(z)+ ~ '  (~,)] d z -  

- [~(2' (z) - ~ '  (2)] [;(' (z) + (2 - z)t2" (z) - Q' (z)] dz} 

which reduces to 

J = [[2i(1 + v)(I +K)] .'E] ~ 1[(2'z($)-Q'(z)]dz-Z.Q'Z(z)[Z'(Z)+(5-z)Q"(z)-Q'(z)]dz} 
=[[2i(l + v)(l +K)]/E]~i~t~T2(z)dz+Q'z(2)d2-2~2'(z))((z)dz +d[Q'2(z)(z-~)]} (9) 

In most cases of interest (for example when the x axis is taken along the line of the crack) 
the final term is zero for a complete contour so that 

J = [[4i(1 + v)(1 + K)]/E] {Re ~ 2 ' ( z ) d z -  SO'(z))((z)dz}. (10) 

If the crack tip is chosen as origin (with the crack along part of the negative x axis) this 
may be evaluated by the residue theorem for integrals around the origin since the singular 
parts of ~2'(z) and ;('(z) at the origin are known to be 

(Kl + iKn)/4(Z~z) ~ and (Ki-iKn)/4(Znz) ~ respectively (11) 

where Kl and K n are the stress intensity factors. Hence J may be determined on substitution 
from Eqn. (11) in Eqn. (10) as 

j _ (1 + v)(l +~c) (KE+K2+2iK, KI,). (12) 
4E 

Thus the values of energy release rate for crack extensions parallel and perpendicular to 
the crack are 

J l  "~ (l+v)(l+K)(K2+K2) and J2-- (I+v)(I+K!K~Kn (13) 
4E 2E 

while the maximum energy release rate is for a crack extending at an angle 

tan -1 [2K1K,/(K 2 + K2)] (14) 
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to the plane of the crack and has magnitude 

(1 + ,')(1 +K) {K~+6KIZK2+K~}~. (15) 
4E 

Of course in a real material the angle at which a crack begins to propagate is something 
which must be determined experimentally even in the homogeneous isotropic case. Neverthe- 
less it is of interest to compare Eqns. (14) and (15) with the other criteria that have been de- 
rived for a linear elastic material. Griffith [8] considered a criterion based on the limit, as the 
minimum radius tends to zero, of the maximum surface stress for an elliptical hole. For  a slit 
crack with cohesive stresses acting over the tip, this is equivalent to a limit on the magnitude 
of the traction at the tip. The maximum traction is acting normal to a direction making an 
angle with the plane of the crack of 

½ tan-  1 KI~/KI (16) 

and thus a limit on its magnitude implies a limit to 

1 1 2 . :K ,  + :  (K, + KZ) ~ (17) 

An alternative maximum stress criterion (Erdogan and Sih [9]) imposes a restriction on the 
magnitude of the coefficient of the singular part of the stress near the tip of the slit in the 
abscnce of cohesive stress. They show that this occurs at an angle 0 with the plane of the 
crack such that 

K l sin 0+KII(3 COS 0 - 1 )  = 0 (18) 

and a limit on the magnitude is a limit on 

{2K,+ 6x/(K1 z + 8K z} K~ 

fit 4"Xl/C2 ..}_ 3K~ -¼K,  x/(KI 2 + 8K2)} ~" 
(19) 

3. Virtual crack extensions using t'mite elements 

The calculation of stress intensity factor using finite element techniques has been studied 
widely. Several methods are now known for deriving K from the results, using either the local 
crack tip equations or energy methods as investigated by Iida et al. [10] and Watwo0d [11] 
respectively. Recent review papers include Rice and Tracey [ 12] and Jerram and H ellen [13]. 
The substitution methods generally give K~ and K n separately but are not particularly 
accurate or easy to use, whereas the energy methods require extra assumptions to segregate 
K~ and K n. Direction finding is tedious, requiring either many computer resubmissions or 
investigation of the local tensile stresses, which are not accurately computed. 

The use of virtual crack extensions for calculating energy release rates avoids these pro- 
blems. By considering the derivative of potential energy in only the elements containing the 
crack tip, as suggested by Rice (private communication), and using an efficient procedure 
for compiling the strain energy difference in these elements with the tip in the original 
position and a slightly different position (a virtual extension), a number of energy release 
rates can be determined in one computer submission (Hellen [14]). The computation is 
efficient in that each new extension considered enables an immediate calculation of energy 
release rate. and adds only a few percent onto the running time. Any direction or length of 
virtual extension can be considered and the results are known before the stage when the 
overall displacements and stresses are calculated. The technique has been inserted in the 
BERSAFE stress analysis (Hellen [15]) and is applicable to all two- or three-dimensional 
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structures with mechanical and thermal loads outside the crack tip elements. Consistent 
results arise from virtual extensions of different magnitudes in the same direction, although 
for extremely small or large extensions compared with the crack tip element size errors due 
to round off and mesh distortion respectively appear. 

By considering a circle of virtual extensions around the tip in mixed mode cases, the 
maximum energy release rate resulting, corresponding to J in the previous section, can be 
determined together with the associated angle. A further computer submission may be 
required to find the angle and J value more accurately. The values of J1 and J2  can  be cal- 
culated by using virtual crack extensions ahead of and perpendicular to the crack direction. 

A further gain in accuracy for a given finite element mesh is the use of special shape func- 
tions in the elements containing the crack tip. Shape functions which give displacement vary- 
ing s r ÷ and as r radially away from the tip are used, with linear and quadratic variations in 
other directions [16]. In two-dimensions (plane or axisymmetric) such elements exist in 
BERSAFE for compatability with linear or quadratic isoparametric elements, and in three- 
dimensions for quadratic isoparametric elements. These elements, when used with virtual 
crack extension techniques, give particularly accurate results, and this combination (with 
quadratic elements) has been used for the following examples. 

4. Slanting crack under uniaxial tension 

The effect of crack angle on direction of maximum energy release rate was investigated using 
an oblique crack in a plate subjected to tensile loading (Fig. 1). Erdogan and Sih [9] have 
investigated the problem theoretically and experimentally, using plexiglass, for a range of 
angles. Their theory was based on the assumption that the direction of propagation was 
normal to the maximum tensile stress, which resulted in a relationship between 0 and fl 
(Fig. 1) of the form 

sin 0+(3 cos 0 - 1 ) c o t / 3 = 0 .  (20) 

The current theory developed in Section 2 gives a value for 0 as based on the maximum 
energy release rate criterion. This is close to Eqn. (20) for values of/~ > 60 °, but as/~ approaches 
zero, the two forms diverge. 

In order to enable a range of angles to be analysed with minimal effort, a mesh based on 

t 

Figure 1. Slanting crack in tensile strip. 
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Figure 2. General mesh for slanting crack problem. 

rays of lines from the centre of the square plate was designed. The crack was assumed to 
start at the centre and, at its other end, a local refinement was made for each angle investigat- 
ed. The crack itself was effected by using the BERSAFE decoupling facility making nodes 
along the crack take double values for each side. Although the centre of the crack was slightly 
offset from the centre of the plate, the plate size was 20 times the crack length and so no in- 
accuracies were envisaged. Also, the end of the crack at the centre of the plate had no refine- 
ment  there, but again this was not expected to affect the results at the refined end of the crack. 
The overall mesh is shown in Fig. 2, with a refinement around the crack tip fo r /~=  60 ° 
shown in Fig. 3. The crack extends from nodes A to B. 

For /~ = 60 °, several variations were a t tempted to investigate the quality of the results. 
Firstly, the direction of propagat ion was varied around 360 ° (Fig. 4) and a sinusoidal varia- 
tion of G resulted. The maximum value of G corresponded to 99 °, measured round from the 
direction of loading, a result which agrees closely with alternative results (see below). 
The minimum value of G is 180 ° out of phase and is the negative of the maximum value, 
showing an energy gain rate. The crack cannot, from energy considerations, go in this direc- 
tion. G is zero at the two points in between these two angles, at 8 ° and 188 °, showing that 
propagat ion in that direction would yield no energy release rate, an impossible situation. 
Corresponding to the maximum value of 99 °, where the crack was assumed to propagate, 
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A a II • 

Figure  3. De ta i l  of c rack  ref inement  when  fl = 60 . 

several different lengths of virtual crack extension 6a were tried in evaluating G. 6a values of 
0.5, 0.05, 0.005 and 0.00005 of the tip element size produced very consistent values of G, the 
total variation being only 4 ~ .  

Values of Poisson's ratio equal to 0, 0.3 and 0.45 were tried to test the predicted effects on 
various materials, but negligible differences occurred in all results. Hence the computed 
results can be assumed to hold for plexiglass type material, where v = 0.38. 

In order to investigate the accuracy of the finite element mesh and its local tip refinement 
adopted in Figs. 2 and 3, a more refined local region was designed with twice as many ele- 
ments circumferentially and an extra layer radially about  the tip. This extra refinement was 
made on two of the angles for which the results were likely to be the least accurate, # =  20 ~ 
and the shear case. Nevertheless, results obtained were within 1 or 2~o of those from the 
standard mesh, so it was concluded that the standard mesh was adequate for this problem. 

Figure 5 shows a graph of 0 plotted against fl, 0 being the angle of propagation measured 
from the direction of the crack. Comparisons with Erdogan and Sih's theoretical and ex- 
perimental results are shown, together with Eqn. (2) herein. Experimental results for the 
same material have been obtained by Williams and Ewing [17] and show little variation 
from Ref. 9. Pook [18] has given results for an aluminium alloy and these are also included. 
Iida and Kobayashi  [10] noted that slanted cracks at angles of 30 ° and 45 ° in an aluminium 
alloy began to propagate under cyclic loading in directions almost normal to that of the 
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Figure 4. Crack slanting at 60 ° to uniaxial tensile field: Plot of G against angle with constant  extension lenglh ~ ; 
0.05 of tip element size. 
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Figure 5. Fracture angle against crack angle in a cracked plate in tension. 
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applied load and subsequently propagated in directions such that Kn/K ~ was small. 
Figure 6 shows the values of the maximum energy release rate for the different crack slopes, 

and shows a rapid decrease as the crack becomes parallel to the direction of loading. Thus, 
in order to initiate propagation, more load is required as fl decreases and so for the expe- 
rimental cases, plasticity effects start to appear. It is likely that for low angles offl, consider- 
ably plasticity is present, invalidating the linear theories. Hence, comparisons with low 
values of fl should be treated with caution. All results agree well for angles of 60 ° and above, 
the some divergence occurs, of limited amount, down to fl =40  °. After that, considerable 
divergence occurs but the plastic effects render experimental evidence somewhat doubtful. 

.6 
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Gma x complex variable method. 

Gmax f ini te element method. 

Gi complex variable method. X ~"  ~ "  ~" 
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~ "  O \ \  
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I I I ] ~1 

50  60  70 8 0  90  

02 
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Figure 6. Values of energy release rates for various angles of slanting crack. 

Where experimental results have been obtained [9, 17, 18], if the measured critical values 
of { 1 + 6KE/K 2 + K~/K4) ~ were to be scaled by the value of G for fl = 90 ° and superimposed 
on Fig. 6, they would lie above the curve for G, thus suggesting that the maximum energy 
release rate criterion is inappropriate for these materials. Figure 6 also shows the energy 
release rates for crack extension in the plane of (G1), and perpendicular to (GE), the plane of 
the crack, compared with 7 t a o  "2 s i n  E fl/E and 2 7 t a r t  2 sin 3 fl cos filE as predicted from Eqn. (13). 

A noteworthy result illustrated in Fig. 6 is that the maximum energy release rate occurs 
when fl is approximately 70 °. This may be predicted from Eqn. (15) with K]=  a(na)*sinEfl 
and K.  = a (ha) ~ cos fl sin fl where tr is the stress and a the half length of the crack. Then the 
maximum energy release rate is (naaE)/E sin fl [(1 + sin E 2fl) ~] which has its maximum when 
sin 4 fl -t- 4 sin 6 fl-4 sin s fl does. By differentiating this with respect to sin E fl this is found to 
occur when sin2fl= [3+x/17] /8 ,  or fl=70.6 °. 

As fl tends to zero, KJKu tends to zero. Therefore to avoid errors due to the differences 
in refinement at the ends when all the stresses are small, a run was carried out with the same 
mesh as for fl equal to 90 ° but with equal and opposite point loads applied tangentially 
at the centre of the crack, in order to obtain a case where K~/Kn is zero. The angle for maxi- 
mum energy release was found to be 1 ° (as compared with 0 ° predicted from Eqn. (14)). 
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5. Propagating crack in an arbitrary structure 

A further example is given of a fatigue crack propagating in a channelled specimen from a 
small spark-machined notch. Experimental results due to Jerram [-19] give a curving crack 
profile extending approximately half-way through the specimen after a large number of 
cycles. Since the angle of propagation is not large, the K i mode dominates, and it is shown 
that the maximum energy release rate criterion using virtual crack extensions gives almost 
identical results to the maximum tensile stress criterion of Erdogan and Sih [9] and the 
observed experimental results. 

The range of stress intensity factor, AK, is the primary parameter governing crack propa- 
gation. Formulae of the form 

d a / d N  = ( (  \ K )  ~ 

were suggested by Paris and Lrdogan L20J from observations on published data, a being 
the crack length and N the number of cycles. 

Theoretical approaches therefore require computation of the stress intensity factor as a 
function of crack length. 
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Figure 7. Finite element mesh and deformation plot with no crack in ~ specimen. 
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Figure 8. Mesh at longest crack position analysed. 
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Figure 9. Specimen stress intensity factor calibrations. 
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A mesh of quadratic isoparametric elements was designed, initially with no crack, and is 
shown in Fig. 7 together with a deformation plot when loaded at the centre of the holes used 
in the experiments. The mesh was designed with fairly small elements in the crack region such 
that the crack growth could be followed in increments equal to the width of these local ele- 
ments. Around each successive tip, a local refinement was made with the innermost ele- 
ments having special singularity shape functions. 

The crack was allowed to grow by using the decoupling facility available in BERSAFE. 
Six tip positions were used altogether. The a : w ratio was calculated using the horizontal 

component  of crack length to be consistent with Jerram [19]. Each successive tip had a 
local refinement as at the first tip, the sixth being shown in Fig. 8. The superimposed dotted 
line shows the crack path observed on the specimen. Jerram [19] assumed the crack path 
from the specimen and observed that the direction of maximum principal stress at each suc- 
cessive tip was always perpendicular to the path there. 

The value o fK  = (EG) ½ is shown in Fig. 9. Since K n is present, K represents (K~ + 6K 2 Kl 2 + 
K~) +. Results computed by Jerram [19] using simple triangles are included and are lower 
since they are less accurate than the present technique. Two models from Paris and Sih 
[21] are included which are expected to bound the actual specimen results. One model is a 
semi-infinite notch at the free edge of a half-plane, resembling the upper side of the specimen 
crack, and the other is an edge-notched strip resembling the lower side of the specimen crack. 
Both models have horizontal cracks but are seen to bound the new results in the entire range. 
As the crack grows, the edge strip model is approached as would be expected. The simple 
triangle results are not entirely bounded due probably to inaccuracies in using these elements. 

6. Discussion and conclusions 

It is concluded that the method of virtual crack extension is an appropriate way for cal- 
culating the energy release rate for combined tensile and shear loading in two dimensions. 
Also, its magnitude for crack extension at an arbitrary angle can be calculated accurately 
from its values for crack extension in and perpendicular to the crack plane. From the 
former of these may be determined K~ + 6K z K 2 + K~ and from the ratio of the latter to 
the former (which is tan 0 where 0 is the angle at which the crack propagates) the ratio of 
KII to  K I may be determined by use of Fig. 5. 

Calculations of the path independent integrals J 1 and J2 by use of functions of a complex 
variable agree well with the numerical calculations of energy release rate by a virtual crack 
extension method except for J2 when Kn is greater than K v 

For  a brittle material in which plasticity effects are negligible, the foregoing work may be 
construed as a theory for predicting the angle at which a crack would propagate under 
combined tensile and shear loading on the assumption that there is a critical value for the 
change in energy when the position of the end of the crack changes by a fixed amount  and 
that the crack propagates in that direction for which this change is a maximum. Thus it 
forms an alternative to the theories of Griffith and of Erdogan and Sih. The experimental 
evidence available does not confirm such a theory where signifigant differences between the 
various theories exist, i.e. when shear is more significant than tension. However for these 
cases the effects of plasticity would be more significant. According to this theory a crack in 
shear extends in its plane. Also a crack of given length under a uniaxial applied stress at 
infinity begins to extend most readily when the direction of the stress is at about 20 ° to the 
normal to its plane (fl approximately 70°). 

Whether or not one accepts such a theory however, the results of Figs. 5 and 6 may be used 
to determine K x and K u from calculations of virtual crack extension in two orthogonal 
directions (preferably parallel and perpendicular to the crack). 
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R ( S U M [ ~  
m pr6sente des calculs de l'intensit~ des contraintes dans les cas de mises en charge combin6e par traction 

et cisaillement d'un mat6riau redevable de la m~canique lin6aire et ~lastique. En utilisant des fonctions d'une 
variable complexe, on d~veloppe une th~orie pour la d6termination de la direction du taux maximum de 
relaxation de l'~nergie. Une m6thode par ~16ments finis utilisant des extensions d'une fissure virtuelle est 
6galement employee pour d6terminer le taux de relaxation de l'~nergie correspondant ~ des extensions de la 
fissure dans des directions diverses et, en particulier, dans celle qui donne un taux de relaxation maximum 
de l'~nergie. 

A l'exception du cas off le cisaillement est significativement plus important que la traction, les r~sultats sont 
en bon accord avec les observations exp~rimentales. Lorsque le cisaillement est proportionnellement le plus 
significatif, les effets de la plasticit6 deviennent probablement importants, et rendent invalides les r6sultats de 
toute th6orie elastique lin6aire. Toutefois, la methode peut etre encore utilis~e pour la d~termination num6rique 
de K~ et K n au d6part de calculs de J, et ,/2 correspondant "a une extension d'une fissure virtuelle dans des 
geom6tries bidimensionnelles. 
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