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Abstract. We consider the problem of exact identification of classes of concepts using only equivalence queries. 
We define a combinatorial property, approximate fingerprints, of classes of concepts and show that no class with 
this property can be exactly identified in polynomial time using only equivalence queries. As applications of 
this general theorem, we show that there is no polynomial time algorithm using only equivalence queries that 
exactly identifies deterministic or nondeterminlstic finite state acceptors, context free grammars, or disjunctive 
or conjunctive normal form boolean formulas. 
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1. Introduction 

Consider the problem of exactly identifying deterministic finite state acceptors (dfas) using 
various types of  queries. There is a polynomial time solution that uses both equivalence 
and membership queries (Angluin, 1987). An easy argument based on passwords  shows 
that there is no polynomial time solution using only membership queries even if we are 
given a bound on the size of the unknown dfa (Angluin, 1982b). However, it was an open 
question whether there might be a polynomial time solution using equivalence queries only. 
In this paper we answer this question in the negative. 

We use similar techniques to show that there is no polynomial time algorithm that uses 
only equivalence queries and exactly identifies nondeterministic f'mite state acceptors (nfas), 
context free grammars (cfgs), or disjunctive normal form (DNF) or conjunctive normal 
form (CNF) formulas. A similar result holds also for read-once or/z-formulas (Angluin, 
Hellerstein, & Karpinski, 1989). 

These results are not conditioned on unproven complexity theoretic assumptions, but they 
depend critically on the form of the representation of hypotheses as inputs to the equivalence 
queries. They also do not imply negative results for the polynomial time probably approx- 
imately correct identifiability or the polynomial time predictability of  these classes. 

2. Equivalence queries 

We consider a learner faced with the task of identifying an unknown concept chosen from 
some specified class C of  concepts. A particular method of representing concepts from 
C is also specified. For example, we might consider the class of regular sets over a fixed 
alphabet represented using deterministic finite state acceptors. The goal of  the learner is 
exact identification, that is, to output a representation for (exactly) the unknown concept. 
The information available to the learner about the unknown concept is the answers to 
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equivalence queries. That is, the learner may propose a representation h (in the specified 
system) of a concept in C and the reply is either yes or no and a counterexample. The 
reply yes means that h represents the unknown concept. Otherwise the answer is no and 
an arbitrary element that is classified differently by h and the unknown concept. 

For each k, there is a polynomial time learning algorithm using only equivalence queries 
that exactly identifies all the k-CNF formulas (propositional formulas in conjunctive nor- 
mal form with at most k literals per clause) (Angluin, 1988a). A polynomial time learning 
algorithm using only equivalence queries in a reasonable representation system can be 
transformed into a polynomial time probably approximately correct identification algorithm 
in the distribution-free sense of Valiant, but not necessarily vice versa (Angluin, 1988a). 
In this transformation, equivalence queries are replaced by stochastic equivalence testing, 
which either supplies a counterexample to the proposed hypothesis, or guarantees that with 
high probability the proposed hypothesis is close enough to the unknown concept to be 
accepted. 

3. The basic idea of approximate fingerprints 

We present a general technique for proving that certain kinds of hypothesis spaces cannot 
have polynomial time exact identification algorithms using only equivalence queries. The 
basic idea of the method is to exhibit a phenomenon we term approximate fingerprints in 
the class H of hypotheses being considered. That is, we exhibit some target set T of 
hypotheses such that for each hypothesis h from H, there is an example Wh such that very 

few hypotheses in T classify Wh the same way that h does. Although the behavior of h in 
classifying Wh does not uniquely identify a hypothesis in T, it narrows the possibilities to 
a superpolynomially small fraction of T. 

Approximate fmgerprints can be used by an adversary to generate uninformative counterex- 
amples to equivalence queries--if a hypothesis h is proposed by the learner, then answer- 
ing the equivalence query with no and the counterexample Wh means that the adversary 
has eliminated h and only a superpolynomially small fraction of the target set T as can- 
didates for the correct hypothesis, namely those that agree with h in its classification of 
the example Wh. This can be repeated by the adversary a superpolynomial number of times 
without exhausting the set of consistent candidates. Thus, the learner cannot be certain 
of the correct hypothesis in T after only polynomially many equivalence queries. 

This property can be viewed as a generalization of the following example considered 
by Angluin (1988a). Let the class Cn consist of 2 n concepts, each consisting of a single 
string of n bits. For each string w of n bits, the hypothesis {w} has as its approximate 
fingerprint the string w. In this case, {w} is the only hypothesis in C~ that classifies w 
as a positive example. Hence, an adversary that always gives w as the counterexample to 
the hypothesis {w} can force the learner to make 2 n - 1 equivalence queries in the worst 
case to achieve exact identification of every concept in Cn. What we show below is that 
a more general form of this simple phenomenon afflicts the richer hypothesis classes of 
dfas, nfas, cfgs, and DNF and CNF formulas. 

Note that the difficulty in this simple case is removed if the empty set is permitted as 
a hypothesis. Then the learner proposes the empty set, and is either correct, or the only 
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possible counterexample is a string w that gives away the identity of  the unknown concept. 
In this case, the hypothesis of the empty set is the majority vote of the target class of 
singletons. That is, it contains a string w if and only if the majority of  the concepts in 
the target class contain w. 

The target classes of concepts used to demonstrate the approximate fingerprint property 
below have a related structure. Each concept in the target class has a representation of 
polynomial size; the concept that consists of the majority vote of  the target concepts does 
not. Angluin (1988a) describes some other relations between the idea of  a majority vote 
concept and equivalence queries. 

4. Preliminaries 

4.1. Representations of concepts 

We are interested in representations of concepts, which we take to be specified by a quadruple 

where ~ and A are finite alphabets, R is a subset o f  A*, and/z is a map from R to subsets 
o f  ~*. ~ is the alphabet of  examples, and a concept is any subset of  ~*. R is the set of  
representations, and/z is the map that specifies which concept is represented by a given 
representation. The class of  concepts represented by R is just {/~(r) : r ~ R}. For any 
concept, c, Xc denotes the characteristic function of  c. 

For dfas the strings in R represent deterministic finite state acceptors over the input 
alphabet ~ in some straightforward way. In particular, we assume that there exists a 
polynomial p(s) such that every dfa over E with at most s states can be represented by 
a string in R of  length at most p(s). Moreover,  we assume that for every string r fi R, 
the number o f  states of  the dfa represented by r is at most [rl. 

Then for each r ~ R, #(r) denotes the set of  strings accepted by the dfa represented 
by r. The class of  concepts represented in this case is the class of  all regular sets over 
the alphabet ~. We assume a similar representation for nfas. 

For cfgs, we may assume that each grammar is in Chomsky normal form, since there 
is a polynomial time algorithm to convert an arbitrary context free grammar into Chom- 
sky normal form. The size of  a Chomsky normal form grammar is the number of  nonter- 
minals it contains. In this case, we assume that the representation is such that there is 
a polynomial p(s) such that every Chomsky normal form grammar over E of  size at most 
s can be represented by a string in R of  length at most p(s). Also, we assume that for 
every r ~ R, the Chomsky normal form grammar represented by r has size at most I rl. 

For DNF formulas we assume that E = {0, 1 }. Each r fi R will represent a DNF form- 
ula over the variables XI, X2 . . . . .  together with an integer n such that if Xi occurs in 
the formula then n -> i. The value of/~(r) is the set of  all binary strings w of  length n 
such that the formula represented by r is assigned 1 by the assignment Xi = w[i] for all 
i = 1 . . . .  , n. We assume that there exists a polynomial p(n) such that every DNF form- 
ula over Vn of  at most n terms can be represented by a string from R of  length at most 
p(n). We also assume that for every string r ~ R, the DNF formula represented by r has 
at most [rl terms. An analogous representation is assumed for CNF formulas. 
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4.2. Exact identification with equivalence queries 

Fix a representation of  concepts R = (E, A, R,/z). For the exact identification problem 
there is an unknown concept c., and information may be gathered about c. by asking 
equivalence queries. The input to an equivalence query is any r ~ R and the response is 
yes if/z(r) = c.  and no otherwise. In addition to the answer no, a counterexample is sup- 
plied, that is, a string w ~ E* such that w ~ c. Q /x(r), where A O B denotes the sym- 
metric difference of  the sets A and B. Thus, w is a string classified differently by the con- 
cepts/z(r) and c. and constitutes a counterexample to the hypothesis that r represents the 
unknown concept. The choice of a counterexample is assumed to be arbitrary. 

A deterministic algorithm A exactly identifies R using only equivalence queries if and 
only if for every c. represented by R, when A is run with an oracle for equivalence queries 
for c,, A eventually halts and outputs some r such that/~(r) = c.. Such an algorithm runs 
in polynomial time if and only if there is a polynomial p(l, m) such that for every c. 
represented by R, if l is the minimum length of any r ~ R such that/z(r) = c. then when 
A is run with an oracle for equivalence queries for c, at any point in the run the time used 
by A is bounded by p(1, m), where m is the maximum length of any counterexample returned 
by equivalence queries so far in the run, or m = 0 if no equivalence queries have been 
used. (Note: this definition corrects a loophole in the definition used in the paper (Angluin, 
1987), which permitted a degenerate solution with equivalence queries (Angluin, 1988b). 

4.3. Approximate fingerprints 

Let T denote a class of concepts, w a string from r.* b an element of  {0, 1}, and ~ > 
0 a real number. We say that the pair (w, b) is an c~-approximate fingerprint with respect 
to T provided that 

}{c ~ T :  X¢(w) = b}] < ~lzl .  

That is, the number of concepts in T that agree with the classification b of w is strictly 
less than the fraction c¢ of  the total number of concepts in T. The set {c E T : Xc(W) = 
b} may be empty, if no concept in T agrees with the classification b of w. 

A sequence of  concept classes is a sequence 

C~, C2, C3, . . .  

such that each Cn is a class of concepts. Such a sequence is bounded byf(n)  with respect 
to a given representation R if for all sufficiently large n and every c ~ Cn, there exists 
a representation r ~ R such that/~(r) = c and Irl -< f (n) .  That is, for all sufficiently large 
n, every concept in Cn has a representation in R of  length at mos t f (n) .  A representation 
of concepts R is said to have the approximate fingerprint property if and only if there exist 
positive nondecreasing polynomials p~(n) and p2(n) such that for every positive nondecreasing 
polynomial q(n) there exists a sequence of  concept classes T~, T2, T3, . . .  bounded by pl(n) 
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with respect to R such that for all sufficiently large n, Tn contains at least two concepts 
and i f r  E R and Irl < q(n) then there exists a string w E ~* of length at most p2(n) such 
that (w, X~r~(W)) is a 1/q(n)-approximate fingerprint with respect to T,. That is, 

I{c E Zn : Xc(w) = X.(r)(W)}l < IT.I/q(n). 

4.4. The basic theorem for  approximate fingerprints 

This theorem and its proof  formalize the intuitive description given above of how an adver- 
sary can use approximate fingerprints to thwart a learning algorithm that uses only 
equivalence queries. 

11qEOREM 1. Let R be a representation of concepts with the approximate fingerprint prop- 
erty. Then there is no polynomial t ime algorithm for exact identification of R using only 
equivalence queries. 

Proof Suppose to the contrary that A is an algorithm that exactly identifies R using only 
equivalence queries, and A runs in t ime bounded by the polynomial p(l, m). Without loss 
of  generality we may assume that p(/ ,  m) is positive and nondecreasing in both arguments. 

Since R has the approximate fingerprint property, we may assume that there are positive 
nondecreasing polynomials pl(n) and p2(n) satisfying the definitions above. Let q(n) = 
2p(pl(n), pz(n)). 

Then there exists a sequence of concept classes T1, T2 . . . .  bounded by p~(n) such that 
for all sufficiently large n, Tn contains at least two concepts and for any r E R with [rl 
<_ q(n) there exists a string w E ~* such that I wl < p2(n) and (w, X~r)(w)) is a 1/q(n)- 
approximate fingerprint with respect to Tn. Suppose n is sufficiently large that this holds, 
and that every concept in Tn has a representation of length at most p~(n). 

Consider the adversary that answers an equivalence query with input r E R as follows. 
I f  Ir[ -< q(n) then the reply is no and the counterexample is some string w E ~* such that 
Iwl <- pz(n) and (w, Xu~r)(W)) is a 1/q(n)-approximate fingerprint with respect to Tn. I f  
[rl > q(n), then the adversary answers yes. 

Run the algorithm A with this adversary answering each equivalence query. We claim 
that for each 1 <_ i <_ q(n)/2, at least i equivalence queries are eventually made, and after 
i equivalence queries have been answered, more than (1 - i/q(n))l Tnl concepts in Tn are 
consistent with the answers given so far, and all the counterexamples given so far are of 
length at most p2(n). We prove this by induction on i. 

Since A exactly identifies R,  it must identify each concept in T~, and since each con- 
cept in Tn can be represented by an r E R of length at most pl(n), the running time of 
A at each point must be bounded by p(pl(n), m), where m is the maximum length of any 
counterexample seen to that point, or m = 0 if no counterexamples have been seen. 

Since I T~I -- 2, A must ask at least one equivalence query. Consider the first equiva- 
lence query asked by A, say with r. Clearly, Irl -< p(pi(n),  0) _< q(n), so the adversary 
answers with no and a counterexample w such that Iwl <- pz(n) and 

I{C E T n : Xc(W) = X#(r)(W)}] < [T,,l/q(n). 

The number of  concepts in T, consistent with this answer is greater than (1 - 1/q(n))] T,,]. 
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Suppose the claim is true for some 1 _ i < q(n)/2. Since more than (1 - i/q(n))lTn[ 
-> (1/2)[Tnl concepts in Tn are consistent with the answers given so far, and since ITn[ 
_> 2, at least two distinct concepts in Tn are consistent with the answers given so far. 
Hence, A must ask another equivalence query, say with input r fi R. Since all the counter- 
examples so far have been of length at most p2(n), the running time of A, and therefore 
the length of  r, must be bounded by pfp,(n),  p2(n)) <- q(n). Thus, the adversary answers 
with no and a counterexample w of  length at most pz(n) such that 

I {c : xc(w) = X#(r)(W)}] < I Tnl/q(n). 

This answer is inconsistent with fewer than ]Tn[/q(n) concepts in Tn, so no more than 
(1 - (i + 1)/q(n))lTn[ concepts in T n are consistent with the replies to the first i + 1 
queries. 

This completes the induction. Now consider the situation after the first q(n)/2 queries 
have been answered. More than (1/2) I Tnl concepts in T~ are consistent with all the replies 
that have been given, and since I z.I -> 2, this means that at least two distinct concepts 
from Tn are consistent with all the replies so far. Moreover, all the counterexamples that 
have been given are of  length at most p2(n),  which means that the running time permitted 
to A is bounded by p(p,(n),  p2(n)) = q(n)/2. Hence, if A does not ask another query, it 
will give an incorrect answer for at least one concept in T~. But if A asks another query, 
it will exceed its time bound. This contradiction shows that no such algorithm A is possible. 

Q.E.D. 

Note that the running time of A is only used to give a bound on the number of equivalence 
queries and the length of  the input to each. Thus in fact there is no algorithm to exactly 
identify R that uses a polynomiaUy bounded number of equivalence queries of polynomially 
bounded size. In subsequent sections we demonstrate the approximate fingerprint property 
for some concrete classes of  interest. 

5. DNF formulas have approximate fingerprints 

We concentrate on DNF formulas; the results for CNF formulas follow by duality. The 
key property of  DNF formulas for our purposes is that for every DNF formula q~, there 
is an assignment with f ew  l's that satisfies q5 or an assignment with few O's that falsifies 
4~. Moreover, in a certain target sequence of  concept classes, not many formulas share the 
value of ~b on this assignment. This assignment serves as an approximate fingerprint. 

5.1. Preliminaries f o r  D N F  formulas  

I f  n is a positive integer, let V n denote the set of variables X1 . . . . .  Xn. The literals over 
Vn is the set of  all elements of Vn and their negations. The negation of Xi is denoted --1Xi. 

A term over Vn is a set of  literals over V n that does not contain both Xi and -1X i for 
any i. A term is monotone if  it contains no negations of  variables. The size of a term r 
is the cardinality of  ~-. 

A DNF formula over Vn is a set of terms over V~. A DNF formula is monotone if it 
contains only monotone terms. Note that we do not distinguish between formulas that can 
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be obtained from each other by commuting elements within a sum or  product.  The size 
of a D N F  formula ~b, denoted size(~p), is the sum of  the sizes of the terms it contains. 

An  assignment a to V n is a mapping of  Vn to {0, 1}. It is extended to literals, terms, 
and D N F  formulas in the usual way. Thus, a(--1Xi) = 1 - a(Xi). I f  r is a term, then o~(7) 
= AL~ra(L). I f  ~b is a D N F  formula, a(~b) = Vr~a(r ) .  Two D N F  formulas q~ and ¢ over 
V~ are logically equivalent, denoted ~b ----- ~b, if  and only i f  for all assignments a to Vn, 

a(th) = a(~b). 

Let n, t, and s be posit ive integers. Let T(n, s) denote the set of  all monotone terms 
over V, of size s. Then 

Let M(n, t, s) denote the set of  all monotone D N F  formulas over the variables V~ that 
have t distinct terms, each chosen from T(n, s). Then 

IM(n, t ,  s)l= ( I T(n,t s)l) 
For example, one formula in M(4, 3, 2) is 

X 1 X  3 -F X 2 X  3 --F X 2 X  4. 

Note that the size of any formula from M(n, t, s) is st. All  the formulas in M(n, t, s) are 
logically distinct. 

5.2. Counting falsified D N F  formulas 

One basic tool of our analysis is an estimate of the fraction of  formulas in M(n, t, s) that 
are falsified by a given assignment a over Vn. Let p(a) denote the number of  l 's in a ,  that 
is, 

p(a) = [ {i : a(Xi) = 1} I. 

Letfo[n, t, s](a) denote the fraction of formulas in M(n, t, s) that are assigned 0 by a. That is, 

fo[n, t, s](a) = 1{4) ~ M(n, t, s) : a(d?) = O}l/IM(n, t, s)l .  

Also,  l e t f l [n ,  t, s](a) denote the fraction of formulas in M(n, t, s) that are assigned 1 by 
a,  so fl[n, t, s](a) = 1 - fo[n, t, s](a).  

In this section we shall use an in-line notation for binomial  coefficients. For  all positive 
integers n and m, 

C(n ,m)  = ( mn ) 

Two simple lemmas on binomial  coefficients follow. 
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LEMMA 2. For  all nonnegative integers i, j ,  k such that i _< j _< k, 

( ( j  -- i)[k) i <- C( j ,  i ) /C(k,  i) <_ (j/k) i. 

LEMMA 3. For  all positive integers n and s such that s < n, we have C(n, s) >- (n/s) s. 

The following lemma supplies the bounds we need on fo[n, t, s](a). 

LEMMA 4. Let  n, t, and s be positive integers such that t _< n and s _< n. Let a be an 
assignment to V n. Then 

fo[n, t, s](a) -< (1 - ((p(a) - s)/n)S) ', 

and 

fo[n, t, s](a) >- (1 - (p(a)/n) ~ - t(s/n)S) t. 

Proof  A term in T(n, s) is assigned 1 by a if  and only i f  each of its variables is chosen 
from the set o fp(a)  variables assigned 1 by a. Thus the number of terms in T(n, s) assigned 
1 by a is C(p(a) ,  s). Hence the number of terms in T(n, s) assigned 0 by a is C(n, s) 
- C(p(a) ,  s). A formula in M(n,  t, s) is assigned 0 by a if  and only if  each of  its terms 
is chosen from the set of  terms in T(n, s) assigned 0 by a,  so the number of formulas 
in M(n,  t, s) assigned 0 by a is 

C(C(n, s) - C(p(a) ,  s), t). 

Recalling that [M(n, t, s)l = C(C(n, s), t), we have 

fo[n, t, sl(a)  = C(C(n, s) - C(p(a) ,  s), t ) /C(C(n,  s), t). 

Applying Lemma 2, 

fo[n, t, s](a) -- ((C(n, s) - C(p(a) ,  s))/C(n,  s)) t, 

and 

fo[n, t, s](a) >-- ((C(n, s) - C(p(a) ,  s) - t)/C(n, s)) t. 

Applying Lemma 2 again to the quantity C(p(a) ,  s)/C(n,  s), we have 

((p(a) - s ) / n )  s < C(p(a),  s) /C(n,  s) < (p(a)/n)  s. 

Combining these two, we have 

fo[n, t, sl(a) -< (1 - ((p(a) - s)/n)S) t, 
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and 

fo[n, t, s](a) _> (1 - (p(a)/n)  s - t/C(n, s)) t. 

Finally,  applying L e m m a  3, C(n, s) >- (n/s) ~, so 

fo[n, t, s](a) _> (1 - (p(a)/n)  ~ - t(s/n)S) t. 

Q.E.D. 

5.3. Few l ' s  or  f e w  O's 

The second tool that we use is the following l em m a  that says that for sufficiently large 
n and t, any D N F  formula  over Vn with t terms is satisfied by an ass ignment  with at most  
f n  l 's or  falsified by an ass ignment  with at mos t  1 + ( '¢~) log t O's. 

LEMMA 5. Let  n _> 4 and  t _> 1 be integers. Let  q~ be any D N F  formula  over V n with 
t terms. Ei ther  there is an  ass ignment  a l  that satisfies ~b and has p(al )  < x/n, or there is 
an  ass ignment  ao that falsifies ~b and  has p(ao) -> n - 1 - (x/n) log t. 

This  is a corollary of the following simple l emma.  

LEMMA 6. Let  n be any posit ive integer. Let o~ be a real n u m b e r  such that 0 < a < 1. 
Suppose 4~ is a D N F  formula  over Vn with t > 1 terms such that each term contains  at 
least cm dist inct  posit ive literals. Then  there is a set V ___ V n of  at mos t  1 + LlogbtJ 
variables such that every term of  q~ contains  a posit ive occurrence  of  some e lement  of V, 
where  b = 1/(1 - a) .  

Proof  We construct  V as follows. Let X i be a variable that maximizes  the number  of terms 
of 4~ that conta in  a posit ive occurrence  of  Xi. Add Xi to V and  remove f rom 4~ any term 
that contains  a positive occurrence  of  Xi. Iterate this process unt i l  no terms are left in 4~. 

Since every term of  ~b contains  at least cm positive occurrences  of variables,  at least one 
variable mus t  occur  posit ively in  a fract ion c~ of the terms remain ing  at the end of every 
i teration of the process,  so after r e lements  have been  added to V, there mus t  be  at most  
(1 - c0rt terms left in ~b. Hence,  for b = 1/(1 - c~), when  

r = 1 + / lOgb t [ ,  

we have 

(1 - a ) r t  < (1 - a)l°gbtt = 1. 

Thus fewer than 1 t e rm must  be  left in ~b; that is, ~b mus t  be  empty. Q.E.D. 
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Proo f  o f  L e m m a  5. Let n -> 4 let t _> 1, and let ~b be any D N F  formula with t terms over 
V n. If  some term r of  4~ has fewer than x/n positive occurrences of  literals, let al(Xi) = 
1 i f  and only if  Xi occurs posit ively in r.  Then a~(r) = 1. Hence p(a l )  < x/n and a~(4~) 
= 1. 

If  every term of  th has at least x/n positive occurrences of  literals, then we apply the 
preceding lemma with ot = 1/x/~ to conclude that there is a set of variables V such that 
every term of  th has a positive occurrence of some variable from V and I vI -< 1 + 

LlOgbtJ where b = 1/(1 - or). Take ao(Xi) = 0 if  and only i f  Xi fi V. Then a0(th) = 0, 
and p(ao) = n - I vI. For n _> 4, IOgbt < (V~ -- 1) log t, SO p(ao) >-- n -- 1 -- (x/n -- 

1) log t. Thus, for t -> 1, 

p(ao) -> n - 1 - (x /n ) log  t. 

Q.E.D. 

5.4. A little lemma 

LEMMA 7. Let  n be any positive integer and x any real number  such that 0 < x <- 1/n. 
Then 1 - (1 - x) n <_ 2rye. 

The proof  is not difficult using the binomial  theorem. 

5.5. DNF formulas: the main result 

THEOREM 8. The class of  D N F  formulas has the approximate fingerprint property. 

COROLLARY 9. There is no polynomial  time algorithm that exactly identifies all DNF form- 
ulas using only equivalence queries. 

P r o o f  o f  Theorem 8. The  positive nondecreasing polynomial  p l (n)  is chosen so that any 
D N F  formula over Vn with at most n terms can be represented by a string of  length at 
most pl(n) .  This is possible  because of  our assumptions on the representation of D N F  for- 
mulas by strings. We take the polynomial  pz(n) = n. 

Now suppose we are given any positive nondecreasing polynomial  q(n). We must define 
a sequence of  target classes T~, T2 . . . .  with the required properties.  Choose the constant 
S _ 4 so that for all sufficiently large n, 

2n(1/x/~) s < 1/2q(n).  

This is possible because the left side is 2In S/2-1 and q(n) is a fixed polynomial .  Then for 
all sufficiently large n, 

2n2(S/n) s < 1/2q(n). 
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bound  on the f ract ion of  formulas  in M(n, T, S) that  are ass igned  0 by a l ,  and therefore  
an upper  b o u n d  on the f ract ion of formulas  in M(n, T, S) that  are  ass igned  1 by a l  of 

fl[n, T, S] (a l )  < 1 - (1 - (p(aO/n) s - T(S/n)S) T. 

Since  p ( a l )  -< x/n, 

f,[n, T, S](a , )  _< 1 - (1 - (1 / ' f n )  s - T(S/n)S) T. 

By our  choice  of  n, inequal i ty  (3) holds ,  that  is, 

(1/~/~) s + T(S/n) s < 1/T, 

so L e m m a  7 appl ies ,  y ie ld ing  

fx[n, T, S ] (a , )  -< 2T((1/'dn) s + T(S/n)S). 

Since n > T, 

f l [n ,  T, S ] ( a 0  -< 2n((1/x/n ) s + n(S/n)S). 

By our  choices  of  S, T and n, inequal i ty  (1) holds ,  that  is, 

2 n ( ( 1 / ~ )  s + n(S/n) s) < 1/q(n), 

and therefore  

fain, T, S] < 1/q(n). 

Thus in this case,  i f  w is the string represent ing the ass ignment  a~, (w, Xl,(r)(W)) is a 1/q(n)- 
approx imate  f ingerpr in t  wi th  respect  to T n. 

Fo r  the other  case,  suppose  ao is an ass ignment  that  falsifies ~b and p(ao) > n - 1 - 
x/n log q(n). We need to show that  the f rac t ion of M(n, T, S) fals if ied by ao is less than 
1/q(n). L e m m a  4 gives an uppe r  bound  on  the f rac t ionfo[n ,  T, S](a0) of  formulas  in M(n, 
T, S)  that  are fa ls i f ied by ao of  

fo[n, T, S](ao) -< (1 - ((p(ao) - S)/n)S) r. 

Since p(ao) > n - 1 - f f f  log q(n), 

fo[n, T, S](ao) < (1 - ((n - 1 - x/n log q(n) - S)/n)S) r. 

Thus 

fo[n, T, S](ao) - (1 - (1 - (q~ log q(n))/n - (S + 1)/n)S) r. 
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This is true because the left side is the product of  2/n s/2-1 and SS/n TM, and for fixed S 
> 1, the latter quantity goes to zero as n goes to infinity. Thus, for all sufficiently large n, 

2n((l/V~) s + n(S/n) s) < 1/q(n). (1) 

Now choose the constant T _> 1 such that for all sufficiently large n, 

((2S log q(n))/V~ + 2S(S + 1)/n) r < 1/q(n). (2) 

This is possible because for fixed S and q(n) the left hand side is O((C log n/V~) r) for 
a fixed constant C. 

For  each n, the class Tn is all the concepts represented by formulas from M(n, T, S). 
Provided n -> T, each formula in M(n, T, S) has at most n terms and can be represented 
by a string of  length at most pl(n) ,  so the sequence of concepts /]1, T2, . . .  is bounded 
by pl(n), as required. 

In addition, provided n > S and n > T, there are at least n terms in T(n, S) and at 
least n formulas in M(n, T, S), so the class Tn contains at least two distinct concepts. We 
will show that for all sufficiently large n and for any string r of length at most q(n) represent- 
ing a DNF formula there exists a string w of  length p2(n) = n such that (w, X~(r)(W)} is 
a 1/q(n)-approximate fingerprint with respect to Tn. 

Choose n sufficiently large that n > T, n > S, the inequalities (1) and (2) hold, and also 

(1/~h-) s + T(S/n) s <- 1/T, (3) 

and 

( 'fn log q(n))/n + (S + 1)/n <_ 1/S. (4) 

Suppose that r is a string of  length at most q(n) representing a D N F  formula. 
First ,  i f  I n ~ c(r), then since every formula in Tn is satisfied by I n, the fraction of  for- 

mulas in Tn that agree with r in the classification of  i n is 0; so in this case, (1 n, X~,(r)(ln)} 
is a 1/q(n)-approximate fingerprint with respect to Tn. Thus, if  r represents a formula over 
F k for some k ~ n or i f  r represents a formula over Fn that is not satisfied by the assign- 
ment of  all l ' s ,  then for the choice w = I n, (w, X~(r~(W)} is a 1/q(n)-approximate finger- 
print with respect to Tn. 

So assume r represents a formula ~b over F n that is satisfied by the assignment of  all 
l ' s .  In part icular,  ~b must  contain at least one term. 

By our assumptions on the representation of  D N F  formulas, the number of  terms in 
q~ is bounded by Irl. Thus q~ contains at most  q(n) terms. Since n _> 4, we may apply 
Lemma 5 to find either an assigmnent a l  w i t h p ( a 0  < v~  and al(~b) = 1 or an assignment 
a t  with p(ao) -> n - 1 - (V~) log q(n) and ao(q~) = 0. In each of  these cases we will 
show that the assignment gives an approximate fingerprint with respect to Tn. 

Consider  first the case of  a~ with p(al) < ~rff. W e  need to show that the fraction of  
formulas in M(n, T, S) that are satisfied by a~ is less than 1/q(n). Lemma 4 gives a lower 
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By our choice of  n, inequality (4) holds, that is, 

(x/~ log q(n))/n + (S + 1)/n <_ I/S, 

so Lemma 7 applies, yielding 

fo[n, T, S](a0) -< (2S((x/n log q(n))/n + (S + 1)/n)) r. 

By our choices of  S, T, and n, inequality (2) holds, that is, 

((2S log q ( n ) ) / ~  + 2S(S + 1)/n) r < 1/q(n), 

SO 

fo[n, T, S](a0) < 1/q(n). 

Hence if w is the string of length n representing the assignment ao, (w, X~r)(W)) is a 1/q(n)- 
approximate fingerprint with respect to Tn. 

Thus we have shown that for all sufficiently large n, if r is a string of length at most 
q(n) representing a DNF formula, then there is a string w of length n such that (w, Xlz(r)(W)) 
is a 1/q(n)-approximate fingerprint with respect to T~. Since q(n) was arbitrary, the class 
of DNF formulas has the approximate fingerprint property. Q.E.D. 

6. Dfas have approximate fingerprints 

In this section and the following two sections we prove that dfas, nfas, and cfgs have ap- 
proximate fingerprints. The proof  for dfas is fairly simple, the proof  for nfas is slightly 
more complex, and the proof  for cfgs is decidedly complicated; however, there is a pro- 
gression in technique that may be helpful for understanding. 

Let E be the finite alphabet {0, 1}. Let E k denote the set of  all strings over ~ of length 
k. I f  x, y fi r.k, let d(x, y) denote the Hamming distance between x and y, that is, the 
number of bit positions 1 _ i _ k such that x and y are different in the i-th bit. 

For any n _> 1 and 1 _ i -< n define the language 

L(i, n) = {ubvbw : u E ~i-1, b E ~, v ~ E n- l ,  w ~ r.n-i}. 

That is, L(i, n) is the set o f  all strings of  length 2n such that the i-th bit is equal to the 
(n + i)-th bit. Note that L(i, n) is accepted by a dfa with 3n + 2 states. 

The target class Tn will consist of  all languages L that can be obtained as a concatenation 

L(il, n) " L(i2, n) "" L(in, n) 

such that 1 _< ij <_ n for eachj .  Thus there are n n distinct languages in the class Tn. Each 
one can be accepted by a dfa of  3n 2 + 2 states, so this sequence of concept classes is 
polynomially bounded. 
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Now we consider two further sets of  strings: 

An = {XlXlX2X2 '" x~xn : for each i, x i ~ ~n}, 

and 

Bn = {XlYlX2y2 "'" XnYn : for each i, xi ~ r~n, Yi E ~,n, d(x i  ' Yi) > n /4} .  

Note that An is the intersection of  all the languages in Tn, and the smallest dfa to accept 
A n has a number of  states that grows exponentially in n. 

For  every string w ~ B n, there are at most (3n/4) n languages L ~ T n that contain w. This 
is an exponentially small  fraction of  the languages in Tn since (3n/4) n divided by n n is 

(3/4)% 
Now consider some fixed polynomial  q(n). We prove that for all sufficiently large n, 

if  M is any dfa with at most  q(n) states, then either M rejects a string w in A n or accepts 

a string w in Bn. In either case, if  n is sufficiently large then (w, M(w))  is a 1/q(n)- 
approximate fingerprint with respect to T n, since in the first case no concepts in Tn agree 
with M's classification of  w, and in the second case, an exponentially small fraction of  
the concepts in Tn do. We formalize this as follows. 

LEMMA 10. There exists a constant co, 0 < Co < 1, such that for all sufficiently large 
positive integers n, 

(n) 
i=0 

The proof  is by straightforward application of Stirling's approximation for n! An im- 
mediate consequence is the following. 

LEMMA 11. For  the constant Co of  Lemma 10 and all sufficiently large n, if  x E ~n then 
there are fewer than 2 c°~ strings y fi E n such that d(x,  y) <- n/4.  

P r o o f  Let Co and n be as indicated, and let x be any element of  ~n. Then a string y 
~n is such that d(x,  y) <- n/4 i f  and only i f  y may be obtained from x by complementing 
at most n/4 of the bits of  x. Hence, any such y can be obtained by selecting a subset of  
i < n/4 bits of x and complementing them. Thus, there are at most 

i=0 

such strings y, and this is less than 2 c°n by Lemma 113. Q.E.D. 

LEMMA 12. Let q(n) be any positive nondecreasing polynomial  in n. For sufficiently large 
n, i f  M is any dfa of  size at most  q(n) and qi is any state of M, then there exist two strings 
x and y of length n such that d(x,  y) > n/4 and ~(qi, x)  = 8(qi, Y), where t5 is the transi- 
tion function of  M. 
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ylXlY2X2 "'" ynXn E Bn. 

Moreover, 

6(qo, XlXlX2X2 "'" X n X n )  = 6(qo, ylxlY2X2 "'" ynXn) = qn" 

Since M accepts every string in A n by hypothesis, the state qn must be accepting, so M 
accepts the string 

ylxly2x2 "'" ynXn E B n. 

Q.E.D. 

THEOREM 14. The class of  dfas has the approximate fingerprint property. 

COROLLARY 15. There is no polynomial time algorithm that exactly identifies the class of  
dfas using only equivalence queries. 

Proo f  o f  Theorem 14. The sequence of  concept classes T~, T2, • •. is polynomially bounded. 
Provided n _ 2, Tn contains at least two distinct concepts. For any positive nondecreas- 
ing polynomial q(n) we may choose n sufficiently large that (3/4) n < 1/q(n) and any dfa 
of  at most q(n) states must either fail to accept some string in A n or accept some string 
in Bn. 

Let r be any string of  length at most q(n) representing a dfa M. Then by our assumptions 
on the representation of dfas, M has at most q(n) states, and therefore either fails to accept 
a string in A n or accepts a string in Bn. 

Suppose M fails to accept a string w E An. Note that the length of  w is 2n 2 Since every 
concept in Tn contains A n as a subset, the fraction of  concepts in Tn that agree with M 
on the string w is zero, so (w, Xc(o(w)) is a 1/q(n)-approximate fingerprint with respect 
toTn. 

Suppose M accepts some string w E Bn. Note that the length of  w is 2n 2. The fraction 
of  concepts in T n that contain w is at most (3/4) n, and by our choice of n, this is less than 
1/q(n). Thus in this case also (w, Xc(r)(W)) is a 1/q(n)-approximate fingerprint with respect 
to Tn. Q.E.D. 

7. Nfas have approximate f'mgerprints 

We consider nondeterministic finite state acceptors (nfas) over the alphabet ~ = {0, 1}. 
Such an acceptor has a f'mite set of  states, a distinguished start state, a set of accepting 
states, and a transition function that maps each element of  Q × ~ to a subset of  Q. The 
size of such an acceptor is the number of states it contains. Our goal in this section is to 
prove the following. 

THEOREM 16. The class of  nfas has the approximate fingerprint property. 
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Proof Consider 6(qi, x)  for all x E ~n. There are at most q(n) states in M, so there is at 
least one state, say qj such that 6(qi, x) = qj for at least 2n/q(n) values of  x E Zn. 

Choose any x E E n such that 6(qi, x) = qj. By Lemma 11, there are fewer than 2 c~n strings 
x '  E rY such that d(x, x ' )  < n/4. 

Since for all sufficiently large n, 

2n/q(n) > 2 co~, 

there must be at least one string y E E n such that 6(qi, y) = qj and d(x, y) > n/4.Q.E.D. 

LEMMA 13. Let q(n) be any positive nondecreasing polynomial in n. Then for all suffi- 
ciently large n, if M is any dfa of  size at most q(n) that accepts all the strings in An, then 
M accepts some string in B n. 

Proof  Let n be sufficiently large that the conclusion of  Lemma 12 holds for q(n) and n. 
Assume that M is any dfa of  size at most q(n) and An c L(M). Let 6 denote the transition 
function of M and let qo denote the initial state of  M. We construct a string in Bn accepted 
by M by induction. 

By Lemma 12 there are two strings xl and Yl in ~n such that 6(qo, xl) = 6(qo, Yl) and 
d(Xl, YO > n/4. Let ql = 6(qo, x~xO. Note that 

6(qo, xlxO = 6(qo, ylxl)  = ql. 

Assume that for some k, 1 -< k < n, and for all i, 1 _< i _< k, there exist states qi 
and strings xi and Yi in Zn such that 

t~(qi-1, XiXi) = t~(qi-1, yixi) = qi 

and d(xi, Yi) > n/4. Then, by Lemma 12, there exist strings xk+l and Yk+l in ~n such that 

t~(qk, Xk+l) = ~(qk ,  Yk+l) 

and d(Xk+l, Yk+l) > n/4. Let 

q k + l  = 8 (qk ,  X k + l X k + l )  = 6 (qk ,  Y k + l X k + l )  

and the induction hypothesis is satisfied for k + 1. 
Thus for i = 1, . . . ,  n, there exist states qi and strings xi and Yi in ~n such that 

~(qi--1, XiXi) = tS(qi--1, yixi) = qi 

and d(xi, Yi) > n/4. Now, 

X1XIX2X 2 "'" X l ~  n E A n 

and 



138 D. ANGLUIN 

The domain of  F has cardinali ty 2 n~ and the range of  F has cardinality at most  q(n)  2n, so 
there must be  at least one point in the range that is the image of at least 2n2/q(n) 2n points 
in the domain.  Let  (q~, qz . . . . .  qEn) be any such point in the range, and let S denote the 
set of  n-tuples Xl, • . . ,  xn that map to this point. Then 

IsI ~ 2n~/q(n) 2n. 

Let S[i] denote the project ion of S in the i-th component ,  that is, the set o f x i  E ~n such 
that there exist strings Xl, . • .xi-1 and xi+l, . • . ,  Xn in E n such that the n-tuple xl,  • • . ,  
xn is in S. We define S to be sparse  f o r  i i f  and only i f  Is[i]l < 2 c~", where co is the con- 
stant in Lemma 10. Let D be the set of indices i such that S is not sparse for i. 

We claim that IDI >- n/2 .  Otherwise,  the cardinali ty of  S must  be bounded above by 

(2n) n/2 . (uon)"/2 = 2n2(1+co)/2 

But this implies that 

2n2(1+co)/2 > 2n2/q(n) 2n, 

that is, 

2n~(1-Co)/2 < q(n)  2n, 

which contradicts our choice of  n satisfying inequality (5). 
Now choose any string u = x~x~ "'" x ~ n  such that the n-tuple (xl . . . . .  Xn) is in S. For  

each i = 1 . . . . .  n, define the string v i as follows. I f  i ~ D, then let vi = xixi. If  i E D, 
S[i] is not sparse, so IS[q] >- 2 Con. Thus, by Lemma 11 there must be a string Yi E S[i] 

such that d(xi, Yi) > n/4 .  Choose any such Yi, and let v; = xiy  i. 
To see that the final string v~v2 "'" vn has the desired propert ies,  not that each string 

vi E ~2~. Also,  since IDI -> n / 2 ,  for at least n /2  indices, vi = x~vi with d(xi,  Yi) > n/4 .  
To see that v~v2 "'" v~ is accepted by M, note that for each i = 1, . . . ,  n, 

q2i--1 E ~(q2i-2,  xi), 

and 

q2i E ~(q2i-1, Xi), 

and i f  i E D, 

q2i E ~(q2i--1, Yi)" 

Thus, there is an accepting computation of M on the string vl ' Vn that passes through 
the states qo, ql  . . . . .  q2n. This concludes the proof  of  Lemma 18. Q.E.D. 
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COROLLARY 17. There is no polynomial  t ime algorithm that exactly identifies all the nfas 
using only evidence queries. 

The result for dfas does not directly imply the corresponding result for nfas or  cfgs since 
the definition of approximate fingerprints is representation-dependent.  

For  the case of  nfas, we use the same target classes Tn and the same sets A n but replace 
the sets B n by the following. The set BA consists of all strings 

XlYlX2Y2 "'" xnY n 

such that for each i, xi ~ ~n and Yi ~ zn,  and for at least hal f  the values o f j  between 1 
and n, d(xj, yj) > n/4. For any string w ~ BA there are at most  n~/2(3n/4) n/2 languages 
L ~ T, that contain w. This is an exponentially small ((3/4) "/2) fraction of the concepts 
in T n. 

The analog of Lemma 13 that we use is the following. 

LEMMA 18. Let q(n) be any positive nondecreasing polynomial  in n. Then for all suffi- 
ciently large n, i f  M is any nfa of size at most q(n) that accepts all the strings in An, then 
M accepts some string in B~. 

Proof. Let n be sufficiently large that the conclusion of Lemma 10 holds, and 

2 n2(1-c°)/2 > q(n) 2n, (5) 

where Co is the constant in Lemma 10. There exists such an n because Co < 1, so the left- 
hand side is of the form 2 en2, while the righthand side is of the form 2 Knl°gn+c, for positive 
constants e, K, and c. 

Let  M be any nfa of size at most q(n) that accepts all the strings in A n. Let Q be the 
set of states of  M, qo the initial state of  M, F the set of accepting states, and 6 the transition 
function. Extend ~ so that for a state q e Q and a string u E ~*, 6(q, u) is the set of states 
reachable from q on input string u. 

Let  x~, . . . ,  x~ be any n-tuple of  strings from E ~. The string XlX~X2X2 "'" X~Xn is in A n 

and therefore is accepted by M. Define the function 

h(i)  = ri/27 

for all i = 1 . . . .  , 2n. There exists a sequence of  states q~ . . . . .  q2n from Q such that 
q2n ~ F and 

qi E d(qi-1,  Xh(o) 

for i = 1, . . . ,  2n. That is, qo, ql, • • . ,  q2n is the sequence of  states at distance n apart  
along some accepting computation of  M on the string XlXl " XnXn. 

For each n-tuple xl,  • • . ,  xn of strings from ~n, choose one such sequence of states ql, 
- - . ,  q2n and define 

F(xl . . . . .  Xn) = (ql, q2 . . . . .  q2n)" 
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Proof of  Theorem 16 Since every dfa is an nfa, the sequence of  concept classes T1, T2 . . . .  
is polynomially bounded (with respect to representation by nfas). For any positive 
nondecreasing polynomial q(n) we may choose n sufficiently large that (3/4) n/2 < 1/q(n) 
and any nfa of  at most q(n) states must either fail to accept some string in An or accept 
some string in B' .  

Let r be any string of  length at most q(n) representing an nfa M. Then by our assump- 
tions on the representation of nfas, M has at most q(n) states, and therefore either fails 
to accept a string in A n or  accepts a string in B ' .  

Suppose M fails to accept a string w E An. Note that the length of w is 2n 2. Since every 
concept of  Tn contains A n as a subset, the fraction of concepts in T, that agree with M 
on the string w is zero, so (w, Xc(r)(W)) is a 1/q(n)-approximate fingerprint with respect 
t o T , .  

Suppose M accepts some string w E B' .  Note that the length of  w is 2n 2 The fraction 
of  concepts in Tn that contain w is at most (3/4) n/2, and by our choice of  n, this is less 
than 1/q(n). Thus in this case also (w, Xc(r)(W)) is a 1/q(n)-approximate fingerprint with 
respect to T n. Q.E.D. 

Sakakibara (1988) has shown that deterministic bottom-up tree automata can be iden- 
tified in polynomial time using equivalence and membership queries. By simply tacking 
a linear tree structure onto the strings used in the proofs above, we have the following. 

COROLLARY 19. There is no polynomial time algorithm that exactly identifies deterministic 
or nondeterministic bottom-up tree automata using only equivalence queries. 

g Cfgs have approximate f'mgerprints 

We consider context free grammars (cfgs) over the terminal alphabet E = {0, 1}. We assume 
that all grammars are in Chomsky normal form, that is, every production is of  the form 
A ~ BC where A, B, and C are nonterminal symbols, or A ~ a, where A is a nonterminal 
symbol and a is a terminal symbol, or  S ~ e, where S is the start symbol and e is the 
empty string. Since there is a polynomial time algorithm to translate an arbitrary cfg into 
one in Chomsky normal form, this assumption is not an essential restriction. Recall that 
the size of  a Chomsky normal form cfg G is the number of nonterminal symbols it contains. 

The goal of this section is the following. 

THEOREM 20. The class of  context free grammars has the approximate fingerprint property. 

COROLLARY 21. There is no polynomial time algorithm that exactly identifies all the con- 
text free grammars using only equivalence queries. 

For the case of  cfgs the proofs are rather involved, but the basic outline is the same. 
The target class and the approximate fingerprints are easily described. For each n _> 1 let 

C1, n = { x x r y  : x E ~]n, y E ~]n}, 
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where x r denotes the reverse of  the string x, and let 

C2, n : { y x r x  : X E ~ n ,  y E ~ n } .  

Each of  Cl,n and C2, n can be generated by a Chomsky normal form cfg with 4n + 1 
nonterminals. 

The target class ~fg contains each language of  the form 

C,,,n" Ci2,n " Ci.,n 

where ij E {1, 2} for each j .  Thus, there are 2 n distinct languages in ~Yg. Each of them 
can be generated by a Chomsky normal form grammar with 6n nonterminals. Thus, this 
sequence of concept classes is polynomially bounded. 

Let 

I n = C1, n [~ C2, n ~- {x.xrx : .~ E ~ n } .  

Note that the smallest cfg to generate I n has size exponential in n. Let 

Fn = ~3n _ i n  . 

Any string in Fn is in at most one of  C1, n and C2,n. 
The set of strings corresponding to An is just the intersection of all the sets in T~ yg, that is, 

aCn fg = (In) n = {XlXrtX1X2X~2 "'" XnXrnXn : for each i, xi E En}. 

Clearly, An ~fg is a subset of  every language in T ~ .  
For any constant 0 < c < 1, let B ~g consist of  all string of  the form c , n  

w l w 2 . . . w  n 

such that each wi E ~3n and for at least cn values of  j ,  wj E Fn. Note that for each string 
w E B ~g there are at most 2 n-cn languages L E T ~  that contain w. This is an exponentially c~n 
small (2 -cn) fraction of  T~ fg. 

The analog of Lemmas 13 and 18 that we use in this case is the following. 

LEMMA 22. Let p(n) be any positive nondecreasing polynomial in n. There exists a con- 
stant c~ such that 0 < c~ --- 1 such that for all sufficiently large n, if G is a Chomsky 
normal form context free grammar of size at most p(n) then either G rejects some string 
in A ~  or G accepts some string in B ~fg cl,n • 

The proof of  this lemma is given in the next two subsections. Here we show that it suf- 
fices to prove Theorem 20. 

Proof  o f  Theorem 20. The sequence of concept classes T ~  is polynomially bounded, and 
for each n - 1, T cfg contains at least two distinct languages. 
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Let  c, be the constant of  Lemma 22, and let q(n) be any positive nondecreasing 
polynomial .  Let  n be chosen sufficiently large that 2 -cln < 1/q(n) and i f  G is a Chomsky 
normal  form grammar  of  size at most  q(n), then G either rejects a string in A cfg or ac- 
cepts a string in B cfg 

c l , n  • 

Let r be any string of  length at most  q(n) representing a Chomsky normal  form context 
free grammar  G. By our assumptions on the representation of grammars,  G has size at 
most  q(n), so G must either reject a string in A ~  g or accept a string in B ~ C l , n  • 

In the first case, let w be a string in A ~  rejected by G. Note that w is of length 3n z. 
Since every concept in T ~  accepts w, the fraction of  concepts in T cfg that agree with G 
on the classification of w is zero, so (w, Xc(~)(w)) is a 1/q(n)-approximate fingerprint with 
respect to T cfg. 

In the second case, let w be an element of  B ~fg accepted by G. Note that Iwl -- 3n 2. c,,n 
The fraction of concepts in T~ fg that accept w is at most 2-~'n, and by our choice of  n, 
2 -~,n < 1/q(n). Hence, (w, Xc(~)(w)) is a 1/q(n)-approxStmate fingerprint with respect to T ~ .  

Q.E.D. 

We now turn to the proof  of  Lenuna 22. The general plan is as follows. We assume that 
L(G) contains all 2 n2 strings in A ~ ,  and fix a set of  parse trees for these strings with respect 
to G. We then find a lot of  pieces of  these parse trees with the same environments and 
different yields that can be substituted for each other to construct a legal parse tree with 
respect t o G  for a string in Bc~,.  

The following lemma concerning I n and Fn will be of use in the substitution arguments 
in the following sections. 

LEMMA 23. Suppose xyz fi In, where y is of length at most 2n. I f  y '  is any string such 

that y '  # y and ly'l  = lyl, then xy 'z  ~ Fn. 

Proof There is some wl fi zn such that xyz = WlW~lWl. Since lyl ~ 2n, Ixl + Izl ~ n. 
I f  Ix] -> n, then let x, be the prefix o f x  of  length n and let zz be the empty string. I f  Ixl 
< n, then let x, = x and let  z2 be the suffix of z of  length n - Ixl. In either case, Xl 
is the prefix of w, of  length Ix, I, and z2 is the suffix of  w, of  length Iz21, and Ixll + Iz21 

= n, so Wl = X l Z 2 ,  

Now suppose that xy'z  ~ Fn. Since lyl = ly ' l ,  xy'z is of length 3n, so it must be that 
xy'z  ~ In. Hence, for some w2 ~ ~n, xy 'z  = w2wr2w2. As above, w2 = x,z2, and therefore 
w, = w2. Thus, xyz = xy 'z  and y = y', contradicting the hypotheses. Hence xy'z ~ Fn, 
as claimed. Q.E.D. 

8.L Pieces of binary trees 

We need some technical tools for surgery on parse trees in the next subsection. We con- 
sider rooted ordered binary trees. Let T be such a tree. The subtree of  T rooted at the 
node v is denoted T(v). 

Let v be a node of  T and V' a subset of  nodes that are in T(v). Define P(v, V~ to be 
the rooted ordered binary tree obtained from T b y  taking T(v) and removing all the proper  
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descendants of any node in V'. Such a rooted ordered binary tree will be called a piece 
of T. Each leaf of  P(v, V') is either an element of  V'  or a leaf  in T. A leaf of  P(v, V') 
that is not a leaf  of  T i s  called a special leafofP(v, V'). P(v, V~ is a type-i piece of T 
i f  and only i f  the number  of special leaves of  P(v, V') is exactly i. 

A type-0 piece of  T is simply T(v) for some node v of T. A type-1 piece of T is T(v) 
for some node v minus all the proper  descendants of  one of  the nonleaf  nodes of T(v). 
We are pr imar i ly  interested in type-0 and type-1 pieces of  binary trees. 

Two pieces T~ and T2 of  T are called nonoverlapping provided either they contain no 
nodes in common,  or, i f  they contain any nodes in common,  it is just  one node x, and 
x is the root of  one of  the trees and a leaf  of  the other. A set of  pieces of  T is called non- 
overlapping provided every pair  of  distinct pieces in the set is nonoverlapping. 

LEMMA 24. I f  T is a rooted ordered binary tree with n leaves and 1 _< k ___ n, then there 
exists a node v of T such that T(v) has at least k and fewer than 2k leaves. 

Proof Consider  the root x of T. I f  n < 2k, then v = x suffices. Otherwise,  n _> 2k. Then 
at least one of  the two immediate descendants of  x, say xl,  is such that T(xl) has at least 
k leaves. Iterate with the tree T(xO. Since the number  of leaves in the subtree being con- 
sidered must be strictly decreasing, this process must terminate with a node v such that 
the number of leaves in T(v) is at least k and less than 2k. Q.E.D. 

LEMMA 25. Let T be a rooted ordered binary tree with n _> 2 leaves. Let 2 _< k _< n. 
Then there is a nonoverlapping set S of  type-0 and type-1 pieces of  T such that each piece 
has at least k and fewer than 2k leaves, and IS] >- (n - k)/4(k - 1). 

Proof We describe how to construct such an S. Initially let S be empty, and let T'  = T. 
T'  is a rooted ordered tree with at least k leaves, so by Lemma 24, there is a node v 

of  T' such that T'(v) has at least k and fewer than 2k leaves. I f  T'(v) has at most one leaf  
that is not a leaf  of T, then it is a type-0 or  type-1 piece of T and is added to S. In any 
case, T'  is then set to T'  with all the proper  descendants of  v removed, and i f  T'  still has 
at least k leaves, this process is iterated. 

It is clear that throughout this process, T'  is a rooted ordered binary tree obtained from 
Tby  removing all the proper  descendants of some set of nodes in T. Hence the trees added 
to S are distinct pairwise nonoverlapping type-0 and type-1 pieces of T with at least k and 
fewer than 2k leaves. 

It remains to establish the bound claimed for the cardinality of S. Consider  the number 
s of leaves of  T'  that are not leaves of  T. Initially s = 0. When  T'(v) is a type-i  piece, 
s is set to s + 1 - i, so it is increased by 1 when a type-0 piece is found, remains the 
same when a type-1 piece is found, and is decreased by 1 or more  when any other type 
of  piece is found. After  the first iteration, s is always at least 1. Hence the number of itera- 
tions in which type-0 or type-1 pieces are found must  exceed the number of iterations in 
which other types of  pieces are found. 

How many iterations must  there be? Each iteration removes at least k - 1 > 0 and at 
most 2k - 2 leaves from T', and the process continues until fewer than k leaves are left 
in T'. Initially T' has n leaves. Thus, i f j  is the total number  of  iterations, we must have 

n - j ( 2 k  - 2) < k, 
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Environments. 

A type-O environment is a triple e = (A, i, j) such that A is a nonterminal of G, and i 
and j are positive integers such that 1 _< i _< j _< 3n z. The terminal indices of e is the 
set of  integers [i, j] .  

A type-1 environment is a sextuple e = (A, i, j ,  B, k, /) such that A and B are nonter- 
minals of G, and i, j ,  k, and 1 are nonnegative integers such that one of the three possibilities 
below holds: 

1 . 1  <_ i <-j  < k <_ l <- 3n 2. 
2. i = j  = 0 a n d  1 _< k _< l -< 3n 2. 
3. 1 ~< i - < j  -< 3n2 and k = 1 = 0. 

The terminal indices of  e in case (1) is the set o f  integers [i, j ]  U [k, l], in case (2) is 
the set of  integers [k, 1], and in case (3) is the set of  integers [i, j ] .  

Let E denote the set o f  all type-0 and type-1 environments that have at least n - 1 and 
at most 2n - 1 terminal indices. Then IEI -< 81nS(N(G)) 2 because each environment in 
E can be specified by a choice of  four numbers in the range 1 through 3n 2 and two nonter- 
minals from G. 

For each piece T' in P(T) we define the environment of T', denoted e(T'), as follows. 
If  T' is a type-0 piece, then e(T) is (A, i, j),  where A is the nonterminal labelling the 
root of  T', i and j  are leaf indices of  the leftmost and rightmost leaves of  T', respectively. 
If  T' is a type-1 piece, then there is exactly one special leaf of  T', and it is labelled with 
a nonterminal of  G. In this case, e(T') is (A, i, j ,  B, k, l) where A is the nonterminal label- 
ling the root of  T', B is the label of  the special leaf of  T', i and j are the leaf indices of  
the leftmost and rightmost leaves that are to the left of  the special leaf of  T', and k and 
l are leaf indices of  the leftmost and rightmost leaves that are to the right of  the special 
leaf of  T'. I f  there are no leaves to the left of  the special leaf of  T' then i and j are 0; 
likewise, if there are no leaves to the right of  the special leaf of  T', k and l are 0. Note 
that in either case, e(T) ~ E, and the set of  terminal indices of  e(T') is the same as the 
set of  leaf indices of  T'. 

For each T ~ T,(G) define the set 

E(T) -- {e(T') : T ' ~  P(T)} 

of all environments of pieces in P(T). Since the pieces in P(T) are nonoverlapping and 
each contains at least n - 1 nonspecial leaves, they all have distinct environments, so for 
each T ~ T,(G), 

IE(T)I = IP(T)[ > 3n/4. 

Transplanting pieces. 

Pieces with the same environment may be interchanged to produce new legal parse trees, 
as indicated by the following. 
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which implies that 

j > (n - k ) / (2k  - 2). 

Since at least half of these must be iterations in which a type-0 or type-1 piece is found 
and added to S, we have 

IsI > (n - k ) / 4 ( k -  1), 

which proves Lemma 25. Q.E.D. 

8.2. Parse  t ree  surgery  

The goal of this subsection is to prove Lemma 22 and thus to conclude the proof of Theorem 
20. I f  i and j are integers, then [i, j]  denotes the set of  integers k such that i _< k _< j .  

Let n _> 2 be a positive integer, and let G be any Chomsky normal form context free 
grammar such that (In) n c_ L(G) .  Let N(G) denote the size of  G, that is, the number of 
nonterminals of G. For each n-tuple Wl . . . .  , w n of strings from zn, the string 

w1WrlW1W2W~W2 "'" WnWrWn 

is an element of  L(G). Choose one fixed parse tree for this string with respect to the gram- 
mar G and denote it by T(wl ,  • • . ,  Wn). This tree is a rooted ordered binary tree whose 
internal nodes are labelled by nonterminal symbols of  G and whose leaves are labelled 
by terminal symbols of G. 

I n d e x e d  p a r s e  trees. 

For any parse tree Twith respect to G, let num(T)  be the tree obtained from Tby replacing 
each leaf label a by the ordered pair (a, i), where i is the number of  this leaf in left-to-right 
order, starting with 1. The number i is called the l e a f  index  of  the leaf labelled by (a, i). 
num(T)  is called an i n d e x e d  p a r s e  tree. If  Tis  a rooted ordered binary tree, define un(7)  

to be the tree obtained from T by replacing any leaf label (a, i) by the label a. Clearly, 
u n ( n u m ( I ) )  = T for any parse tree T. 

Let Tn(G) denote the set of all indexed parse trees n u m ( T ( w l ,  . . . ,  wn)) as wl, . . . ,  wn 
ranges over all n-tuples of  strings from ~ .  There are 2 n2 elements of Tn(G), each of which 
has 3n 2 leaves. 

Let T be any tree in Tn(G). By Lemma 25 with k = n, there exists a set, which we 
denote by P(T), of  nonoverlapping type-0 and type-1 pieces of  T such that each piece has 
at least n and fewer than 2n leaves and 

[P (T) [  > ( 3 n  2 - n) /4 (n  - 1) > 3n/4 .  
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of the sets E(T) that el appears in. Continuing in this way, we can find a set 

E '  = {e l ,  . . . ,  er} 

of r distinct environments such that at for at least 

2n~/q(n) r 

elements T ~ Tn(G), E' c E(T). 
Now we need to select a large subset E"  of  E '  with the proper ty  that for each e fi E", 

the major  segment of  e is not impacted by any other element in E".  In part icular,  we have 
the following. 

LEMMA 27. Let C = 3168. There exists a subset E" of  E '  such that for every e ~ E" ,  
the major  segment of  e is not impacted by any other element of  E" and ]E"] _ r/C. 

Proof Note that E '  is a subset of  at least one E(T),  and hence must be nonoverlapping.  
Consider  any segment s. It contains 3n indices, and can be the major  segment of  at most  
12 environments from E ' ,  since 

13(n - 1)/4 > 3n. 

Let  M denote the set of segments that are major  segments of some environment in E'. Then 

IMi >--IE'I/12 = r/12. 

Let E96 denote the set of e E E '  such that the major  segment of e is impacted by at most 
96 of the elements of E'. We argue that ]E961 -> r/24. Since each segment in M is the major  
segment of at least one environment in E', and each environment in E '  has exactly one 
major  segment,  it suffices to show that at least r/24 segments in M are each impacted by 
at most 96 elements of  E'. 

E '  contains r elements, each of which can impact at most 4 segments, so the total number 
of  instances of  a segment being impacted by an environment in E '  is at most  4r. Suppose 
fewer than r/24 of the segments in M are each impacted by at most 96 of the environments 
in E'. Since ]M[ ~ r/12, this means that more than r/24 of the segments in M are each 
impacted by more than 96 of the environments in E', so the total number of instances of 
segments being impacted by an environment in E '  is greater than 96(r/24) = 4r, a 
contradiction. 

Thus, at least r/24 of the segments in M are each impacted by at most  96 of the en- 
vironments in E', which implies that [E96l - r/24, as claimed. 

Now we construct E" as follows. Let  F -- E96. Choose any element e fi F, and let the 
major  segment o f e  be s. Add e to E". Now remove from F any environment that impacts 
segment s and any environment whose major  segment is impacted by e. There are at most  
96 environments in E96 that impact segment s. There are at most 3 segments other than 
s that are impacted by e. Each of these segments is the major segment of at most 12 elements 
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LEMMA 26. Suppose T~ and T2 are elements of  Tn(G) such that T~ ~ P(T  0,  T~' fi P(T2), 
and e(T; ) = e(T~ ). Then if  T3 is the tree obtained by substituting piece T~ for piece T~ 
in T~, un(Ta) is a legal parse tree with respect to G. 

Proof In fact, all that is necessary to produce a new legal parse tree is that the nonterminal 
symbols appearing in the environments of  T~ and T~ be the same. The equality of the sets 
of  terminal indices in the environments guarantees the stronger condition that the yield 
of T3 is obtained from the yield of  T~ by substituting the section(s) of  the yield of Tz that 
correspond to the interval(s) of  terminal indices specified in the environment. Q.E.D. 

Segment. 

We regard the set of  numbers from 1 to 3n 2 as divided up into n segments of  3n consecutive 
numbers each. Thus, the s-th segment consists of  the numbers 3n(s - 1) + 1 through 3ns. 
I f  y fi z3n~, and s is a segment number, then we define the s-th segment of y to be the 
substring of  length 3n beginning with posit ion 3n(s - 1) + 1 in y. 

For  each environment e ~ E we define the segments impacted by e to be the set of all 
segments that contain an element from the set of terminal indices of  e. Note that at most 
four segments are impacted by any e fi E, since e has at most  2n - 1 terminal indices 
in at most two intervals [i, j ]  and [k, l]. I f  T' is an element of P(T) for some T E Tn(G), 
then the segments impacted by T' is the set of segments impacted by e(T'). 

For each environment e fi E, we define the major segment of e to be the leftmost seg- 
ment  that contains at least (n - 1)/4 members  of  the set of  terminal indices of e. Since 
e must have at least n - 1 terminal indices, and impacts at most four segments, there must 
be at least one segment that contains at least (n - 1)/4 of the terminal indices of e. The 
major segment of a piece T' of T ~ Tn(G) is the major  segment of  its environment e(T'). 

Proof of Lemma 22. Now we are ready to prove Lemma 22. Let  p(n) be any positive 
nondecreasing polynomial  in n. Let n be sufficiently large that n > 13 and 

23n( n-1)/32C > q(n) r, 

where C = 3168, q(n) = 81nSp(n) z, and r = r3n/4 7 . This is possible because the lefthand 
side is of the form 2 ~n' and the righthand side is of  the form 2 Knl°g~+c for positive con- 
stants e, K, and c. Let G be any Chomsky normal form context free grammar  of size at 
most  p(n) such that (In) ~ c L(G). 

Since there are 2 n2 elements T fi T,(G), and at most  q(n) elements of E, there must be 
at least one environment el fi E that is a member  of at least 

2n2/q(n) 

different sets E(T). Besides el ,  each of these sets contains at least r - 1 other environments, 
because IE(731 -> r for all T E T,(G). Thus, there must be at least one environment e2 

el that appears in at least 

2"~/q(n) z 
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We are ready to perform substitutions. We start with any To E T(En). Choose any en- 
vironment el E E'". There is a tree T' E. T(E") such that m(el,  To) ~ m(e~, T'). Let tl 
be the unique piece from P(To) with environment el and let t( be the unique piece from 
P(T') with environment e~. Replace tl in To by t~ and call the result T~. 

Note that un(TO is a legal parse tree in G. Let Yo denote the yield of the parse tree un(To) 
and let y~ denote the yield of un(T O. Let s be the major segment of el. The s-th segment 
of y~ is obtained from the s-th segment of Yo by substituting the string m(e, T') for the 
string m(e, TO). Since the s-th segment ofyo is in In, m(e, To) ~ m(e, T') and Ira(e, To)[ 
= Im(e, T01 < 2n - 1, by Lemma 23 the s-th segment of yl is in Fn. We now choose 
another environment e2 from E'"  and iterate with T~. 

Since no element of E'"  has a major segment impacted by any other element of E'", 
this process can be iterated for each element of E ' "  yielding a final tree T m such that un(Tm) 
is a legal parse tree for G whose yield is a string 

xlx2 '" xn 

where each x i E y3n, and for at least m values of i, xi E Fn. Since m = [E'"l -> 3n/8C, 
Lemma 22 is finally proved, with Cl = 3/8C = 3/25344. Q.E.D. 

9. Comments 

Theorem 8 shows that the class of DNF formulas has the approximate fingerprint property. 
By duality, the class of CNF formulas also has the approximate fingerprint property. The 
proof in fact shows that a polynomial time algorithm for CNF formulas using only 
equivalence queries can be correct for all k-CNF formulas (CNF formulas with at most 
k literals per clause) for only a finite number of values of k. This is the behavior achieved 
by the equivalence query algorithm for k-CNF formulas (Angluin, 1988a), adapted from 
the corresponding algorithm given by Valiant (1984). 

Since the target classes of formulas M(n, T, S) are monotone, the proof also shows that 
there is no polynomial time algorithm using only equivalence queries (querying general 
DNF formulas) that identifies all the monotone DNF formulas. In contrast, there is a 
polynomial time algorithm that exactly identifies monotone DNF formulas using equivalence 
queries and membership queries (Angluin, 1988a). Hence membership queries are essen- 
tial to that result. 

Hancock (1989) has shown that there is no polynomial time algorithm that exactly iden- 
tifies all decision trees (a strict subclass of DNF formulas) using only equivalence queries, 
even if the inputs to the queries may be DNF formulas. 

Theorem 14 shows that the class of dfas has the approximate fingerprint property. The 
target classes are finite, fixed-length, and zero-reversible (Angluin, 1982a). Theorem 16 
shows that the class of nfas has the approximate fingerprint property. Since the target 
classes are the same in both proofs, this shows that there is no polynomial time algorithm 
that exactly identifies dfas for finite, fixed-length, zero-reversible languages using only 
equivalence queries, even if we allow nfas as input to the queries. See also lbarra and 
Jiang's reduction of the general case to the finite and fixed-length case for dfas (Ibarra 
& Jiang, 1988). 
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of E96. Thus, there are at most  36 elements e', of E96 with the property that the major 
segment of e '  is one of  the segments other than s impacted by e. Hence at most 132 elements 
are removed from E Iterate this process until no elements remain in F. 

Since F initially contains at least r/24 elements, and at most 132 elements are removed 
at each iteration, in the end 

IE"] ~ r/(24 • 132) = r/3168, 

and the major segment of  each environment in E" is not impacted by any of  the other 
environments in E".  (Environments in E"  may share impacted non-major segments.)Q. E. D. 

We need a further subset of  E",  to guarantee the existence of  distinct strings for substitu- 
tion. Recall that r = r3n/47 . Thus, E" contains at least 3n/4C elements. Let  T(E") be 
the set of  all T E Tn(G) such that E" c E(T). Note that since E"  c E' ,  

] T(E'91 > 2 n 2 / q ( n )  r. 

For each environment e E E", consider the interval [i, j ]  of  terminal indices of e that 
are contained in the major  segment of  e. We know that the length of this interval is at least 
(n - 1)/4, by the definition of major  segment. For each T E T(E'3, consider the string 
of terminal symbols a i "'" a j  that appear  in the leaves with indices i through j ,  and define 

m(e, T) = ai "'" aj. 

An environment e E E"  is called major-constant i f  and only i f  m(e, T) takes on only one 
value as T ranges over all elements of  T(E'~). Let E ' "  be the set of  environments of E"  
that are not major-constant.  

LEIVI~A 28. ]E'"I - 3n/8C. 

Proof. Suppose to the contrary that there are at least 3n/8C major-constant environments 
in E". Each such environment has at least (n - 1)/4 terminal indices in its major  segment 
and these are all nonoverlapping. Thus, for at least 3n(n - 1)/32C leaf  indices, all the 
trees T E T(E") have the same terminals in the leaf  labels, so there are at most 

2n2/23n(n-- 1)/32C 

trees T in T(E"). But we have shown above that there are at least 

2n2/q(n) r 

trees in T(E'3, so 

23n(n-1)/32C < q(n) r, 

which is a contradiction, by our choice of n. Hence, for at least 3n/8C elements e E E", 
e is not major-constant,  that is, [E'"[ >- 3n/8C. Q.E.D. 



EQUIVALENCE QUERIES 149 

Theorem 20 shows that the class of  context free languages has the approximate finger- 
print  property. Since in this case also the target classes are finite and fixed-length, this 
implies that there is no polynomial  t ime algori thm that exactly identifies cfgs for finite, 
fixed-length languages using only equivalence queries. 

These arguments do NOT show that these classes are not polynomial  t ime learnable in 
Valiant's model  ofpac-identification (Valiant, 1984) or in a prediction model  (Haussler, 
Littlestone & Warmuth, 1988; Littlestone, 1988; Pitt & Warmuth, 1988). Polynomial t ime 
identification using only equivalence queries implies polynomial  t ime pac-identification, 

but not conversely. In particular,  with an oracle for NP each of these classes become pac- 
learnable, by the Occam's  razor technique (Blumer, Ehrenfeucht, Haussler  & Warmuth, 
1987), so proving one of these classes cannot bepac-identified in polynomial  t ime involves 
proving or assuming P ~ NP, whereas our results do neither. Kearns and Valiant (1989) 
have shown that dfas, nfas, cfgs, and boolean formulas are as hard to predict  modulo a 
polynomial  t ime transformation as certain cryptographic predicates are to compute. 

It is interesting to note that identification of  dfas with equivalence queries seems to be 
harder than successful prediction. I f  efficient predict ion of dfas in the pac-identification 
sense is required, an oracle for an NP-complete problem is sufficient. With an oracle for 
a #P-complete problem we can implement  an efficient majority-vote predict ion strategy 
for dfas which has a polynomial  bound on the worst case number of  errors of prediction. 
However, not even an oracle for a PSPACE-complete problem permits polynomial  time 
identification of dfas with equivalence queries. 

10. Acknowledgments 

This research was funded by the National Science Foundation, under grant number 
IRI-8718975. Earl ier  versions of this material have appeared in technical reports and the 
COLT '89 proceedings (Angluin, 1988b; Augluin,  1988c; Angluin,  1989). 

References 

Angluin, D. (1982a). Inference of reversible languages. J. ACM, 29, 741-765. 
Angluin, D. (1982b). A note on the number of queries needed to identify regular languages. Information and 

Control, 51, 76-87. 
Angluin, D. (1987). Learning regular sets from queries and counterexamples. Information and Computation, 75, 

87-106. 
Angluin, D. (1988a). Queries and concept learning. Machine Learning, 2, 319-342. 
Angluin, D. (1988b). Negative results for equivalence queries (Technical Report YALE/DCS/RR-648). Yale Univer- 

sity, Department of Computer Science. 
Angluin, D. (1988c). Equivalence queries and DNFformulas (Technical Report YALE/DCS/RR-659). Yale Univer- 

sity, Department of Computer Science. 
Angluin, D. (1989). Equivalence queries and approximate fingerprints. Proceedings of the Second Annual Workshop 

on Computational Learning Theory (pp. 134-145). Palo Alto, CA: Morgan Kaufmann. 
Angluin, D., Hellerstein, L., & Karpinski (1989). Learning read-once formulas with queries (Technical Report 

UCB/CSD 89/528). University of California at Berkeley, Computer Science Division. (Also, Technical Report 
TR-89-050, International Computer Science Institute, Berkeley, California.) 

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1987). Occam's razor. Information Processing Let- 
ters, 24, 377-380. 

Hancock, T. (1989). Identifying decision trees with equivalence queries. Manuscript, Harvard University. 



150 D. ANGLUIN 

Haussler, D., Kearns, M., Littlestone, N., & Warmuth, M. (1988). Equivalence of models for polynomial learn- 
ability. Proceedings of the 1988 Workshop on Computational Learning Theory (pp. 42-55). Palo Alto, CA: 
Morgan Kanfmann. 

Haussler, D., Littlestone, N., & Warmuth, M. (1988). Predicting {0, 1}-functions on randomly drawn points. 
Proceedings of the 29th Symposium on Foundations of Computer Science (pp. 100-109). Washington, DC: The 
Computer Society Press of the IEEE. 

Ibarra, O. & Jiang, T. (1988). Learning regular languages from counterexamples. Proceedings of the 1988 Workshop 
on Computational Learning Theory (pp. 371-385). Palo Alto, CA: Morgan Kaufmann. 

Kearns, M., & Valiant, L., (1989). Cryptographic limitations on learning boolean formulae and finite automata. 
Proceedings of the 21st ACM Symposium on Theory of Computing (pp. 433-444). New York, NY: The Associa- 
tion for Computing Machinery. 

Littlestone, N., (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. 
Machine Learning, 2, 285-318. 

Pitt, L., & Warmuth, M., (1988). Reductions among prediction problems: On the difficulty of predicting automata. 
Proceedings of the Third Annual Structure in Complexity Theory Conference (pp. 60-69). Washington, DC: 
The Computer Society Press of the IEEE. 

Porat, S., & Feldman, J., (1988). Learning automata from ordered examples. Proceedings of the 1988 Workshop 
on Computational Learning Theory (pp. 386-396). Palo Alto, CA: Morgan Kaufmann. 

Sakakibara, Y., (1988). Learning context-free grammars from structural data in polynomial time. Proceedings 
of the 1988 Workshop on Computational Learning Theory (pp. 330-344). Palo Alto, CA: Morgan Kaufmann. 

Valiant, L., (1984). A theory of the learnable. C. ACM, 27, 1134-1142. 


