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SUMMARY 

A mathematical model based upon catastrophe theory is derived to describe the kinematics of 
the wing beat in Dipteran flight. The parameters of the model correspond to anatomical and 
physiological characteristics of the insect. 

INTRODUCTION 

Biologists have long been hampered by the lack of mathematical means for 
describing occasional discontinuities in otherwise continuous biological sys- 
tems. Recently, however, a powerful mathematical tool, catastrophe theory, 
has been developed by Ren6 Thom (1969, 1975) which can be used to describe 
dynamical systems characterized by any of the four properties of bimodality, 
divergence, catastrophic jumps and hysteresis delays. The key to this approach 
lies in modeling the dynamics of a system rather than the underlying causal 
structure (e.g. Boyle's law models macroscopic properties of a gas without 
reference to the underlying causal relationships). Applications include such 
diverse topics as models of heartbeat and nerve impulse (Zeeman, 1972), 
national defense (Isnard & Zeeman, 1974), stock exchanges (Zeeman, 1974), 
phase transition (Fowler, 1972, Shulman & Revzen, 1972, Thom, 1971), light 
caustics (Thorn, 1969, 1975), wage bargaining (Zeeman, 1973a), evolution 
(Waddington, 1974), cellular differentiation (Woodcock, 1974) and protein 
denaturation (Kozak & Benham, 1974). The purpose of the present study is to 
describe the kinematics of the click mechanism of Diptera using the principles 
of catastrophe theory. 

Of the many attempts to describe the aerodynamics of insect flight, the most 
successful have been those in which measurements of the aerodynamic forces 
produced by flying insects on a balance in a wind tunnel were made simul- 
taneously with a cinematographic record of the kinematics of the wing beat 

*Order of authors decided by coin flip. 
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(Weis-Fogh, 1956; Nachtigall, 1966). In the majority of studies, however, the 
kinematics have not been measured exactly, a simple sinusoidal movement of 
the wing stroke being assumed (Weis-Fogh & Jensen, 1956). The general failure 
of such studies to describe the observed aerodynamics of insects is due to the 
fact that the movement of the wing stroke is ' . . .  far from sinusoidal and incap- 
able of description by any simple mathematical formula' (Pringle, 1957). This is 
especially so in the Diptera where the thoracic and axillary articulations form 
a bistable system which can 'click' from one stable configuration to the other 
(Boettiger & Furshpan, 1952; Boettiger, 1957; Nachtigall, 1974). Catastrophe 
theory provides a mathematical framework to model this behavior. 

The click mechanism of  the dipteran wing 
We shall begin with a brief description of the anatomy of the click mechanism, 
based on the studies of Boettiger & Furshpan (1952) and Snodgrass (1909). 

Consider the wing at the start of the downstroke (fig. la). Distortion of the 
notum by the longitudinal muscles results in upward movement of the tip of 
the scutellar lever, forcing ax l  upward. Owing to the configuration of the 
linkage chain (wing process - ax2 - paranotum - notum), ax l  may only 
move upward by forcing the wing process outward and the lateral wall of the 
notum inward. These movements are resisted by the elasticity of the cuticle 
and also by the action of the pleurosternal muscle (fig lb). As the configuration 
of the wing articulation changes from that illustrated in figure l a to that in 
figure 1 b, the angles c~ and/3 increase. The resisting force of the cuticular elas- 
ticity is directly proportional to o~ and/3. The rate of change from configuration 
la to lb, for a constant force applied through the scutellar lever, is therefore 
directly proportional to oL and/3, and also to the force developed by the pleuro- 
sternal muscle, which resists outward movement of the wing process. A third 
force which will resist the upward movement of ax 1, and thus the downward 
movement of the wing is the force of the relative wind, produced by the move- 
ment of the fly through the air. This latter force acts in a direction opposite 
to the wing movement. The rate of change of the wing angle yis therefore slow 
until position lb is reached, i.e. dp/dt small for ,[~ > 180 °. 

When the scutellar level pushes a x l  above the level indicated in figure 
lb (i.e. ¢ < 180°), the resultant of the cuticular elastic forces and the 
pleurosternal tension nosy acts in the same direction as the movement of 
the scutellar level, forcing ax  1 to rise rapidly, resulting in a large increase 
in de/dt. Thus, dy/dt > > 0, for ¢ < 180 °. 

However, during this period, c~ and /3 decrease until the cuticular elastic 
restoring force has been completely dissipated. At approximately the same 
time, the articulations encounter anatomical stops which limit the upward 
movement of ax  1. 

The movement of the notum which drives the scutellar lever results not only 
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F i g .  I .  a - c  Three successive positions of the wing articulation in the course of a beat, from the 
up position (la) to the down position (lc). The key to the anatomy is as follows: a x  1, ax2-axillary 
sclerites 1 and 2; n - notum; p - parascutum; p m  - pleurosternal muscle; p n  - anterior notal pro- 
cess; p w  - wing process; rv - base of radial vein; sl - section through tip of scutellar level. For 
further description see text. 
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from tension development in the longitudinal muscles but also from tension 
development in the dorso-ventral muscles, the tension developed being directly 
proportional to the muscle length (Boettiger, 1957). With the release of cuti- 
cular tension during the 'click' upwards of ax l  (and 'click' downwards of 
the wing), the notum bulges upward, stretching the dorso-ventral muscles to 
the extent where their tension exceeds the tension in the longitudinal muscles. 
The dorso-ventral muscles in their turn distort the notum, but in such a manner 
as to force the scutellar lever downwards, drawing down ax l  by virtue of a 
tight ligamentous coupling. The click mechanism then operates in the opposite 
direction to that described for the downward wing stroke, the relative wind 
acting with the movement instead of against it. 

There is one important difference between the upstroke and the downstroke: 
the action of the dorso-ventral muscles compresses the whole thorax in addi- 
tion to causing local distortion. This general compression results in the angle 

decreasing considerably. As ~ must still change beyond the 180 ° level before 
the click mechanism operates, the angle V will be different on the upstroke; 
i.e. the click mechanism operates at different wing angles on the upstroke and 
downstroke. 

It can be seen, therefore, that the click mechanism depends on the vertical 
force of the scutellar lever being opposed by the lateral force of the cuticular 
elasticity and the tension developed by the pleurosternal muscle. In the absence 
of the pleurosternal tension the click mechanism does not function, the wing 
angle V changing at an approximately constant rate (Boettiger & Furshpan, 
1952). The use of catastrophe theory to describe the dynamics of the system 
should therefore be based on the relationship of wing angle V to both lateral 
and vertical tension, and should incorporate the following properties of the 
system: (a) failure of the click mechanism in the absence of pleurosternal ten- 
sion; (b) rapid switch in direction of the vertical force at the extreme values of 
F; (c) occurrence of the click at different values of V on the up and down 
strokes. 

Catastrophe theory 
As mentioned above, catastrophe theory provides a mathematical tool for 

describing bistable systems which 'click.' Provided that the control space is 
of dimension 5 or less, the theorems of catastrophe theory provide a finite 
classification of the possible 'catastrophes' (Thom, 1975; Zeeman, 1973a), a 
'catastrophe' being a sudden jump in a system from one state to another. The 
number and type of these catastrophes depends only upon the dimension of 
the control space (exogenous variables). The state space (endogenous var- 
iables) may be arbitrarily large dimension (but finite). Poston & Woodcock 
(1974) provide graphic illustrations of the elementary catastrophes. 

Let us examine the simplest of the elementary catastrophes, the fold catas- 
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trophe. Consider 

e t  = - ( x  3 - 3x + b) (1) 

where x is some one-dimensional measure of  the system, x = dx/dt, b is an 
external parameter  which can vary, and e is a small positive number.  

We will refer to (1) as the ' fast '  equation, since for small c, x will vary much 
faster than b. The equation(s) governing the change in b will be called the 
slow equation(s). In fact x will vary fast enough that the system will always 
be near the manifold of  stationary points defined by x 3 - 3x + b = 0. Let us 
examine the behavior  of  this system as we vary b (see figure 2). Beginning at 
P1 (b = 0, x = v/~,,) we increase b slowly. The system follows the curve until 
P2 (b = 2, x --- 1). Now, any increase in b causes the system to jump to the 
lower branch of the curve, P3 (b = 2, x - 2). Reversing the process, as b 
decreases, the system follows the lower branch until it jumps from P4 (b = - 2 ,  
x = - 1 )  to P5 (b = - 2 ,  x = 2). Thus, slow variation of one paramete r  (b) 
can produce 'catas t rophic '  jumps in the system (x). Note  that  the lower and 
upper  branches of  the curve are attractors while the folded section of the 
curve (dotted in fig. 2) is a repellor. 
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Fig. 2. The fold catastrophe.  The  solid port ions of the curve are attractors of  system trajectories, 
the dotted port ion is a repeUor. For resultant system behavior see text. 



24 ALAN J. THOMSON AND WILLIAM A. THOMPSON 

Although the fold catastrophe is sufficient to model the click, other aspects 
of Dipteran flight will require a more complex model, one with two control 
parameters. The simplest (and locally unique) choice is 

e2 = - (x  3 - ax + b) (2) 

where a is now a second control parameter. 

The fast manifold defined by equation (2) is depicted in figure 3. Notice that 
for fixed a > 0, we recover the fold catastrophe, while for fixed a < 0 the mani- 
fold is single sheeted - t h e  click disappears. 

We are now ready to model the Dipteran click mechanism. Equation (2) 
will form the core of our model, with x referring to wing tip position in the 
line of stroke, eto wing inertia and drag, a to  a proportion, dependent upon how 
far forward the wing is drawn by the direct muscles of the fly (Pringle, 1968), 
of pleurosternal muscular tension greater than some minimum value a*, s to 
pleurosternal muscular tension, and b to the muscular driving force transmitted 
to the scutellar lever. We shall assume that • is constant, although it may in 
fact vary somewhat through the wing beat. Since the longitudinal and dorso- 
ventral flight muscles contract in response to a sharp pull rather than a CNS 
impulse (Nachtigall & Wilson, 1967), our model for variation in b must be 
endogenous. As a first approximation we chose 

b = r x  

where r is a physical parameter giving the rate at which muscular tension de- 
velopes following a stretch of the muscle. 

The system (2) - (3) has the following properties for a > 0. For small e we 
have 5c >> b. Hence, x is termed the fast variable and b the slow variable. 
Points ( b , x )  on the system trajectory will lie on or near the fast manifold. 
Thus, qualitative behavior of the system can be determined by considering the 
slow equation(s), equation (3) in this case, with the constraint x 3 - a x  + b = 0 

(see fig. 2). Beginning with b = 0 and x = ~ b increases and x decreases 

slowly. Finally at the point b = 2 V/a/3, x = v / - ~ ,  the system 'clicks', with 
5c << 0 until x reaches the lower branch of the constraint curve. Then the 
process is repeated in reverse. However, if a goes to zero, the system ex- 
periences damped oscillations with no clicks, eventually reaching the stable 
point x = b = 0. Amplitude depends only upon the parameter a, A = (4/3) 
V/3a, where A is amplitude. When the wings are drawn back, ais reduced, con- 
sequently reducing the wing beat amplitude. Wing beat frequency depends 
upon e, a and r. For • fixed we find that the frequency is approximately 
proportional to r / a .  

However, the system described above is not yet sufficient, failing to satisfy (c) 
of the previous section. In addition we require that b have an upper bound, 
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Fig. 3. The catastrophe manifold with one fast variable, x, and two slow variables, a and b. In 
the single-sheeted region the manifold is an attractor of system trajectories. In the triple-sheeted 
region the middle sheet is a repellor, the upper and lower sheets attractors. Thus, for a > 0atra- 
jectory on the upper sheet will jump to the lower sheet when an increase in b brings the system 
past the edge of the fold. 

corresponding to a maximum tension which can be developed in the flight 
muscles. These problems can be rectified by adding a term in b to the right 
side of  equation (3) and varying a with wing position. That  is, the propor t ion 
of pleurosternal  tension transmitted is greater when the wing is farther forward 
(as it is at the end of the downbeat)  (Pringle, 1968). We shall assume that this 
difference is small and approximately linear in wing position. The new set of 
equations becomes 

(5) 
E± = - ( x  3 - a ' x  + b) (4) 

b = r ( s x -  b) (5) 

a ' =  a - c x  (6) 

a = 2 f ( s )  - a* (7) 

with s the pleurosternal  tension, c the cosine of the angle of  the wing stroke 
to the horizontal plane, A the angle to which the wing is drawn forward at the 
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midpoint of the wing stroke,f(s) a positive monotonically increasing function 
in s, and r, s, c, 2 and a* _-> 0. 

The click now occurs at x = E - c  + ~x/-~-3+3a]/3 (+ for downbeat, - for 
upbeat). Thus, the click down is retarded and the click up advanced. The ampli- 
tude of the wing beat increases with c, A = (4/3) ~ + 3a. Amplitude may be 
reduced by decreasing c. The fly is capable of altering the position of mechanical 
stops which limit the movement of the articulations; the effect of varying c 
would appear to reflect such alterations of position. Alternatively, a may be 
reduced, altering the pleurosternal tension transmitted to the wing by moving 
the entire locus of wing movement toward the rear. Wing beat frequency now 
depends upon the values of E, r, s and a in a complex fashion. Estimating para- 
meter values for Phormia from Nachtigall (1974)- E = .00025, r = 300, s = 2.05, 
c = .7, f(s) = .4s, a* = 0 and Jt = 1.6 -y ie lds  a wingbeat frequency of 150 Hz. 

DISCUSSION 

If the wingbeat is treated as an harmonic oscillator, we have x(t) = x(0) sin 
( kv/kv/kv/kv/kv/kv/k~ t), for x maximal at t = 0, k the muscular elastic force, and m the wing 
interia. However,  this formulation lacks parameters whose variation can be 
involved in flight control. In addition, empirical study has shown that the click 
mechanism results in a wingbeat frequency approximately proportional to 
m --22, not m -.5 (for Calliphora) (Danzar, 1956). 

The catastrophe model of Dipteran flight improves upon the traditional 
model in several respects. 

1. The graph of wing position will not be a sinusoidal curve, but rather a 
flatter curve near the extremes and a steeper one in between. Figure 4 shows 
this curve along with a sine curve and a cinematographically derived curve of 
the actual wing beat (Nachtigall, 1974). 

2. Using the parameters given above, we find the wingbeat frequency 
proportional  to E-.29; in good agreement with Danzar's (1956) measurements. 

3. When the wings are drawn back, the transmitted pleurosternal tension 
is reduced, parameter  a goes to zero and the click disappears. The wings will 
come to rest in mid-position following a series of damped oscillations. This 
prediction is corroborated by Nachtigall (1966, fig. 29). 

4. The observation that the upstroke is faster than the downstroke is replica- 
ted in our model since the click up occurs earlier in the upbeat  than the corres- 
ponding click down. However,  since variation in wing pitch with wing position 
has been ignored (drag has been assumed constant throughout  the wing beat), 
we underestimate the difference in rate between upstroke and downstroke. 

5. The fly turns by decreasing the amplitude of the beat of one wing and 
varying the pitch on that side (Nachtigall, 1974). The turn is made toward the 
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Fig. 4. Three plots of wing tip position relative to the fly plotted against time: a) a sine wave, b) 
a real fly (Phormia regina (Meig.)) (After Nachtigall) and c) a catastrophe model curve. 

wing of shorter beat. In our model parameters r and s must be the same for both 
wings. Thus, turning can only be accomplished by varying parameters a, cand 
e for one wing so as to reduce wing beat amplitude while maintaining the same 
frequency as the other wing. Since the wing beating with greater amplitude 
receives the majority of the driving force, it is largely responsible for determin- 
ing the frequency. Thus, to turn the fly draws back the wing (reducing a), varies 
the wing pitch (reducing c), and reduces the relative movement of the wing 
forward and back as compared to up and down (reducing c). This latter is likely 
accomplished by repositioning the mechanical stops. Such adjustments might 
also alter a parameter which has been implicit in the model so far, namely the 
coefficient of the x 3 term in equation (4). These predictions are compatible with 
the observation that flight control is accomplished with different muscles than 
those supplying the driving force (Nachtigall & Wilson, 1967). 

6. Boettiger (1957) has shown that wingbeat frequency varies with wing 
inertia. Varying inertia corresponds to varying e in our model. If egoes to zero, 
equation (4) becomes a constraint and equation (5) determines the frequency. 
Hence, if pleurosternal tension and wing angle ~ remain constant, we predict 
an upper bound to the wingbeat frequency. 

7. Very high frequency, low amplitude vibrations of the wings have oc- 
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casionally been recorded in which the click mechanism fails to operate 
(Boettiger, 1957). The catastrophe model yields this behavior when s ~ a~ ~ (the 
slow equation becomes a fast equation). 

As the model given here provides a number of insights into the Dipteran click 
mechanism, several refinements may be worth pursuing. One is to account for 
variations in drag with wing position. This might be accomplished by assuming 
pitch independent of wing position and introducing pitch as a second fast 
variable, or by assuming that pitch varies in a defined way with wing position 
and replacing e with e ( x )  in the fast equation. A second extention would be to 
model the wing tip position in two dimensions, in order to capture the details of 
the wing tip's path (a figure-eight) (Nachtigall, 1974). A third possibility is to 
bring the asynchronous nervous impulses to the flight muscles into the model. 
Duffing's equation may have applicability here (Zeeman, 1973b). Such a frame- 
work would also provide a natural place for explicit representation of wing 
inertia and an alternative explanation for the high frequency, but small 
amplitude vibrations which are occasionally observed. 
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