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Continuous crack growth or quantized growth steps? 
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ABSTRACT 
The assertion that a non-vanishing Griflith energy release rate requires an r -~ type singularity at the tip of a 
crack for the energy intensity, i.e. the product of stress and strain, is examined. When the existence of such 
a singularity is denied on physical grounds continuum mechanics energy balance considerations suggest that 
initial unstable crack extension is by a discrete growth step of characteristic size aa. 

Notation 

a = half crack length 
b = normal displacement from the crack plane, at the centre of the crack 
C = constant in equation (1) 
c = subscript denoting critical values 
d = total displacement conjugate to force F 

d~ = total crack tip displacement 
E = modulus of elasticity 

[(~) = displacement function 
F = crack separation force on Aa per unit thickness 
G = Grifllth energy release rate 

G a = crack separation energy rate 
KI = Irwin's mode I stress intensity factor 

r = distance from initial crack tip measured in x-direction 
s = distance from extended crack tip or tip of cohesive zone towards the centre of the crack (=&a - r) 
v = vertical displacement from crack plane 
vt = crack tip displacement from crack plane 

x, y = coordinates 
a = ddAa 
n = dlAa 

Aa = crack extension 
AW = energy absorbed at Aa during separation of the surfaces 

= slAa 
= value of ~ at which the crack opening displacement is d 
= normal stress on potential crack surfaces 

cr~ = remotely applied normal stress 
= average normal stress over Aa 

cr~ = yield stress in tension 
= Poisson's ratio 

A = absorption energy density (=½6-~) 

1. Introduction 

I t  h a s  b e e n  r e c o g n i s e d  f o r  s o m e  t i m e  t a c i t l y  o r  e x p l i c i t l y  [1-9]  t h a t  a n o n - v a n i s h i n g  

Gr i f l i th  e n e r g y  r e l e a s e  r a t e  a t  t h e  t ip  o f  a c r a c k  n e c e s s i t a t e s  a n  r -I t y p e  s i n g u l a r i t y  f o r  

t h e  p r o d u c t s  o f  s t r e s s  a n d  s t r a i n  in t h e  c r a c k  t ip  r e g i o n .  T h e  f o l l o w i n g  is  i n t e n d e d  as  a 
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heuristic explanation of concepts underlying this phenomenon which is sometimes 
referred to as an energy sink and leads to the suggestion of a possible mode of 
unstable crack extension by discrete growth step, not dependent on the existence of 
crack tip singularities. 

2. D i s c u s s i o n  

Consider a sharp crack of length 2a in an infinite plane in plane strain, loaded by a 
remotely applied stress tr~ normal to the crack surfaces, i.e. the Inglis configuration; 
see Fig. 1. Now imagine that the crack extends under constant load by an amount Aa 
which is small compared to a and that this occurs by the proportional quasi-static 
release of the cohesive forces holding the surfaces together at Aa. Let s be the 
distance measured towards the centre from the extended crack tip and let ~ equal to 
s/Aa be the normalized distance, as shown in Fig. 2. The normal stress in Aa before 
extension is tr(~) and the average stress over Aa is # equal to f01o-(~) d~. The normal 
force per unit thickness acting on Aa is F equal to dAa. Let the vertical displacement 
of the top separating surface from the plane of the crack be v(~) equal to 
(KiIKic)f(OAa, where f(~) is a function of ~ and possibly of the applied load factor 
(KI/KIc). Here K1 equal to  tr®(~ra) 1/2 and Kic are Irwin's mode I stress intensity factor 
and its critical value, respectively. Let the total displacement at the tip be dl equal to 
2Vl or to aAa where ot is 2(Ki/Klcf(1). However, we are more concerned here with 
the displacement d equal to 7/Aa, conjugate to the force F where ~/ is a number. The 

2o-< 

Figure 1. Crack in an infinite plane under uniaxial tension. 

× 

Figure 2. Separation of surfaces during stress relaxation in region Ao. 
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work absorbed during separation as the crack extends can be written 

AW = C F  d = ½ ~ A a  2 (1) 

where C is a number having a value between 0 and 1. When the stress-displacement 
law at the separating surfaces is linear C equals 0.5 and for convenience the value 
of C equal to 0.5 is assumed in (1). Note that any assumed value of C can be absorbed 
in the definition of d. 

The displacement d conjugate to F can be the actual displacement at some point 
equal to ~ When the form of the stress distribution over  Aa before extension and that of 

the crack profile after  extension do not depend on Aa, ~also does not depend on Aa. This 
is true when the material is linear elastic responding linearly at the crack surfaces and for 
a number of Barenblatt  type models [10, 11, 12] if Aa is identified with the cohesive zone 
size. In the former  case ~ equals ¢r2/16; see Appendix I. In the Barenblatt  type models 
the buld of the material is assumed to be linear elastic but the response in the cohesive 
zone is not linear. One of the limitations of Barenblatt  type models is that the maximum 
stress under the assumed stress-displacement law is far in excess of the stress which the 
material can withstand without yielding, assuming a quasi-static loading situation. In real 
elastic-plastic materials the stress distribution over  Aa and ~ vary with the crack tip 
plastic zone size /Aa ratio but this fact  in itself is not likely to invalidate the main 
conclusions in what follows. 

The non-dimensional quantities a equal to dl/Aa and ~ equal to dlAa can be 
looked upon as angles or strains to which the crack tip region is subjected during the 
crack extension process.  If we define an energy absorption density A by 

A = ~ r /  (2) 

(1) becomes 

AW = AAa 2 (3) 

The crack separation energy rate [14, 15] is the energy available for  surface separation 
over  the distance Aa, divided by Aa and it is given by 

GA= AW 
A'--a-= AAa (4) 

It is assumed that the cohesive strength Gc is a material property and G¢ is equal 
to the value of G a at fracture.  Using the subscript c to denote critical values, 

G~ = AcAac = Gc (5) 

Note that the Griffith energy release rate for  an elastic material, G, can be 
obtained by making Aa infinitesimal in (4), i.e. 

G = lim G a (6) 
Aa-+0 

The inescapable conclusion drawn from (4) is that G given by (6) can be different 
from zero or finite only if A varies as (Aa) -I as Aa tends to zero. In a linear elastic 
material the stress is proportional to the strain and the absorption energy density A is 
therefore proportional to t~ 2 and also to 7 2. It follows that ~ and 7/ must vary as 
(Aa) -tt2. This is of course the case since 

KI( E v 2) (.2¢r'~ ,,2 
rt = \ ~ a ]  (7) 

see Appendix I, and the normal stresses ahead of the crack tip are given by the 
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familiar expression 

KI 
tr(r) = - -  where r = Aa - s (8) 

X/27rr 

In an ideal perfectly plastic material # is smaller or equal to (2 + ~r)~ry/~/3 where 
o-y is the yield stress in tension. Since # is bounded ~ must vary as (Aa) -1 and this is 
in agreement with Rice's solution [2] for this material. The Rice-Rosengren-Hutchin- 
son solutions for power law hardening materials [7, 8, 9] also reveal an r -1 type 
singularity at the crack tip for the product of stress and strain. Generally, for all ideal 
materials exhibiting singularities satisfying this assumption one would expect the 
fracture criterion (5) to be equivalent to Griffith's fracture criterion, G = Gc. 

In a real material crack extension is preceded by an initiation stage causing crack 
tip blunting and intense plasticity in the immediate vicinity of the crack tip. With 
increasing load some stable crack growth may follow if the material is sufficiently 
ductile, often ending in catastrophic crack propagation. This last stage can be 
subdivided into an initial transient stage followed possibly by near steady state crack 
propagation. The state with which we are concerned here is that of incipient 
instability or the very early stages of transient crack propagation, when the crack tip 
has moved sufficiently to be out of the close range effect of the concentrated residual 
plasticity incurred near the crack tip during the initiation stage. Nevertheless, the state 
considered is essentially quasi-static, on the general premise that even a running crack 
must walk before it can run. It is acknowledged that the energy balance for dynamic 
crack propagation must be different from that prevailing at incipient instability. 

Since an infinite stress is not possible in a real material, the Griffith criterion 
equating G to Gc at fracture can be satisfied only if the required r -~ strain singularity 
is engendered at the tip. This would imply a blunt crack profile consistent with Rice's 
solution for a non-hardening material mentioned earlier. However if both stress and 
strain singularities are ruled out on physical grounds, then A is bounded and Griffith's 
criterion cannot be satisfied since G vanishes. A model often used to represent 
continuous crack extension satisfying the Griffith fracture criterion is a translating 
Barenblatt type cohesive zone of sufficient finite dimension to accommodate a tip 
displacement of the requisite magnitude. However it is difficult to reconcile the state 
of crack equilibrium in the cohesive zone with the difference which exists in the case 
of most materials between the maximum inter-atomic force in the Barenblatt model 
and the much smaller yield stress of the material. If on the other hand the stresses in 
the cohesive zone are taken to be of the order of the yield stress as in the Dugdale 
model, then the minimum tip displacement satisfying the energy rate requirements is 
probably much larger than the range of the forces acting on the fracture su r faces -  
leading to an inconsistency since the two values should be the same. Nevertheless the 

possibility of continuous translation of an equilibrium crack is not necessarily ex- 
cluded as the actual surface separation processes may be of a much more complex 
nature than the simple one used in the model. 

An alternative explanation has been proferred [14, 15] that initially the crack does 
not extend continuously in infinitesimal steps but that unstable propagation begins 
with a discrete growth step of size Aa. Note from (4) that Aa appears to have a 
"leverage" effect on the crack separation energy rate G a. Hence for a finite value of 
Aa, the fracture criterion (5) can be satisfied even when A is bounded. The difference 
between the fracture criterion (5) and Griffith's criterion is now apparent. It would 
seem therefore that the value of Aa is partly determined by a quantization process 
dictated by (5). Other factors more difficult to assess are of a metallurgical nature and 
concern the micro-mechanisms connected with the dominant fracture mode. Although 
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the elastic plastic cont inuum model may  be used to derive certain general conclusions 
as we have done here, it is too simple to explain adequately the fracture  process  and a 
more realistic representat ion allowing for  rate effects,  microcracking and mechanical  
instability in the f racture  zone is required [16]. These questions are not considered in 
the present  analysis.  

The need for  considering a finite process  zone ahead of the crack tip has been felt 
for many  years  by a number  of workers  [6, 10-15, 17-21]. B. Cotterell  [22] refers  to 
the format ion  of microcracks  some distance below the root  of a notch before the main 
fracture  occurs;  see also V.F. Zakay  et al. [23]. For  fracture nucleated by slip bands 
[24] Cotterell  suggests that cleavage fracture  occurs  when the microcracks  suddenly 
form a region of plastic instability. He  adds that the presence  of microcracks  alone 
does not cause cleavage fracture;  an essential  condition for fracture to occur  is that 
the size of the region of plastic instability reaches a critical minimum value. He  also 
infers that the critical size is related to the critical crack opening displacement  [25]. 

3. Conclusions 

Continuum mechanics  energy balance considerat ions suggest that at incipient in- 
stability in a real material  a crack may  extend by  a discrete growth step. A critical 
minimum size for  the growth step must  be attained in order that the rate of energy 
released be large enough to overcome the cohesive resistance of the material,  equal to 
the energy per unit area required for  surface separation.  This necessary  condition for  
f racture  instability may  possibly be satisfied by the format ion of microcracks  some 
distance ahead of the crack tip fol lowed by  the rapid spreading towards the crack tip 
of a zone of instability of the required minimum size, as suggested by Cotterell  [22]. 
H o w e v e r  the precise active micro-mechanism involved in the fracture  process  is left 
an open question. 
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Appendix I 

Values o f  ~, *1 and a f o r  linear elastic materials  

W h e n  a l inear  e las t i c  ma te r i a l  r e s p o n d s  l inea r ly  a lso  at  the  c r a c k  su r f aces ,  the  c r a c k  
profi le  is e l l ip t ica l  and  is g iven  b y  xEja2+ y2/b2 = l ,  o r  

y = _ + b  s - - - 1  (A1) 
a 

(see  Fig.  A1) w h e r e  a and  b are  the  m a j o r  and  m i n o r  axes  o f  the  e l l ipse ,  r e s p e c t i v e l y .  
W h e n  s ,~ a, (A1) b e c o m e s  a p p r o x i m a t e l y ,  

v = -+ (A2) 

N o w ,  b = (2KI(1 - v2)/E)a/Tr 112. H e n c e  

~l = d/Aa 4 K l ( 1 -  v2) ( 2 ~ )  1/2 
= E (Aa)-V2 (A3) 

U s i n g  (8) and  (A2) the  w o r k  a b s o r b e d  dur ing  s e p a r a t i o n  is 

E ' / ' r  J o  

This  is e v a l u a t e d  by  m a k i n g  the  subs t i t u t ion  (Aa/r  - 1) = tan20 g iv ing  

A W = K~(1 - v 2) Aa  (A4)* 
E 

- - I  

Fig. A I. 

* The derivation of this equation has been carried out previously, e.g.G.R. Irwin [26]. 
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or  

G a =  G 

T h e  a v e r a g e  s t ress  is 

1 fo = ~ a  KI(27r)-t/2 r -1[2 dr = 2K1(crAa)  -I/2 

H e n c e  

l ~  2 2 G  t' KI(  v )(2~r/Aa)t/2 r / =  ff-~a -- 

C o m p a r i n g  (A3) w i th  (A7) g ives  ( =  ¢r2/16 = 0.677. From (A2) 

ct = ddAa = 4KI(1 - v 2) (2/¢rAa)l/2 
E 

(A5) 

(A6) 

(A7) 

(A8) 

RI~SUMI~ 

On examine la th6orie suivant laquelle la vitesse de relaxation de l'6nergie de Griflith non gvanescente 
requiert une singularit6 du type r -1 au sommet d'une fissure pour exprimer l'intensit6 d'6nergie, ~ savoir le 
produit de la contrainte et de la dilatation. Si l'existence de telle singularit6 est critiqu6e sur les bases 
physiques, des consid6rations d'6quilibre d'6nergie de m6canique des milieux continus sugg6rent qu'une 
extension initiale d'une fissure instable s'effectue par un ressaut de croissance discr6te caract6ris6 par une 
dimension Aa. 
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