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Abstract. We investigate the problem of learning Boolean functions with a short DNF representation using decision 
trees as a concept description language. Unfortunately, Boolean concepts with a short description may not have 
a small decision tree representation when the tests at the nodes are limited to the primitive attributes. This representa- 
tional shortcoming may be overcome by using Boolean features at the decision nodes. We present two new methods 
that adaptively introduce relevant features while learning a decision tree from examples. We show empirically 
that these methods outperform a standard decision tree algorithm for learning small random DNF functions when 
the examples are drawn at random from the uniform distribution. 
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1. Introduct ion 

In the standard model of learning from examples the target concept is a subset of the given 
instance space, and the teacher presents to the learner a set of instances from the instance 
space which are labelled positive if they are elements of the target concept (positive exam- 
ples) and negative otherwise (negative examples) [Carbonell et al., 1983]. The task of the 
learning algorithm is to induce a rule that will accurately predict the class label of future 
instances from the instance space. 

In this setting, the interchange of information and knowledge between the learning algo- 
rithm and the teacher is based on the instance and concept description languages [Carbonell 
et al., 1983]. The first one is used by the teacher to present the examples, while the second 
one is used by the learning algorithm to represent its hypothesis for the target concept. 

A simple way to describe an instance is by a measurement vector on a set of predefined 
attributes and a class label. An attribute comprises a (possibly) relevant characteristic of 
the target concept, and an attribute measurement reveals the state of the variable in an 
observed instance. Such a description is called attribute based. For example, a Boolean 
attribute is used to indicate the presence or absence of a quality in the instance. 

In an attribute-based learning system with a fixed concept representation language the 
grain of the attributes determines the complexity of the classification rule. Appropriate 
high-level attributes facilitate concept representation, but if the attributes are low-level 
primitives for a target concept, the learning system will often have to compile a complex 
rule to express its hypothesis [Flann and Dietterich, 1986]. Such complex rules are usually 
difficult to find, and when they are found, they are often opaque to humans. 

The creation of appropriate attributes is not an easy task. Quoting Breiman et al. : "Con- 
struction of features is a powerful tool for increasing both accuracy and understanding of 
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structure, particularly in high dimensional problems. The selection of features is an art 
guided by the analyst's intuition and preliminary exploration of the data" ([Breiman et al., 
1984], page 140). 

One approach to partially automate the formation of high-level attributes for learning 
is to extend the primitive set of attributes with all Boolean combinations of the primitive 
attributes of a fixed type and size. For example, Valiant [1985] essentially uses conjunctions 
up to a fixed size as high-level attributes to learn a restricted class of DNF formulae (a 
DNF formula is a Boolean expression in Disjunctive Normal Form). Rivest uses the same 
high-level attributes to learn decision lists [1987]. Breiman et al. use limited conjunctions 
of the attributes to find meaningful decision trees in medical and chemical domains [1984]. 
Usually, only a small number of the features proposed this way are meaningful for learning, 
unless domain knowledge is used to select relevant combinations for the problem at hand. 

Another approach is to let the learning algorithm adaptively define its own features while 
learning. The capability of a learning system to adaptively enlarge the initial attribute set 
is called dynamic bias [Utgoff and Mitchell, 1982]. General purpose learning systems with 
this capability have been proposed, for example, for incremental learning [Schlimmer, 1986] 
or for learning sets of Horn clauses [Muggleton, 1987]. 

In this paper we present two learning methods that dynamically modify the initial attri- 
bute bias for learning decision trees. Traditional learning algorithms choose the test to place 
at a node from a fixed set of attributes. In the simplest case, this set coincides with the set 
of primitive attributes [Breiman et al., 1984, Quinlan, 1986], and it has also been extended 
to include conjunctions [Breiman et al., 1984, Rivest, 1987]. 

Our first learning method (called FRINGE) builds a decision tree using primitive attri- 
butes, analyzes this tree to find candidates for useful higher level attributes, then redescribes 
the examples using the new attributes in addition to the primitive attributes and builds a 
decision tree again. This process is iterated until no new candidate attributes are found. 

Our second method uses as concept description language, a restricted type of decision 
tree called a decision list. The method uses a top-down sample refinement strategy to form 
a list of conjunctions of the primitive literals. A greedy heuristic chooses the next literal 
in each conjunction according to an attribute merit function. A sample refinement method, 
called separate and conquer, models the conditional choices made by the greedy heuristic. 
The subdivision process presented in [Haussler, 1988] resembles one step of this method. 
We present two specific algorithms based on this strategy: GREEDY3 and GROVE. 

Our separate and conquer algorithms use essentially the same control structure as the 
CN2 algorithm [Clark and Niblett, 1989] with beam size one (the beam size is a user defined 
parameter to control the amount of parallel search that the algorithm performs). However, 
we use different attribute merit functions and a different strategy to avoid overfitting the 
data. Clark and Niblett use a significance measure to stop growing a conjunction. By con- 
trast, we use a simpler stopping rule, but after learning we prune the hypothesis using 
an independent data set. Pruning methods have been successfully applied to decision tree 
algorithms [Breiman et al., 1984, Quinlan, 1987b]. 

Both methods (separate and conquer and CN2) use a stepwise approach to form a con- 
junction to place at the root of a decision list. A similar technique is used by the CART 
method [Breiman et al., 1984], to construct a conjunction (or disjunction) to place at a 
node of a decision tree. However, the decision list heuristics search for a conjunction that 
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covers a large port ion of  the examples that belong to the same class, while the decision 
tree heuristic searches for a conjunction that divides the examples into sets with a small 
class mixture. Each heuristic is appropriate for its own structure. 

The outline of  this paper  is as follows: In Section 2 we introduce some notation and 
terminology; in Section 3 we review the standard decision tree method and describe our 
implementation (called REDWOOD),  which is a new hybrid of  diverse ideas. In Section 4 
we discuss a shortcoming of the decision tree representation for D N F  functions. We call 
this representational problem the replication problem because of  the duplication of the test 
in the tree. Then, we discuss the impact of the replication problem on a learning system 
based on decision trees. In Section 5, we describe the FRINGE algorithm and its implemen- 
tation. In Section 6 we review the concept of  decision lists and the learning algorithm pro- 
posed by Rivest. In Section 7 we present the top down greedy heuristic to learn decision 
lists, and present the algorithms GREEDY3 and GROVE based on this method. In Section 
8 we present some preliminary results on the performance of the algorithms in three Boolean 
domains, and show that they compare very favorable to the decision tree approach. In Sec- 
tion 9 we summarize our results and discuss future research directions. 

2. Definitions 

In this section we introduce the notation and definitions that formalize the basic notions 
we use in this paper. 

Let n be a positive integer and let V be a set of n Boolean attributes. We denote by 0 
and 1 the two values of a Boolean attribute and by Bn the set of n dimensional Boolean 
vectors. The set B n defines all the instances that can be described by the attributes in V, 
and it is called the instance space. 

A concept C is a subset of Bn. The elements of C are the positive examples of the concept, 
while the elements in Bn but not in C are the negative examples. We denote an example as the 
ordered pair < x, c > where x E Bn and c E { + ,  -- }. A set of examples is called a sample. 

A hypothesis is also a subset of B, .  Let S be a sample of a concept C. Let S+ be the 
set of instances in S that are labelled positive, and let S_ be the set of instances that are 
labelled negative. We say that H is a hypothesis of C consistent with S if  S+ ___ H and 
S M H = 0. The error between a hypothesis H and a concept C is the symmetric differ- 
ence of the two sets. We use as a measure of  the error  the cardinality of  this symmetric 
difference divided by 2 n (that is, we assume a uniform distribution over the instance space.) 

L e t f b e  a Boolean func t ion , f :  B~ ~ {0, 1}. The funct ionfdef ines  the concept C = {x E 
B,  ]fix) = 1}. Conversely, a concept C defines a Boolean function: the Boolean indicator 
function of the set. In this paper, we will refer to a concept by its Boolean indicator function. 

Finally, we introduce some terminology to refer to combinations of Boolean attributes. 
A literal is an attribute or  its complement.  A term is a conjunction of literals, a clause 
is a disjunction of literals. In general, a feature is any Boolean combination of the attributes 
obtained by applying Boolean operators to the primitive attributes. We use the term variable 
to refer to a primitive attribute or to a feature. We use o, + and - to denote the Boolean 
operators and, or and not respectively. The size of a feature is the number of literals in 
its (smallest) expression. For  example the feature, Xl • -~2 + x3 has size 3. 
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Figure 1. Smallest decision tree for x I • x 2 + x 3 ° x 4 • x 5. 

3. Decis ion trees 

The goal of a system that learns from examples is to induce from a relatively small number 
of  examples a hypothesis that will accurately predict the class of  new instances. One popular 
methodology has been developed using decision trees as the concept representation language. 
An excellent introduction to this topic is given in [Quinlan, 1986], and a more complete 
discussion on the subject is given in [Breiman et a l . ,  1984]. In this section we review the 
salient aspects of the rule generation procedure to learn Boolean functions from examples 
using decision trees. 

In a Boolean decision tree, an internal node defines a binary test on a variable. For exam- 
ple, the root node of the tree in Figure 1 defines the test "is Xl = 1?". Each edge represents 
an outcome of  the test. We adopt the convention that the left edge represents the negative 
outcome, and the right one represents the positive outcome. The label of  a leaf (positive 
or negative) represents the class that is assigned to any example that reaches this node. 

It is easy to see that a Boolean decision tree represents a Boolean function. Each path 
from the root node to a positive leaf  defines a term in the function as follows: initially, 
the term is empty; then, for each node in the path concatenate the attribute at the node 
to the current term if  the path proceeds to the right of the node, otherwise concatenate 
the negation of the attribute to the current term. The function represented is the disjunction 
of all the terms generated in this manner. 

For learning however, we are interested in the inverse problem: how to generate a decision 
tree that represents a Boolean function specified by a partial truth table. The common pro- 
cedure is based on successive subdivisions of the sample. This process aims to discover 
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sizable subsets of the sample that belong to the same class. The tree structure is derived 
by a top-down refinement process on the sample. 

Initially, we begin with an empty decision tree and a sample set. A test is applied to 
determine the best attribute to use to partition the sample. In Section 3.1 we discuss a criterion 
to measure the merit of an attribute with respect to the subdivision process. For the time 
being, assume that the best  attribute can be determined using some statistical tests on the 
examples. Then, the best  attribute is placed at the root of the tree, and the examples are 
partitioned according to their value on that attribute. Each subset is assigned to one subtree 
of the root node, and the procedure is applied recursively. The subdivision process, on 
one branch of  the tree, ends when all the examples associated with the leaf  of  that branch 
belong to the same class. This leaf is labelled with the common class of  these examples. 

A statistical test requires a sample of  significant size. However, the samples may be quite 
small towards the end of  the subdivision process. Furthermore,  the presence of  noise in 
the data may force an unnecessary refinement of the examples (fitting the noise), which 
may actually decrease the tree classification performance on independent examples. Because 
of this, it is common to prune back the tree created by the above recursive subdivision 
process in an attempt to improve the accuracy of the hypothesis. Quinlan [1987b] proposes 
a strategy to search for the smallest subtree of the initial tree with the highest accuracy 
on an independent data set (pruning set). The method is appropriately called Reduced Error 
Pruning and it proceeds as follows. 

For  every nonleaf  subtree S of the initial tree T, we examine the change in classification 
error  on the pruning set that would occur if  the subtree S were replaced by a leaf. We 
assume this leaf is labelled with the class of the majori ty of the pruning examples classified 

by S. I f  the accuracy of the pruned tree is the same or increases, the subtree S is removed. 
The process ends when no further improvement is possible. 

3.1. Mutual information 

We now return to the question of measuring the meri t  of  an attribute with respect to the 
subdivision process. The measure of  attribute meri t  we use is based on the reduction in 
uncertainty about the example class if  we test the attribute value. This measure is formal- 
ized by the information theoretic concept of  mutual information. To state this notion more 
precisely, we need to introduce some concepts and notation. 

Suppose Y is a discrete random variable with range Ry. For any y ~ Ry, let 
p(y) = P{Y = y}. The entropy of Y is defined as 

yERy 

The entropy H(Y) measures the information provided by an observation of  Z or the amount 
of  uncertainty about F. Our  next goal is to define f o r a  pair of  discrete random variables 
X and F, a measure for the uncertainty about X after we observe Y Let  x be a value in 
the range of  X and y a value in the range of  F. I f  we denote by 
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p(y}x) = P { Y  = y l x  = x} ,  
p(y, x) = / ' { r  = y, x = x} 

then we define the conditional entropy as 

~ 1 ~ .  
H(~X) =x~lCx~,y,np(x, y)log p(ylx) 

For a pair of discrete random variables this quantity represents the amount of uncertainty 
about Y after X has been observed. Now since, H(I¢) represents our uncertainty about Y 
before we observe X, and H(YIX) represents our uncertainty afterwards, the difference 
n(r) - H(YIX) represents the amount of information about Y given by X. This quantity 
is called mutual information, and it is defined as 

I(Y; X) = n (Y)  - n(YIX).  

In our context, we can regard a Boolean variable as a discrete random variable X, and 
the class as a discrete random variable Y. Then, the mutual information of the attribute 
X and class Y measures the amount of  information we gain about the class value of an 
example after we test the variable. As in [Quinlan, 1986] we take the mutual information 
as our attribute merit function. Hence, the attribute chosen at each subdivision step is the 
one that maximizes the mutual information. 

The central quantities in the computation of  the mutual information are p(y), p(x, y), 
and p(ylx). We review how to estimate them from a sample S. We denote by 

Sy = { < x ,  c>lc = y} 
Sx.y = { < x ,  c >  [c = y, x has value x for attribute X}, 

and we use the hat notation to indicate empirical probability estimates (for example, ,b 
represents the empirical estimate for p). 

In decision theory, the expression p(y) is called the prior probability of class y, and we 
will denote it by Try. It reflects our a priori belief that an object will belong to class y. 
If  the sample S is indicative of the class frequency, the prior probability that an example 
will have class y is estimated from the relative frequency of  the classes as: 

= ISyl. 

[sl 

In this case the priors are usually called data priors. However, the sample may not reflect 
the distribution of the classes that we shall observe after training, or the sample may not 
indicate correctly the frequency of the classes. In this case, the knowledge of the decision 
maker can be taken into account by setting the value of the prior probabilities. For example, 
when all classes are equally likely, we should choose uniform priors. In the two class case 
the uniform priors would be {1/2, 1/2}. 
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The quantities p(x, y) and p(ylx) are estimated from the conditional probability p(x[y) 
and the priors. The conditional probability that the attribute X has value x given that class 
variable Y has value y, is defined as 

p(xly) - p(x, y) (1) 
p(y)  

Since 

JSx,yJ, 
b(xly) : 

we obtain from Equation (1) and the above expression that 

[sx,yl 
b(x, y) = Try• ISyl 

The unconditional probability p(x) is the sum over y of the marginal probabilities 
p(x, y), therefore 

• Iax,yl. 
y~Ry I Syl 

Finally 

b~ylx) - b(x ,  Y) 
b~x) 

3.2. REDWOOD 

We implemented the heuristics described above in the REDWOOD system. The central design 
aspects of the system are summarized as follows: 

• class priors can be specified by the user or estimated from the data; 
• the subdivision process uses the criteria of maximum mutual information to choose the 

best attribute; 
• the sample refinement process terminates when the examples belong to the same class 

or the examples have identical attribute values but different class label (this may occur 
for example, in the presence o¢ noise); 

• the tree is pruned using the Reduced Error Pruning Method. 

The system is a new hybrid of existing ideas. ID3 [Quinlan, 1986] uses an attribute merit func- 
tion based on mutual information. We borrow from the CART system [Breiman et al., 1984] 
the flexibility given by the class priors. We borrow from Quinlan [1987b] the pruning method. 
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4. The replication problem 

A decision tree representation of a Boolean function with a small DNF description has 
a peculiar structure: the same sequence of decision tests leading to a positive leaf is replicated 
in the tree. To illustrate the problem, consider a Boolean function with a two term represen- 
tation, and to simplify the example assume that the attributes in the two terms are disjoint. 
The smallest decision tree for the function has the following structure. Each decision test 
in the rightmost path of the tree is an attribute of the shortest term in the formula. The 
path leads to a positive leaf and it corresponds to the truth setting for the first term. The 
left branch from each of the nodes is a partial truth assignment of the attributes that falsifies 
the shortest term. Then, to complete the function representation, we have to duplicate the 
sequence of decisions that determine the truth setting of the second term on the left branch 
of each one of  the nodes. We call this representational shortcoming the replication problem. 
In general, there are shared attributes in the terms so some replications are not present, 
but the duplication pattern does occur quite frequently. Figure 1 illustrates the replication 
problem in the smallest decision tree for the Boolean function Xl • x2 + x3 * X4 ° X5" Observe 
that this tree has six negative leaves which is equal to the product of the length of the terms 
in the DNF formula. We show in Appendix A that any decision tree equivalent to a /zDNF 
formula (a DNF formula where each attribute appears only once) has size greater or equal 
than the product of the length of the terms in the smallest equivalent DNF formula. 

Due to the replication problem, while learning a decision tree, the partition strategy has 
to fragment the examples of a term into many subsets. This causes the algorithm to require 
a large number of examples in order to ensure that the subsets are large enough to give 
accurate probability estimates; otherwise the subdivision process branches incorrectly or 
terminates prematurely. 

One way to solve the replication problem is to use conjunctions of the primitive literals 
at the decision nodes. To illustrate this solution, consider the two term formula discussed 
above. Assume we use the conjunction xl ° x2 as the test at the root node. Now, the right 
branch leads to a positive leaf that corresponds to the examples that satisfy the first term. 
The left branch leads to a representation of the second term (see Figure 2). We can represent 
this term by single attributes as before, but now the replication problem has disappeared. 
If, in addition, we have a feature for x3 ° J4 ° x5 we can obtain the even more compact 
representation shown on the right. 

Rivest [1987] and Quinlan [1987a] have investigated different versions of  this solution by 
using conjunctions to represent a Boolean function. Rivest uses conjunctions up to a certain 
size as tests in a novel representation for Boolean functions called decision lists. Informally, 
we can think of a decision list as a decision tree where each decision variable is a term, 
and each internal node has at most one non-leaf child. For example, both representations 
in Figure 2 are a decision list description of the formula. In practice, the algorithm he 
presents have to limit a priori the maximum size of the conjunctions that can be considered 
while learning. If  this value is not appropriate for the problem at hand Rivest's algorithm 
will fail to find a solution (see Section 6). Quinlan's method generates a collection of pro- 
duction rules from a decision tree. Then, each rule is simplified by removing its irrelevant 
literals, and the set of rules is reduced using a greedy heuristic. Hence, the method attempts 
to detect and remove the duplication patterns. However, this approach still requires a large 
number of examples to build an accurate initial tree. 



FEATURE DISCOVERY 79 

Figure 2. T w o  representations f o r  x 1 • x 2 -]- x 3 • 3f 4 • x 5 using f e a t u r e s .  

To solve these problems,  we adopt an approach in which the learning algorithm defines 
adaptively the type or size of  the features to use in the representation. In the following 
sections we give three learning algorithms based on this idea. 

5. Learning features 

In Section 3 we discussed the formation of a hypothesis from examples using a decision 
tree representation where each test was defined by a single attribute. In this section we 
present a new algorithm that dynamical ly  creates and uses features as test variables in 
the tree. 

The feature set is defined through the following iterative learning method. The algorithm 
begins with a set Vof  primit ive attributes, and creates a decision tree for a set of examples, 
choosing its decision variables from the set V. Then, a find-features procedure generates 
new features as Boolean combinations of the variables that occur near the fringe of  the 
tree. We describe this heuristic in more detail below. The set of new features is added to 
the variable set, and the execution of the decision tree algori thm and the find-features pro- 
cedure is repeated. We will call a single execution of both processes an iteration. The iterative 
process terminates when no new features can be added to the variable set, or a maximum 
number of variables is reached. Table 1 presents a specific algorithm called FRINGE that 
implements this method. We present a find-features procedure in Table 2. 

The find-features procedure defines a feature for each positive leaf in the decision tree 
of  depth at least two, counting the root at depth zero. For each such leaf, the procedure 
examines the last two decision nodes in the path from the root of  the tree to the leaf. It 
forms a feature that is the conjunction of two literals, one for each of the decision nodes. 
I f  the path to the leaf  proceeds to the right from a decision node, then the literal associated 
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Table 1. FRINGE algorithm. 

input : V an attribute set and S a sample. 
M a positive integer such that M >l V I" 

initialize k := 0, and V1 := V 
repeat 

k : = k + l  
form decision tree Tk using sample S described using variables in Vk 
F := find-features( Tk ) 
Vk+l := V k U F  

until ( Vk+l = Vk o r  I Vk+l l> M ) 
output Tk, Vk and halt. 

Table 2. Find-features procedure. 

input  : a decision tree T 

F := e m p t y  set 
for each posit ive leaf l at  dep th  > 2 in T 

..... initialize: feature  := true 
let p and g be  the parent  and grandparent  nodes of l 
let vp and vg be their  test  variables 
if l is on the right subtree of p then 

form conjunction of v v and feature 
e l s e  

form conjunction of ~p and feature 
if l is on the right subtree of g then  

form conjunction of vg and feature 
else 

form conjunction of ~g and feature 
add feature  to F 

end 
re turn  F 

with this node is just the variable in the decision node, otherwise it is the negation of this 
variable. Thus the find-features procedure applies the term formation rule used to obtain 
a DNF formula from a decision tree (see Section 3), but only to the last two variables 
in the path to each positive leaf. 

For example, the find-features procedure generates the features x4 • Xs, J4 • x5 and xl 
• x2 (one feature appears twice) for the decision tree in Figure 1. They correspond to the 
positive leaves from left to right. 
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Figure 3. Performance comparison between FRINGE and random heuristic as defined by: • solid line: % error 
FRINGE; [] dashed line: % error random; gray bar: decision tree size for FRINGE; white bar: decision tree 
size for random. The left scale measures the % error, the right scale measures the hypothesis size in number 
of internal nodes. 

In each iteration, the find-features procedure forms very simple features; namely conjunc- 
tions of two variables or their negations. The creation of longer terms or more complex 
features occurs through the iterative process. Initially, the variable set contains only the 
attributes. After the k-th iteration, the variable set may contain features of size up to 2 ~. 
For example, after the second iteration, a feature is either a term of size up to 4 or a con- 
junction of two clauses, each of size 1 or 2. Negated features include clauses of size up 
to 4, and disjunctions of two terms of size 1 or 2. In the limit, the find-features procedure 
has the capability of generating any Boolean function of the literals, since the negation 
and and operators are a complete set of Boolean operators. 

Figure 3 illustrates the learning performance results for a single execution of FRINGE 
on a small random DNF (dnf4, see Section 8) and how it compares to a strategy where 
features are proposed at random. The random proposal heuristic works as follows. A feature 
is defined as the conjunction of two variables chosen at random from the current variable 
set. In each iteration, this heuristic adds the same number of features as FRINGE does. 
So, both methods work with the same number of variables in each iteration. 

The graph shows the change in percentage error and in size of the tree as the iteration 
proceeds. The error is measured on a sample drawn independently from the training sample 
(see Section 8). 

The shape of the error and the size graph for FRINGE are typical. After a few iterations 
a very accurate hypothesis is developed, and the remaining steps are used to find a more 
concise hypothesis by introducing more meaningful features. After nine iterations, in this 
case, the process ends because no new features are found. Note that the random guess 
heuristic was not successful at all. The small fluctuations occur because by chance some 
of the features defined were useful. 
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Another interesting aspect of FRINGE's learning behavior is the form of the final hypoth- 
esis. In this example, the smallest DNF description of the target concept has 10 terms and 
the final decision tree has 10 internal nodes. The decision variable at each node is a term 
of the target concept. A similar behavior was observed for all DNF concepts with a small 
description when all terms have approximately the same size. For DNF concepts with terms 
of highly varying size, the final hypothesis tends not to include the longer terms. However, 
the hypothesis is still quite accurate because the positive examples that only satisfy these 
terms are very rare when the examples are drawn from the uniform distribution. 

FRINGE solves the replication problem by forming meaningful features through an itera- 
tive process and using them at the decision nodes. Unfortunately, it is a difficult algorithm to 
analyze. The observation that the hypotheses generated by FRINGE for random DNF were 
decision lists suggested to us a second approach to overcome the replication problem. This 
approach is described in Section 7 below. First we review the decision list representation. 

6. Decis ion lists 

In a recent paper, Rivest [1987] introduced a new representation for Boolean concepts called 
decision lists, and showed that they are efficiently learnable from examples. More precisely, 
he showed that the class k-DL, the set of decision lists with terms of length at most k, 
are learnable in the sense of Valiant [1984]. 

Let Vbe a set of n Boolean variables and L its set of literals. For any non-negative integer 
k, we denote by T(n, k) the set of conjunctions of  literals drawn from L of  size at most k. 

A decision list DL is a list of pairs 

(T1, C l ) , . . . , (Zr ,  Cr), 

where each T/is an element of T(n, k), each ci is a value in {0, 1}, and the last term Tr 
is the constant term true. The last pair in the list is called the default pair. We call a pair 
(T, 1) a positive pair, and a pair (T, 0) a negative pair. 

A decision list defines a Boolean function as follows. An n dimensional Boolean vector 
x satisfies at least one term in the list. L e t j  be the index of the first such term. The value 
of the function on x is set to the value cj. For example, the following list 

(XlX2, 0), (XlX2, 1), (2vx2, 0), (true, 1). 

represents the exclusive-or function for two variables. 
It is easily verified that the class k-DL generalizes the class k-DNF of all DNF formulae 

with at most k literals per term ([Rivest, 1987], see also Section 7.1). 
The algorithm, presented by Rivest, to learn a decision list from examples requires, as 

input, the number of attributes n, a set of positive and negative examples from a target 
concept, and a value for k to define the length of the longest term allowed. The algorithm 
will find a k-DL description that is consistent with the examples if such description exists, 
otherwise it will return failure. 
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The algorithm begins with an empty decision list DL and a set of  training examples S. 
If  all the examples in S belong to the same class c, it adds the node (true, c) to the list 
and terminates. Otherwise, it selects a term T from the set T(n, k) that covers a portion 
of examples that all have the same class c and it adds the pair (T, c) to the list. The examples 
covered by the term T are removed from S, and the process is repeated until all the examples 
are accounted for. I f  no term can be found then the algorithm returns failure. 

Selecting an appropriate value for k presents practical difficulties. A small value of k 
may prevent the algorithm from finding a solution, while a large value of k may render 
the algorithm inefficient, since the size of the search space grows exponentially on k. 

In the next section we propose a new paradigm to learn a decision list from examples 
that dynamically defines the value of  k for the problem at hand. The method is based on 
a greedy approach to determine the literals in every term. 

7. Separate and conquer 

The smallest decision list representation for a concept is a decision list that uses the fewest 
literals. Unfortunately, the problem of finding the smallest decision list that is consistent 
with a sample is NP-hard [Rivest, 1987]. We can avoid this problem by choosing the literals 
in a decision list top-down by a greedy heuristic. In a top-down approach the greedy heuristic 
chooses the best literal for the sample set given that a set of literals has already been chosen. 
A simple way to model this conditional choice is by sample subdivision. 

In this section, we present an algorithm that forms a decision list from examples using 
a top-down greedy approach. First, we discuss the sample refinement strategy, called sepa- 
rate and conquer, that defines the control structure of the algorithm, and then we discuss 
two possible greedy functions to choose the literals. 

Table 3 presents a specific implementation of the separate and conquer learning algorithm. 
The algorithm begins with a non-empty set of examples S, an empty auxiliary set called 
the pot, and an empty decision list DL. If  all the examples in S belong to the same class, 
the default pair with the common class of these examples is appended to the list and the 
learning process ends. Otherwise, the algorithm finds the first term using the greedy heu- 
ristic. A select-literal function assigns to each literal a value of merit with respect to the 
subdivision process, and then chooses the literal with the highest merit. We discuss in detail 
two select-literal functions in the next two sections. After a literal is selected, the examples 
that have a zero entry for that literal (that is, do not satisfy the literal) are removed from 
the set S and are added to the pot. The pot contains the examples that do not satisfy the 
term, and that will be used later to learn the next terms. The literal selection and sample 
subdivision process terminates when all the examples in S share a common class label. 
At this point, the pair formed by the current term and the common class of  these examples 
is appended to the list DL. Before learning the next term, the examples covered by this 
term are discarded, and the examples in the pot are moved to the set S, while the pot 
becomes empty. Then, the algorithm proceeds as described above. 

After learning, the hypothesis is pruned to attempt to increase its classification perfor- 
mance on new instances of the concept. In the next sections, we discuss two greedy methods 
to find a sublist of the hypothesis DL that has at least the same accuracy as DL on an 
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Table 3. Control structure for a separate and conquer algorithm. 

input : a non-empty  sample S 

initialize D L  := empty  list 
while not all examples in S belong to the same class do 

initialize pot :-- empty  set and t e rm :-- t rue  
while not all examples in S belong to the same class do 

x :=  select-literal (S, t e rm)  
form conjunction of x and t e r m  
remove from S all examples with value 0 for x and add them to pot 

end 
c :=  class of remaining examples in S 
append pair ( term,  c) to  D L  
S := pot 

end 
append default pair with the class common to all examples in S 
D L  := prune-list ( D L )  
output  D L  and halt. 

independent sample set. We can reduce the size of a decision list by removing one of  its 
pairs or by removing a literal from one of its terms. The first heuristic decides which pairs 
of DL to keep and which pairs to remove from the list, while the second heuristic decides 
which literals to delete from the list. 

To end this section, let us contrast separate and conquer and the divide and conquer 
method used to learn decision trees. The divide and conquer strategy recursively subdivides 
a sample into parts until each part contains examples with a common class label. Instead, 
the separate and conquer strategy recursively subdivides only one part at the time, until 
all the examples in this part share the same class label. Then, the remaining examples are 
gathered together before subdividing them. This helps to keep the sample size larger, so 
that more accurate statistics are available to guide the learning algorithm. 

7.1. GREEDY3 

In this section, we focus on the use of  the separate and conquer paradigm to learn a DNF 
description for the target concept. A decision list where the default pair has class 0, and 
the remaining pairs have class 1 is equivalent to the DNF representation formed by the 
disjunction of  all terms in the list except the default one. 

We use the validity measure to implement the select-literal function for GREEDY3 (a.k.a. 
greedy literal, greedy term, greedy prune). The validity of  a given literal is defined as the 
probability that an instance is a member of a class or category given that it has that cue (that 
is, satisfies the literal). The concept of  literal, or cue, validity has long been a part of theories 
in perceptual categorization [Beach, 1964]. The basic idea is that organisms are sensitive 
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Table 4. Select-literal function for GREEDY3. 

let L be  the  set of  pr imi t ive  literals 
inpu t  : a sample  S, and  a t e rm t 

let T be  the  set of  all literals in t 
L : = L - T  

for each l in L 

m~ : - -b (+  I t --  1) 
choose l such t h a t  rn~ is max imized  

r e tu rn  

to cues that allow them to make correct categorization. For example, in the special case 
that a literal has unitary validity, the single literal is enough to make a correct classification. 

While learning, the separate and conquer algorithm maintains in the set S the examples 
that satisfy the current term. Then the select-literal function estimates the validity of each 
literal not already in the term using the set S and selects one with highest conditional prob- 
ability. Table 4 presents an implementation of the select-literal function for GREEDY3. 
Recall that we use the hat notation to indicate a probability estimate. 

Let us analyze briefly what literals the select-literal function would choose when the 
target function is a small DNF and examples are drawn from the uniform distribution. 
In this case it turns out that there are two reasons for a literal to have high-validity: it belongs 
to a short term or it belongs to many terms (or both). The first case leads the algorithm 
to identify a term in the formula. In fact, once it chooses a literal in a short term the validi- 
ty of  the remaining literals in the term increases, making them very likely to be selected 
in the next steps. 

The second case may lead to crossover  terms. A crossover term is a conjunction of literals 
that belong to different terms. If  the function selects a literal that belongs to many terms, 
the validity of  the literals that accompany it may not increase enough to assure that any 
of  them will be chosen in the next step. We discuss an example of  crossover term formation 
in Section 8.4. 

In our experiments, the addition of crossover terms to the hypothesis does not significantly 
degrade the classification performance for random small DNF, and they do not occur at 
all when the target concept is a I zDNF formula (a DNF where a literal appears at most 
once). However, they are a problem for functions with a strong term interaction, like the 
multiplexor functions. 

Some of the crossover terms can be eliminated from the hypothesis by pruning. In the 
second phase of the algorithm, we aim to find the smallest subset of  the term set that has 
the best classification performance on an independent data set. Unfortunately, this problem 
is NP-hard, so we find an approximate solution using the following greedy strategy to reduce 
the length of  the list. 

We denote by P a sample of  the target concept drawn independently from the learning 
sample, and by D L  we denote a hypothesis such that all pairs except the default one are 
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Table 5. Prune strategy for GREEDY3. 

input : a decision list DL with one or more positive pairs and a negative default pair 

DL := (true, O) 
R := set of all pairs in DL but default one 
/~ := number of errors D-"L makes in classifying P 
repeat 

for each v in R do 
create list DL~ by inserting r into DL 
E~ := number of errors DL,- makes in classifying P 

end 
choose ~ such that E+ is minimized 
A E  := E ~ - E  
if ( A E  _< 0) then 

DL := DLe 
/~ :=E+ 
R : = R - { ~ }  

end 
until ( A E  > 0 or R is empty ) 
output DL and halt. 

positive. The algorithm begins with a decision list DL that contains only the default pair 
(true, 0) and the set R that contains all of  the pairs in DL but the default one. For each 
pair  r in R we evaluate the change in classification error that would occur if  the pair  r 
is inserted into the list DL. The pair  may be added anywhere before the default pair, since 
the relative order of the positive pairs is not relevant. The pair  that reduces the error the 
most is added to the list and is removed from R. The process is repeated until no pair 
improves the accuracy of DL or the set R becomes empty. Table 5 presents a specific imple- 
mentation of the algorithm. 

7.2. GROVE 

We now turn to the problem of learning a general decision list using the separate and conquer 
paradigm. In a general decision list any pair  may have a positive or  negative class label, 
as opposed to a D N F  like decision list where all the pairs except the default one have a 
positive class label. 

Recall that the separate and conquer algorithm maintains in the set S the examples that sat- 
isfy the current term and in the pot  the examples that will  be processed later. When all the 
examples in S share the same class label the current term is complete. At this point, if  all 
the examples in the pot  belong to the same class, they define the class of the default pair, 
and the learning process ends. Intuitively, a good literal to choose should reduce the class 
mixture in S without increasing too much the class mixture in the pot. This is the basic 
idea of  the select-literal function we present in this section to learn a general decision list. 
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Table 6. Select-literal function for GROVE. 

input  : sample  S 

for each a t t r i bu t e  x 
m~ : =  m u t u a l  in format ion  be tween class and  a t t r i bu te  x 

choose ~ such rn~ is max imized  

for i = O, 1 
let S i  be the  set of  examples  in S wi th  value i for 

if( Hso (Y) -</-/s, ( Y ) )  then  
r e tu rn  ~ nega ted  

else 
r e tu rn  :~ 

Recall that the class mixture of  a set can be measured by the estimated entropy of the 
class variable using the examples in the set (see Section 3.1). We define a new select- 
literal function as follows. First, we choose an attribute that maximizes the mutual infor- 
mation between the class and the attribute for S. Then, we subdivide the examples in S 
into two sets according to their value for that attribute. Second, if the set that contains 
the examples with value 1 for the attribute has the lowest entropy we select the attribute, 
otherwise we select its negation. Table 6 presents an implementation for this select-literal 
function. 

In terms of  the examples, the first choice minimizes the average class mixture of the 
two parts into which we divide the set S. The second choice establishes that we keep the 
purer set, and we throw the other set into the pot. 

In the rest of  this section, we present a greedy pruning strategy to find a sublist of the 
learned list D L  that has at least the same accuracy as D L  on an independent sample P. 
Table 7 presents a specific implementation of the following method. 

We begin by measuring the classification error E of the decision list D L  on the sample 
P. Then, for each pair r in the list, we consider the sublist D L  r obtained by pruning the 
pair r and by modifying the class of the default pair. To prune a pair we proceed as follows: 
If  the term of the pair has size 1 then the pair is removed from the list, otherwise we prune 
the last literal in the term. Since the last literal is selected using a smaller sample size 
than any other literal in the same term, it is the most prone to statistical errors. After pruning 
the pair, the examples in P are reclassified according to the new list, and the class of  the 
default pair is set to be the class of the majority of the examples that filter down to the 
default pair. This change is made to reduce the error rate of the pruned list over the sample 
P. Clearly, other strategies of  adjusting the class labels could also be used. 

Once the list D L  r is generated, we compute the classification error over the sample P. 
Finally, we choose to prune the pair, if any, that reduces the classification error the most. 
The process is repeated until no pair improves the classification rate or the list contains 
only the default pair. 
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Table Z Pruning algorithm for GROVE. 

input:  a decision list DL, and a sample P 

E := number  of errors tha t  DL makes in classifying P 
repeat  

for each pair  r in DL do 
DLr := prune-pair (r, DL, P) 
Er := number  of errors tha t  DLr makes in classifying P 

end 
choose ~ such that E; is minimized 

A E  := E ~ -  E 
i f ( A E _ < O )  then 

DL := DLe 
E :=E~ 

end 
until (AE >__ 0 or DL has only the default pair) 
output DL and halt. 

prune-pair (r, DL, P) 

let  r = (t ,  c) 
if size(t) = 1 then 

remove pair  r f rom list DL 
e lse  

remove last literal f rom t 
D := set of examples  in P that  satisfy only default pair  
dc := class of the major i ty  of examples in D 
assign ( t rue,  dc) to default pair  in DL 
re turn  DL 

8. Experiments 

The objective of our experiments is to explore the capabilities and limitations of the 
algorithms presented to learn Boolean functions that have a small DNF description in the 
presence of irrelevant attributes. 

We use as a measure of learning performance the percentage of classification errors that the 
hypothesis makes on an independently drawn data set. We also report the size of the hypothesis. 

We analyze the performance of the algorithms on six functions from three Boolean 
domains: random small DNF, multiplexor and parity. The first domain allows us to easily 
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explore different levels of difficulty by simply changing the size of the formula. The last 
two domains have been used as benchmark problems for other learning algorithms. 

The multiplexor family is a single parametric class of Boolean functions that represent 
concepts of increasing complexity as the value of the parameter increases. Wilson [1987] 
proposed it as a test function for his genetic algorithm. Quinlan [1988] showed that accu- 
rate decision classifiers can be obtained for three members of the family. We will consider 
the problem of learning two concepts from this class in the presence of irrelevant attributes. 

The parity class of Boolean functions is a hard domain for any learning algorithm that 
uses a top-down, divide-and-conquer approach when the examples are drawn from the 
uniform distribution. In a complete sample for a function in this class, half of the examples 
are positive and half are negative. Furthermore, any attribute (relevant or not) is present 
in half of the positive examples and in half of the negative examples. Knowing the value 
of the attribute does not provide any information about the class. In practice, an heuristic 
search based on the relevance of the attributes is reduced, in this case, to a random guess. 

8.1. Experiment design 

We executed ten independent runs for each test function. In each execution, the learning and 
testing tasks were performed on two sets of examples independently drawn from the uniform 
distribution. The learning set was randomly partitioned into two subsets, training andpruning 
sets, using the ratios 2/~ and ½ [Breiman et aL, 1984]. The training set was used to generate 
a consistent hypothesis. The pruning set was used to reduce the size of the hypothesis and 
(hopefully) to improve its classification performance on new instances of the target concept. 

Let N be the number of attributes and K the number of literals needed to write down 
the smallest DNF description of the target concept. Let e be the percentage error that can 
be tolerated during the testing task. The number of learning examples we used for both 
training and pruning combined is given by the following formula: 

K * log2(N) (2) 

This formula represents roughly the number of bits needed to express the target concept 
times the inverse of the error. This is approximately the number of examples given in [Vapnik, 
1982, Blumer et al., 1987] which would suffice for an ideal learning algorithm that only 
considers hypotheses that could be expressed with at most the number of bits needed for 
the target concept, and always produces a consistent hypothesis. Qualitatively, the formula 
indicates that we require more training examples as the complexity of the concept increases 
or the error decreases. In our experiments we set e = 10%. We used 2000 examples to 
test classification performance. 

A random observation was generated using random, a UNIX utility. Each component 
of the Boolean vector was set to the value of the least significant bit of the random number 
returned by the procedure. 
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Table 8. Target functions. 

target 
concept 

d n f l  random D N F  
dnf2 r a n d o m  D N F  
dnf3 r a n d o m  D N F  
dnf4 random D N F  
mx6  6-mult iplexor 

m x l l  l l - m u l t i p l e x o r  
par4 4-parity 
pax5 5-parity  

description monotone attributes 
yes 
yes 
no 
no 
no 
no  
no 
no 

term length 
terms shortest longest average 

80 9 5 6 5.8 
40 8 4 7 4.5 
32 6 4 7 5.5 
64 10 3 5 4.1 
16 4 3 3 3 
32 8 4 4 4 
16 8 4 4 4 

32 16 5 5 5 

8.2. Test target concepts 

We present in Table 8 a concise description of the test functions by listing the total number 
of attributes, the number of  terms, the length of  the shortest and longest term, and the 
average term length. 

We present in Appendix B a DNF description for the test functions (dnfl, dnf2, dnf3, 
dnf4) from the first domain. We generated a small random DNF function using four param- 
eters: the total number of terms, the average term length (/z), the standard deviation of a 
term length (a), and a flag to indicate if the formula is monotone or not. First, we computed 
the length of each term according to the Gaussian distribution with parameters/z and or. 
Second, for each term we  selected its attributes according to the uniform distribution on 
the attribute set. If  the formula was non-monotone, we flipped a fair coin independently 
for each attribute in a term, if the coin turned up heads we  negated the attribute. This 
flag permits us to easily generate monotone random DNF (for otherwise most random DNF 
would be non-monotone).  It is of interest to contrast the performance of  the algorithms 
over these two types of D N F  since, within the Valiant model ,  Kearns et al. [1987] have 
shown that the problem of learning monotone DNF is as hard as the general problem. 

The next two functions were selected from the multiplexor domain. For each positive 
integer k, there exists a multiplexor function defined on a set of k + 2 k attributes or bits. 
The function can be defined by thinking of the first k attributes as address bits and the 
last attributes as data bits [Wilson, 1987]. The function has the value of the data bit indexed 
by the address bits. We used 6-multiplexor (k = 2) and ll-multiplexor (k = 4) as test func- 
tions in the presence of 10 and 21 irrelevant attributes, respectively. The first attributes 
were used as the multiplexor bits. 

The last two functions were chosen from the parity domain. For each positive integer 
k, there exists an even parity function defined on a set of k attributes or bits. The function 
has value true on an observation if an even number of  attributes are present, otherwise 
it has the value false. Analogously, we can define an odd parity function. We used 4-parity 
and 5-parity as test functions in the presence of 12 and 27 irrelevant attributes, respectively. 
The first attributes were used as the parity bits. 
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Table 9 presents the number of learning examples we used for each test concept. Two 
thirds of the examples were used for training and one third was used for pruning. 

Table 9. Number of learning examples. 

target 
concept 

d n f l  
dnf2 
dnf3 
dnf4 
mx6 

m x l l  
par4  
par5  

examples 
training pruning 

2195 1097 
1457 728 
1100 550 
1760 880 

480 240 
1067 533 

853 427 
2667 1333 

Table 10. FRINGE results. 

target 
concept 

dnf l  
dnf2 
dnf3 
dnf4 
rex6 

r a x l l  
pax4 
par5 

avg. J~ error avg. tree size avg. number 
first last first last iterations 
12.4 0.0 48.7 9.0 13.1 
10.4 0.5 52.6 7.6 10.3 

7.4 0.3 45.4 6.1 9.9 
24.9 0.0 93.9 10.0 9.9 

0.0 0.0 20.2 4.9 5.4 
13.1 0.0 97.0 11.6 7.5 
38.3 0.0 124.3 4.9 8.9 
36.5 22.1 324.2 120.7 4.4 

8.3 F R I N G E  results 

Table 10 presents the results we obtained with F R I N G E  for each test function. The table 
reports the average percentage error and the average tree size for the first and last hypothesis. 
The average was taken over the results of ten executions. The percentage error is the number 
of classification errors divided by the size of  the test sample. The deviation of  the actual 
results from the average is within 7.3% in the first iteration and within 0.4% in the last 
one, i f  we do not include par5. The classification performance was highly variable for that 
concept. The size of  the tree is the number of its internal nodes. 
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The results of the first iteration of  FRINGE are the results for our implementation of 
the decision tree algorithm. By the last iteration FRINGE learned an exact representation 
for the test functions dnfl, dnf4, mx6, mxll and par4, it discovered a very accurate descrip- 
tion for dnf2 and dnf3, and it failed to learn the par5 concept. In each run of par5 the 
iterative process ended because the maximum number of variables (350) was reached. 

Table 11. GREEDY3 results. 

target 
concept  

dnfl  
dnf2 
dnf3 
dnf4 
rex6 

rex11 
par4 
par5 

av#. lg error  avg. num.  pa i r s  

no p r u n e  p r u n e  no p r u n e  p r u n e  

0.4 0.2 11.6 9.3 
1.1 0.7 9.8 7.0 
1.4 0.6 7.5 5.8 
0.0 0.0 10.4 10.0 
0.4 0.0 6.2 4.3 
1.3 0.5 17.6 9.8 

19.3 12.0 69.0 26.7 
48.4 45.8 299.1 106.0 

The following remarks apply to all the test runs of the algorithm for all target concepts 
but par5. FRINGE learns an exact or very accurate representation of  the target concept 
by discovering relevant combinations of the primitive literals and by using these features 
at the decision nodes. The final hypothesis for each test function has the following character- 
istic structure. The right branch of every decision node points to the positive leaf, and 
the left branch points to a decision node or to a negative leaf (analogous to the second 
representation given in Figure 2). For the test functions dnfl and dnf4 every decision variable 
is a term in the formula, and all terms are present. For the test functions dnf2 and dnf3, 
only the most significant terms are represented by a decision variable. For example, for 
dnf3, FRINGE discovers all the terms but the longest one. The examples that satisfy only 
this term are very infrequent (about 0.3 %). A favorable interpretation would be that FRINGE 
is treating these examples as a sort of noise in the data. For the multiplexor and parity 
functions the disjunction of  the decision variables in the final tree is a DNF representation 
of the target concept. Further experiments with FRINGE are reported in [Pagallo, 1989]. 

8.4. GREEDY3  results 

Table 11 summarizes the results we obtained with ten executions of GREEDY3. The per- 
centage error is the number of classification errors divided by the size of the test sample. 
The percentage error for a single run differed from the average less than 1.2% without 
pruning and less than 0.6 % with pruning, for all concepts but par4 and par5. The accuracy 
achieved in each run for these concepts was highly variable. The size of  the hypothesis 
is the number of positive pairs in the list. GREEDY3 learned an exact representation for 
the target concepts dnf4 and mx6; it discovered an accurate hypothesis for the test functions 
dnfl, dnf2, dnf3 and mxll; but it failed to learn any of the members of the parity family. 
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The pruning strategy used by GREEDY3 simplifies and improves the hypothesis by remov- 
ing inaccurate terms. There are two types of spurious terms. In the test functions dnfl, 
dnf2 and dnf3, the spurious terms were generated at the end of  the learning process by 
statistically insignificant training sets. These terms could be avoided with a larger training 
set. In the multiplexor function the spurious terms removed by the pruning algorithm were 
crossover terms. The crossover terms are characteristic of the learning method for functions 
with strong attribute interaction like multiplexor. 

To illustrate the formation of crossover terms consider the l l-multiplexor function: 

XlX2X3X 4 -~- Xl.~2X3X5 --[- XlX2X3X 6 "-[- .~lX2X3X 7 --[- 
XI.~2X3Xs q- XlX2X3X 9 d- XlX2X3Xlo q- XlX2X3X11. 

For i = 1 , . . .  ,8 let t i denote the i-th term in the above expression. The initial conditional 
probabil i ty for x4 is given by: 

p (+lx4  = 1) = p(.~1.~2.~3 = 1) + 

1 7 9 
8 16 16 

8 

p ( t i - -  1) -- 
i=2 

where the first equality follows from the definition of  conditional probability and observing 
that a positive instance satisfies only one term. Similar calculations show that the initial 
conditional probabil i ty for any data bit is: 

9~ 
p(+lxj  = 1) = ]~ f o r j  = 4 . . . . .  11, 

while the conditional probabil i ty of any address bit  is one half. Thus, the algorithm will 
choose as the first literal a data bit, say x4. After this selection the conditional probabili ty 
of  a negated address bit :~i, for i = 1, 2, 3 becomes:  

5 
p ( + ] J i  = 1, x4 = 1) = ~" 

o 

The conditional probabil i ty of  the address bits x5 and x 6 also increases: 

5 
p ( + l x  5 = 1, x 4 = 1) = p(+lx6  = 1, x 4 = 1) = g" 

while the conditional probabil i ty of  the remaining data bits and the conditional probabili ty 
of any address bit  is smaller than ~ .  Now, the algorithm will  tend to choose the negation 
of  an address bit  or one of the attributes x5 or x6. A small fluctuation in the probabili ty 
estimation decides which. If, for example, x5 is selected, the literals 21 and -~2 are added 
to complete the term ~1 ° J2 ° x4 • xs, which is a crossover term. 
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Table 12. GROVE results. 

targe t  

concept  

dxffl 
dnf2 
dnf3 
dnf4 
rex6 

m x l l  
par4 
par5 

avg. ~ error avg. num. pairs 
no prune  prune  no prune  prune  

3.2 4.0 44.7 40.3 
1.8 1.8 30.2 29.4 
1.4 1.4 25.5 23.8 
9.5 7.8 56.7 50.0 
0.9 1.2 10.5 10.4 
3.4 3.9 37.2 33.4 

10.4 13.0 45.6 45.6 
41.6 41.3 223.4 223.0 

% error 

1 0 . 0  - 

8.0-  

6 .0-  

4 . 0 -  

2 . 0 -  

0 . 0 -  

I I I I I I I I I I I I I I I I I I I I I I I I I I 
0.5 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98 

prior p rob~i f i ty  ~ r  positive e l~s  

Figure 4. GROVE performance on dnf4. 

8.5. GROVE results 

Table 12 summarizes the results we obtained in ten executions of GROVE using uniform 
priors. The average percentage error differs from the result of a single run less than 3.7 % 
without pruning and less than 3.6 % with pruning, for all concepts but par4 and par5. GROVE 
learned a description within the established accuracy for-the test functions in the small 
DNF and multiplexor domains, while it failed to obtain an accurate representation of the 
parity concepts. 

The accuracy of the results can be improved in all the cases by selecting an appropriate 
value for the a-priori class probability. GROVE did not perform well using the data priors. 
Figure 4 illustrates the dependency of the accuracy of the hypothesis on the value of the 
class priors for test function dnf4. 

For the prior range 0.86-0.98 for the positive class, the algorithm discovers an exact repre- 
sentation of the concept. We observed a similar dependency between priors and performance 
for the remaining concepts, but it does not have a characteristic pattern that we could detect. 
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Figure 5. Learning Curves for dnf4. Learning curves are indicated as: O: Decision Tree, IS]: FRINGE, 0: GREEDY3, 
(~) : GROVE. 

For concept dnf4 and the prior probability of the positive class in the range 0.86-0.98 
the hypothesis is a DNF like decision list (all pairs except the default one are positive pairs). 
This observation supports the suggestion made by Quinlan (personal communication) to 
learn a decision list representation where all the pairs but the default one belong to the 
less numerous class. Then, the default pair would have the class label of the more numerous 
class. However, more experiments are needed to validate this strategy to bias the term for- 
mation procedure. 

8.6. Empirical comparisons among methods 

The poor performance of the decision tree algorithm for the random DNF and mxll concepts 
is due to a representational limitation of  decision trees as a concept description language for 
these types of  concepts. While learning a decision tree the sample subdivision process has to 
fragment the examples into a large number of subsets to find a tree description of the hypoth- 
esis (see Section 3). Since the tree is so large, the examples are exhausted before all branches 
in the tree can be explored. The better performance of the new methods arises from a more 
adequate concept description language for concepts with a small DNF description. 

To see if the replication problem can be overcome by varying the size of the training 
set, we present in Figure 5 the learning curves for dnf4. A learning curve shows how the 
classification accuracy varies as a function of the size of the training sample. Here, each 
point in the curve is the average classification error over ten runs. We use the same design 
criteria as those described in Section 8.1. A sample of size 2640 is the size of the learning 
set predicted by Formula (2) for e = 10%. 
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FRINGE's hypothesis for any of the random DNF concepts was a DNF-like decision list, 
the same type of hypothesis that GREEDY3 generates. And for this domain, their classifica- 
tion performance is quite comparable. 

Finally, the better performance of GREEDY3 over GROVE for all test domains except 
parity is due to the stronger bias built into GREEDY3. In GREEDY3 only the positive 
examples are explained by the hypothesis, while the negative examples are left as the default. 
By contrast, GROVE chooses which examples to cover and what class to leave as the default 
one. However, this design gives GROVE a greater flexibility in other domains. 

9. Conclusions and future directions 

In this paper, we view the problem of learning from examples as the task of discovering 
an appropriate vocabulary for the problem at hand. We present three new algorithms based 
on this approach. The first algorithm uses a decision tree representation and it determines 
an appropriate vocabulary through an iterative process. The last two algorithms use a decision 
list representation. These algorithms form their hypothesis from the primitive literals using 
a top-down greedy heuristic. 

We also show empirically that they compare very favorably to an implementation of a 
decision tree algorithm. Since the difficulties of the standard decision tree method arise 
from a representational limitation, we expect that any reasonable implementation of the 
decision tree algorithm will give similar results. 

Many more experiments could be done. We would like to test the methods in other domains 
that have been used as a benchmark for learning algorithms, and test their sensitivity to 
noise in the data. Some FRINGE tests on noisy domains are given in [PagaUo, 1989]. Other 
strategies to define Boolean features from a decision tree could also be explored. The 
heuristic used by FRINGE is compared to several different feature formation heuristics 
in [Matheus, 1989], with favorable results. He also reports learning time curves for the 
methods. We also would like to test and explore alternatives to bias the term generation 
procedure for GROVE. Finally, GROVE can be easily extended to problems with non- 
Boolean attributes and multiple concepts, and experiments need to be done in this direction. 

We also have some theoretical results for GREEDY3. In [Pagallo and Haussler, 1989] 
we show that a variant of GREEDY3 is a polynomial learning algorithm for/xDNF for- 
mulae (DNF where each attribute appears at most only once) under the uniform distribu- 
tion in the sense of [Kearns et al. ,  1987]. In the formal version of GREEDY3 we need 
to resample after each attribute is selected to ensure unbiased estimates of the conditional 
probabilities. 

Finally, a number of problems remain open. Do any of the algorithms we presented 
(FRINGE, GREEDY3, GROVE) learn the class of all monotone DNF concepts under the 
uniform distribution in the sense of [Kearns et al . ,  1987]? For any of the algorithms RED- 
WOOD (or ID3), FRINGE, GREEDY3, GROVE, can one in any reasonable way character- 
ize the class of target concepts and distributions that the algorithm works well on? 
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Appendix A 

Let V be a set of  n Boolean attributes, and let C be the set of  all conjunctions formed with 
attributes drawn from the set V. We write a DNF formula f over the set V as 

f =  C1 + C2 + . . . +  Cm 

where each Ci E C, and m is a positive integer. For each i, 1 < i < m, we denote by 
V/the set of attributes in term Ci and by ki the cardinality of  this set. 

We say t h a t f i s  a / zDNF formula if  for any 1 < i, j < m, i ~ j, V( Ci) 0 V( Cj) is the 
empty set. Without loss of  generality we assume that Um=ICi = V. 

We define an assignment x :V~  {0, 1} as an assignment of  Boolean values to each attribute 
in V. Given an assignment x the resulting value o f f  is denoted by fix). 

Let T be a decision tree over the set of variables V. An assignment defines a path from 
the root node of T to a leaf node. We denote by L(x) the leaf node and by T(x) the class 
label of  the leaf. We say that T is equivalent to f if for every assignment x, T(x) = fix). 

TI-IEOREM. L e t f b e  a /zDNF formula over the set of variables E Any decision tree equivalent 
to f has at least kl x k2 x . . .  x km leaves. 

Consider the set Z of all assignments of V where one variable of  each term is assigned 
to 0 while all other variables are assigned to 1. Clearly, IZI = kl × k2 x . . .  × km. Also, 
observe that two assignments in Z differ, at least, in the value assigned to two variables 
that belong to the same term. Furthermore, for all z ~ Z, f(z) =0. 

Let T be a decision tree over V equivalent to f. Assume that there are less than kl x 
k 2 x . . .  x km negative leaves in T. Then, there exist two distinct assignments zl, z2 ~ Z 
such that L(zO = L(z2). In other words, the assignments zl and z2 define the same path 
from the root node to a negative leaf. Let V/be one of the variables sets where zl and 
z2 differ (by construction there exists at least one of such set), and let y ~ V i be the variable 
that zl assigns to 0. Then, z2 must assign y to 1. Therefore, the variable y cannot be tested 
in the path from the root to L(zO. 

Let r be the assignment that assigns the value 1 to y and coincides with Zl elsewhere. 
Hence, L(r) = L(Zl), and T(r) = T(Zl). But this contradicts the fact tha t f ( r )  = 1. There- 
fore, the number of  negative leaves in T must be greater or equal to kl x k2 x . . .  x km. 
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Appendix B: DNF description of test target concepts 

dnfl 

dnf2 

X5X28X38X72X74X76 -~ X2X16X40X52X74 

X40X56X58X60X63X72 -~ X6X24X36XTIX39X48 

XIlX48X50X64X69X74 q- X2X15XTIX36X50X53 
XlX3X14X19X26X35X36 + X8X15X31X37 

X 18X20X30X36 + X2X3X9X19X24 

X6X7X14X25X26X31X34 -~ XlX6X22X30 

q- XlOX21X23X28X30X63 -.}- 

q- X3X17X45X55X72X75 --}- 
q- X6X12X22X45X60 
-k- X5X10X14XTIX29 -'}- 

-}- X24XesX27X36X37 -+- 

dnf3 XlX2X6X8X25X28X29 q- X2X9X14X16X22X25 

.~2X IOX 14X21.~24 -'}- XllXlTX19X21X25 

+ x124Sqg~22x27x28 
Jr- X lX4X 13XZ5 

+ 

dnf4 XIX4XDX57~¢59 + X 18.~22.~24 

.~9X 12.~38X55 -}- X5X29X48 

X4X26X38X52 -q- X6XllX36~55 

X3X4X21-~37.~55 

-[- X30X46X48X58 q- 

-~- X23X33X40X52 q- 

-1- .~6X9XloX39~46 q- 
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