
Machine Learning, 5, 71-99 (1990)
© 1990 Kluwer Academic Publishers. Manufactured in The Netherlands.

Boolean Feature Discovery in Empirical Learning

GIULIA PAGALLO (giulia@saturn.ucsc.edu)
DAVID HAUSSLER (haussler@saturn.ucsc.edu)
Department of Computer and Information Sciences, University of California, Santa Cruz CA 95064

Editor: Paul Rosenbloom

Abstract. We investigate the problem of learning Boolean functions with a short DNF representation using decision
trees as a concept description language. Unfortunately, Boolean concepts with a short description may not have
a small decision tree representation when the tests at the nodes are limited to the primitive attributes. This representa-
tional shortcoming may be overcome by using Boolean features at the decision nodes. We present two new methods
that adaptively introduce relevant features while learning a decision tree from examples. We show empirically
that these methods outperform a standard decision tree algorithm for learning small random DNF functions when
the examples are drawn at random from the uniform distribution.

Keywords. concept learning, dynamic bias, DNF functions, decision trees, decision lists.

1. Introduct ion

In the standard model of learning from examples the target concept is a subset of the given
instance space, and the teacher presents to the learner a set of instances from the instance
space which are labelled positive if they are elements of the target concept (positive exam-
ples) and negative otherwise (negative examples) [Carbonell et al., 1983]. The task of the
learning algorithm is to induce a rule that will accurately predict the class label of future
instances from the instance space.

In this setting, the interchange of information and knowledge between the learning algo-
rithm and the teacher is based on the instance and concept description languages [Carbonell
et al., 1983]. The first one is used by the teacher to present the examples, while the second
one is used by the learning algorithm to represent its hypothesis for the target concept.

A simple way to describe an instance is by a measurement vector on a set of predefined
attributes and a class label. An attribute comprises a (possibly) relevant characteristic of
the target concept, and an attribute measurement reveals the state of the variable in an
observed instance. Such a description is called attribute based. For example, a Boolean
attribute is used to indicate the presence or absence of a quality in the instance.

In an attribute-based learning system with a fixed concept representation language the
grain of the attributes determines the complexity of the classification rule. Appropriate
high-level attributes facilitate concept representation, but if the attributes are low-level
primitives for a target concept, the learning system will often have to compile a complex
rule to express its hypothesis [Flann and Dietterich, 1986]. Such complex rules are usually
difficult to find, and when they are found, they are often opaque to humans.

The creation of appropriate attributes is not an easy task. Quoting Breiman et al. : "Con-
struction of features is a powerful tool for increasing both accuracy and understanding of

72 G. PAGALLO AND D. HAUSSLER

structure, particularly in high dimensional problems. The selection of features is an art
guided by the analyst's intuition and preliminary exploration of the data" ([Breiman et al.,
1984], page 140).

One approach to partially automate the formation of high-level attributes for learning
is to extend the primitive set of attributes with all Boolean combinations of the primitive
attributes of a fixed type and size. For example, Valiant [1985] essentially uses conjunctions
up to a fixed size as high-level attributes to learn a restricted class of DNF formulae (a
DNF formula is a Boolean expression in Disjunctive Normal Form). Rivest uses the same
high-level attributes to learn decision lists [1987]. Breiman et al. use limited conjunctions
of the attributes to find meaningful decision trees in medical and chemical domains [1984].
Usually, only a small number of the features proposed this way are meaningful for learning,
unless domain knowledge is used to select relevant combinations for the problem at hand.

Another approach is to let the learning algorithm adaptively define its own features while
learning. The capability of a learning system to adaptively enlarge the initial attribute set
is called dynamic bias [Utgoff and Mitchell, 1982]. General purpose learning systems with
this capability have been proposed, for example, for incremental learning [Schlimmer, 1986]
or for learning sets of Horn clauses [Muggleton, 1987].

In this paper we present two learning methods that dynamically modify the initial attri-
bute bias for learning decision trees. Traditional learning algorithms choose the test to place
at a node from a fixed set of attributes. In the simplest case, this set coincides with the set
of primitive attributes [Breiman et al., 1984, Quinlan, 1986], and it has also been extended
to include conjunctions [Breiman et al., 1984, Rivest, 1987].

Our first learning method (called FRINGE) builds a decision tree using primitive attri-
butes, analyzes this tree to find candidates for useful higher level attributes, then redescribes
the examples using the new attributes in addition to the primitive attributes and builds a
decision tree again. This process is iterated until no new candidate attributes are found.

Our second method uses as concept description language, a restricted type of decision
tree called a decision list. The method uses a top-down sample refinement strategy to form
a list of conjunctions of the primitive literals. A greedy heuristic chooses the next literal
in each conjunction according to an attribute merit function. A sample refinement method,
called separate and conquer, models the conditional choices made by the greedy heuristic.
The subdivision process presented in [Haussler, 1988] resembles one step of this method.
We present two specific algorithms based on this strategy: GREEDY3 and GROVE.

Our separate and conquer algorithms use essentially the same control structure as the
CN2 algorithm [Clark and Niblett, 1989] with beam size one (the beam size is a user defined
parameter to control the amount of parallel search that the algorithm performs). However,
we use different attribute merit functions and a different strategy to avoid overfitting the
data. Clark and Niblett use a significance measure to stop growing a conjunction. By con-
trast, we use a simpler stopping rule, but after learning we prune the hypothesis using
an independent data set. Pruning methods have been successfully applied to decision tree
algorithms [Breiman et al., 1984, Quinlan, 1987b].

Both methods (separate and conquer and CN2) use a stepwise approach to form a con-
junction to place at the root of a decision list. A similar technique is used by the CART
method [Breiman et al., 1984], to construct a conjunction (or disjunction) to place at a
node of a decision tree. However, the decision list heuristics search for a conjunction that

FEATURE DISCOVERY 73

covers a large port ion of the examples that belong to the same class, while the decision
tree heuristic searches for a conjunction that divides the examples into sets with a small
class mixture. Each heuristic is appropriate for its own structure.

The outline of this paper is as follows: In Section 2 we introduce some notation and
terminology; in Section 3 we review the standard decision tree method and describe our
implementation (called REDWOOD), which is a new hybrid of diverse ideas. In Section 4
we discuss a shortcoming of the decision tree representation for D N F functions. We call
this representational problem the replication problem because of the duplication of the test
in the tree. Then, we discuss the impact of the replication problem on a learning system
based on decision trees. In Section 5, we describe the FRINGE algorithm and its implemen-
tation. In Section 6 we review the concept of decision lists and the learning algorithm pro-
posed by Rivest. In Section 7 we present the top down greedy heuristic to learn decision
lists, and present the algorithms GREEDY3 and GROVE based on this method. In Section
8 we present some preliminary results on the performance of the algorithms in three Boolean
domains, and show that they compare very favorable to the decision tree approach. In Sec-
tion 9 we summarize our results and discuss future research directions.

2. Definitions

In this section we introduce the notation and definitions that formalize the basic notions
we use in this paper.

Let n be a positive integer and let V be a set of n Boolean attributes. We denote by 0
and 1 the two values of a Boolean attribute and by Bn the set of n dimensional Boolean
vectors. The set B n defines all the instances that can be described by the attributes in V,
and it is called the instance space.

A concept C is a subset of Bn. The elements of C are the positive examples of the concept,
while the elements in Bn but not in C are the negative examples. We denote an example as the
ordered pair < x, c > where x E Bn and c E { + , -- }. A set of examples is called a sample.

A hypothesis is also a subset of B, . Let S be a sample of a concept C. Let S+ be the
set of instances in S that are labelled positive, and let S_ be the set of instances that are
labelled negative. We say that H is a hypothesis of C consistent with S if S+ ___ H and
S M H = 0. The error between a hypothesis H and a concept C is the symmetric differ-
ence of the two sets. We use as a measure of the error the cardinality of this symmetric
difference divided by 2 n (that is, we assume a uniform distribution over the instance space.)

L e t f b e a Boolean func t ion , f : B~ ~ {0, 1}. The funct ionfdef ines the concept C = {x E
B,]fix) = 1}. Conversely, a concept C defines a Boolean function: the Boolean indicator
function of the set. In this paper, we will refer to a concept by its Boolean indicator function.

Finally, we introduce some terminology to refer to combinations of Boolean attributes.
A literal is an attribute or its complement. A term is a conjunction of literals, a clause
is a disjunction of literals. In general, a feature is any Boolean combination of the attributes
obtained by applying Boolean operators to the primitive attributes. We use the term variable
to refer to a primitive attribute or to a feature. We use o, + and - to denote the Boolean
operators and, or and not respectively. The size of a feature is the number of literals in
its (smallest) expression. For example the feature, Xl • -~2 + x3 has size 3.

74 G. PAGALLO AND D. HAUSSLER

Figure 1. Smallest decision tree for x I • x 2 + x 3 ° x 4 • x 5.

3. Decis ion trees

The goal of a system that learns from examples is to induce from a relatively small number
of examples a hypothesis that will accurately predict the class of new instances. One popular
methodology has been developed using decision trees as the concept representation language.
An excellent introduction to this topic is given in [Quinlan, 1986], and a more complete
discussion on the subject is given in [Breiman et a l . , 1984]. In this section we review the
salient aspects of the rule generation procedure to learn Boolean functions from examples
using decision trees.

In a Boolean decision tree, an internal node defines a binary test on a variable. For exam-
ple, the root node of the tree in Figure 1 defines the test "is Xl = 1?". Each edge represents
an outcome of the test. We adopt the convention that the left edge represents the negative
outcome, and the right one represents the positive outcome. The label of a leaf (positive
or negative) represents the class that is assigned to any example that reaches this node.

It is easy to see that a Boolean decision tree represents a Boolean function. Each path
from the root node to a positive leaf defines a term in the function as follows: initially,
the term is empty; then, for each node in the path concatenate the attribute at the node
to the current term if the path proceeds to the right of the node, otherwise concatenate
the negation of the attribute to the current term. The function represented is the disjunction
of all the terms generated in this manner.

For learning however, we are interested in the inverse problem: how to generate a decision
tree that represents a Boolean function specified by a partial truth table. The common pro-
cedure is based on successive subdivisions of the sample. This process aims to discover

FEATURE DISCOVERY 75

sizable subsets of the sample that belong to the same class. The tree structure is derived
by a top-down refinement process on the sample.

Initially, we begin with an empty decision tree and a sample set. A test is applied to
determine the best attribute to use to partition the sample. In Section 3.1 we discuss a criterion
to measure the merit of an attribute with respect to the subdivision process. For the time
being, assume that the best attribute can be determined using some statistical tests on the
examples. Then, the best attribute is placed at the root of the tree, and the examples are
partitioned according to their value on that attribute. Each subset is assigned to one subtree
of the root node, and the procedure is applied recursively. The subdivision process, on
one branch of the tree, ends when all the examples associated with the leaf of that branch
belong to the same class. This leaf is labelled with the common class of these examples.

A statistical test requires a sample of significant size. However, the samples may be quite
small towards the end of the subdivision process. Furthermore, the presence of noise in
the data may force an unnecessary refinement of the examples (fitting the noise), which
may actually decrease the tree classification performance on independent examples. Because
of this, it is common to prune back the tree created by the above recursive subdivision
process in an attempt to improve the accuracy of the hypothesis. Quinlan [1987b] proposes
a strategy to search for the smallest subtree of the initial tree with the highest accuracy
on an independent data set (pruning set). The method is appropriately called Reduced Error
Pruning and it proceeds as follows.

For every nonleaf subtree S of the initial tree T, we examine the change in classification
error on the pruning set that would occur if the subtree S were replaced by a leaf. We
assume this leaf is labelled with the class of the majori ty of the pruning examples classified

by S. I f the accuracy of the pruned tree is the same or increases, the subtree S is removed.
The process ends when no further improvement is possible.

3.1. Mutual information

We now return to the question of measuring the meri t of an attribute with respect to the
subdivision process. The measure of attribute meri t we use is based on the reduction in
uncertainty about the example class if we test the attribute value. This measure is formal-
ized by the information theoretic concept of mutual information. To state this notion more
precisely, we need to introduce some concepts and notation.

Suppose Y is a discrete random variable with range Ry. For any y ~ Ry, let
p(y) = P{Y = y}. The entropy of Y is defined as

yERy

The entropy H(Y) measures the information provided by an observation of Z or the amount
of uncertainty about F. Our next goal is to define f o r a pair of discrete random variables
X and F, a measure for the uncertainty about X after we observe Y Let x be a value in
the range of X and y a value in the range of F. I f we denote by

76 G. PAGALLO AND D. HAUSSLER

p(y}x) = P { Y = y l x = x} ,
p(y, x) = / ' { r = y, x = x}

then we define the conditional entropy as

~ 1 ~ .
H(~X) =x~lCx~,y,np(x, y)log p(ylx)

For a pair of discrete random variables this quantity represents the amount of uncertainty
about Y after X has been observed. Now since, H(I¢) represents our uncertainty about Y
before we observe X, and H(YIX) represents our uncertainty afterwards, the difference
n(r) - H(YIX) represents the amount of information about Y given by X. This quantity
is called mutual information, and it is defined as

I(Y; X) = n (Y) - n(YIX).

In our context, we can regard a Boolean variable as a discrete random variable X, and
the class as a discrete random variable Y. Then, the mutual information of the attribute
X and class Y measures the amount of information we gain about the class value of an
example after we test the variable. As in [Quinlan, 1986] we take the mutual information
as our attribute merit function. Hence, the attribute chosen at each subdivision step is the
one that maximizes the mutual information.

The central quantities in the computation of the mutual information are p(y), p(x, y),
and p(ylx). We review how to estimate them from a sample S. We denote by

Sy = { < x , c>lc = y}
Sx.y = { < x , c > [c = y, x has value x for attribute X},

and we use the hat notation to indicate empirical probability estimates (for example, ,b
represents the empirical estimate for p).

In decision theory, the expression p(y) is called the prior probability of class y, and we
will denote it by Try. It reflects our a priori belief that an object will belong to class y.
If the sample S is indicative of the class frequency, the prior probability that an example
will have class y is estimated from the relative frequency of the classes as:

= ISyl.

[sl

In this case the priors are usually called data priors. However, the sample may not reflect
the distribution of the classes that we shall observe after training, or the sample may not
indicate correctly the frequency of the classes. In this case, the knowledge of the decision
maker can be taken into account by setting the value of the prior probabilities. For example,
when all classes are equally likely, we should choose uniform priors. In the two class case
the uniform priors would be {1/2, 1/2}.

FEATURE DISCOVERY 77

The quantities p(x, y) and p(ylx) are estimated from the conditional probability p(x[y)
and the priors. The conditional probability that the attribute X has value x given that class
variable Y has value y, is defined as

p(xly) - p(x, y) (1)
p(y)

Since

JSx,yJ,
b(xly) :

we obtain from Equation (1) and the above expression that

[sx,yl
b(x, y) = Try• ISyl

The unconditional probability p(x) is the sum over y of the marginal probabilities
p(x, y), therefore

• Iax,yl.
y~Ry I Syl

Finally

b~ylx) - b(x , Y)
b~x)

3.2. REDWOOD

We implemented the heuristics described above in the REDWOOD system. The central design
aspects of the system are summarized as follows:

• class priors can be specified by the user or estimated from the data;
• the subdivision process uses the criteria of maximum mutual information to choose the

best attribute;
• the sample refinement process terminates when the examples belong to the same class

or the examples have identical attribute values but different class label (this may occur
for example, in the presence o¢ noise);

• the tree is pruned using the Reduced Error Pruning Method.

The system is a new hybrid of existing ideas. ID3 [Quinlan, 1986] uses an attribute merit func-
tion based on mutual information. We borrow from the CART system [Breiman et al., 1984]
the flexibility given by the class priors. We borrow from Quinlan [1987b] the pruning method.

78 G. PAGALLO AND D. HAUSSLER

4. The replication problem

A decision tree representation of a Boolean function with a small DNF description has
a peculiar structure: the same sequence of decision tests leading to a positive leaf is replicated
in the tree. To illustrate the problem, consider a Boolean function with a two term represen-
tation, and to simplify the example assume that the attributes in the two terms are disjoint.
The smallest decision tree for the function has the following structure. Each decision test
in the rightmost path of the tree is an attribute of the shortest term in the formula. The
path leads to a positive leaf and it corresponds to the truth setting for the first term. The
left branch from each of the nodes is a partial truth assignment of the attributes that falsifies
the shortest term. Then, to complete the function representation, we have to duplicate the
sequence of decisions that determine the truth setting of the second term on the left branch
of each one of the nodes. We call this representational shortcoming the replication problem.
In general, there are shared attributes in the terms so some replications are not present,
but the duplication pattern does occur quite frequently. Figure 1 illustrates the replication
problem in the smallest decision tree for the Boolean function Xl • x2 + x3 * X4 ° X5" Observe
that this tree has six negative leaves which is equal to the product of the length of the terms
in the DNF formula. We show in Appendix A that any decision tree equivalent to a /zDNF
formula (a DNF formula where each attribute appears only once) has size greater or equal
than the product of the length of the terms in the smallest equivalent DNF formula.

Due to the replication problem, while learning a decision tree, the partition strategy has
to fragment the examples of a term into many subsets. This causes the algorithm to require
a large number of examples in order to ensure that the subsets are large enough to give
accurate probability estimates; otherwise the subdivision process branches incorrectly or
terminates prematurely.

One way to solve the replication problem is to use conjunctions of the primitive literals
at the decision nodes. To illustrate this solution, consider the two term formula discussed
above. Assume we use the conjunction xl ° x2 as the test at the root node. Now, the right
branch leads to a positive leaf that corresponds to the examples that satisfy the first term.
The left branch leads to a representation of the second term (see Figure 2). We can represent
this term by single attributes as before, but now the replication problem has disappeared.
If, in addition, we have a feature for x3 ° J4 ° x5 we can obtain the even more compact
representation shown on the right.

Rivest [1987] and Quinlan [1987a] have investigated different versions of this solution by
using conjunctions to represent a Boolean function. Rivest uses conjunctions up to a certain
size as tests in a novel representation for Boolean functions called decision lists. Informally,
we can think of a decision list as a decision tree where each decision variable is a term,
and each internal node has at most one non-leaf child. For example, both representations
in Figure 2 are a decision list description of the formula. In practice, the algorithm he
presents have to limit a priori the maximum size of the conjunctions that can be considered
while learning. If this value is not appropriate for the problem at hand Rivest's algorithm
will fail to find a solution (see Section 6). Quinlan's method generates a collection of pro-
duction rules from a decision tree. Then, each rule is simplified by removing its irrelevant
literals, and the set of rules is reduced using a greedy heuristic. Hence, the method attempts
to detect and remove the duplication patterns. However, this approach still requires a large
number of examples to build an accurate initial tree.

FEATURE DISCOVERY 79

Figure 2. T w o representations f o r x 1 • x 2 -]- x 3 • 3f 4 • x 5 using f e a t u r e s .

To solve these problems, we adopt an approach in which the learning algorithm defines
adaptively the type or size of the features to use in the representation. In the following
sections we give three learning algorithms based on this idea.

5. Learning features

In Section 3 we discussed the formation of a hypothesis from examples using a decision
tree representation where each test was defined by a single attribute. In this section we
present a new algorithm that dynamical ly creates and uses features as test variables in
the tree.

The feature set is defined through the following iterative learning method. The algorithm
begins with a set Vof primit ive attributes, and creates a decision tree for a set of examples,
choosing its decision variables from the set V. Then, a find-features procedure generates
new features as Boolean combinations of the variables that occur near the fringe of the
tree. We describe this heuristic in more detail below. The set of new features is added to
the variable set, and the execution of the decision tree algori thm and the find-features pro-
cedure is repeated. We will call a single execution of both processes an iteration. The iterative
process terminates when no new features can be added to the variable set, or a maximum
number of variables is reached. Table 1 presents a specific algorithm called FRINGE that
implements this method. We present a find-features procedure in Table 2.

The find-features procedure defines a feature for each positive leaf in the decision tree
of depth at least two, counting the root at depth zero. For each such leaf, the procedure
examines the last two decision nodes in the path from the root of the tree to the leaf. It
forms a feature that is the conjunction of two literals, one for each of the decision nodes.
I f the path to the leaf proceeds to the right from a decision node, then the literal associated

80 G. PAGALLO AND D. HAUSSLER

Table 1. FRINGE algorithm.

input : V an attribute set and S a sample.
M a positive integer such that M >l V I"

initialize k := 0, and V1 := V
repeat

k : = k + l
form decision tree Tk using sample S described using variables in Vk
F := find-features(Tk)
Vk+l := V k U F

until (Vk+l = Vk o r I Vk+l l> M)
output Tk, Vk and halt.

Table 2. Find-features procedure.

input : a decision tree T

F := e m p t y set
for each posit ive leaf l at dep th > 2 in T

..... initialize: feature := true
let p and g be the parent and grandparent nodes of l
let vp and vg be their test variables
if l is on the right subtree of p then

form conjunction of v v and feature
e l s e

form conjunction of ~p and feature
if l is on the right subtree of g then

form conjunction of vg and feature
else

form conjunction of ~g and feature
add feature to F

end
re turn F

with this node is just the variable in the decision node, otherwise it is the negation of this
variable. Thus the find-features procedure applies the term formation rule used to obtain
a DNF formula from a decision tree (see Section 3), but only to the last two variables
in the path to each positive leaf.

For example, the find-features procedure generates the features x4 • Xs, J4 • x5 and xl
• x2 (one feature appears twice) for the decision tree in Figure 1. They correspond to the
positive leaves from left to right.

FEATURE DISCOVERY 81

% error
(line plot)

30

20

10

\

l° -

I I I I I I
1 2 3 4 5 6 7

iteration

-4]- --~]

[I

8 9

- 1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

- 0

tree size
(bar plot)

Figure 3. Performance comparison between FRINGE and random heuristic as defined by: • solid line: % error
FRINGE; [] dashed line: % error random; gray bar: decision tree size for FRINGE; white bar: decision tree
size for random. The left scale measures the % error, the right scale measures the hypothesis size in number
of internal nodes.

In each iteration, the find-features procedure forms very simple features; namely conjunc-
tions of two variables or their negations. The creation of longer terms or more complex
features occurs through the iterative process. Initially, the variable set contains only the
attributes. After the k-th iteration, the variable set may contain features of size up to 2 ~.
For example, after the second iteration, a feature is either a term of size up to 4 or a con-
junction of two clauses, each of size 1 or 2. Negated features include clauses of size up
to 4, and disjunctions of two terms of size 1 or 2. In the limit, the find-features procedure
has the capability of generating any Boolean function of the literals, since the negation
and and operators are a complete set of Boolean operators.

Figure 3 illustrates the learning performance results for a single execution of FRINGE
on a small random DNF (dnf4, see Section 8) and how it compares to a strategy where
features are proposed at random. The random proposal heuristic works as follows. A feature
is defined as the conjunction of two variables chosen at random from the current variable
set. In each iteration, this heuristic adds the same number of features as FRINGE does.
So, both methods work with the same number of variables in each iteration.

The graph shows the change in percentage error and in size of the tree as the iteration
proceeds. The error is measured on a sample drawn independently from the training sample
(see Section 8).

The shape of the error and the size graph for FRINGE are typical. After a few iterations
a very accurate hypothesis is developed, and the remaining steps are used to find a more
concise hypothesis by introducing more meaningful features. After nine iterations, in this
case, the process ends because no new features are found. Note that the random guess
heuristic was not successful at all. The small fluctuations occur because by chance some
of the features defined were useful.

82 G. PAGALLO AND D. HAUSSLER

Another interesting aspect of FRINGE's learning behavior is the form of the final hypoth-
esis. In this example, the smallest DNF description of the target concept has 10 terms and
the final decision tree has 10 internal nodes. The decision variable at each node is a term
of the target concept. A similar behavior was observed for all DNF concepts with a small
description when all terms have approximately the same size. For DNF concepts with terms
of highly varying size, the final hypothesis tends not to include the longer terms. However,
the hypothesis is still quite accurate because the positive examples that only satisfy these
terms are very rare when the examples are drawn from the uniform distribution.

FRINGE solves the replication problem by forming meaningful features through an itera-
tive process and using them at the decision nodes. Unfortunately, it is a difficult algorithm to
analyze. The observation that the hypotheses generated by FRINGE for random DNF were
decision lists suggested to us a second approach to overcome the replication problem. This
approach is described in Section 7 below. First we review the decision list representation.

6. Decis ion lists

In a recent paper, Rivest [1987] introduced a new representation for Boolean concepts called
decision lists, and showed that they are efficiently learnable from examples. More precisely,
he showed that the class k-DL, the set of decision lists with terms of length at most k,
are learnable in the sense of Valiant [1984].

Let Vbe a set of n Boolean variables and L its set of literals. For any non-negative integer
k, we denote by T(n, k) the set of conjunctions of literals drawn from L of size at most k.

A decision list DL is a list of pairs

(T1, C l) , . . . , (Zr , Cr),

where each T/is an element of T(n, k), each ci is a value in {0, 1}, and the last term Tr
is the constant term true. The last pair in the list is called the default pair. We call a pair
(T, 1) a positive pair, and a pair (T, 0) a negative pair.

A decision list defines a Boolean function as follows. An n dimensional Boolean vector
x satisfies at least one term in the list. L e t j be the index of the first such term. The value
of the function on x is set to the value cj. For example, the following list

(XlX2, 0), (XlX2, 1), (2vx2, 0), (true, 1).

represents the exclusive-or function for two variables.
It is easily verified that the class k-DL generalizes the class k-DNF of all DNF formulae

with at most k literals per term ([Rivest, 1987], see also Section 7.1).
The algorithm, presented by Rivest, to learn a decision list from examples requires, as

input, the number of attributes n, a set of positive and negative examples from a target
concept, and a value for k to define the length of the longest term allowed. The algorithm
will find a k-DL description that is consistent with the examples if such description exists,
otherwise it will return failure.

FEATURE DISCOVERY 83

The algorithm begins with an empty decision list DL and a set of training examples S.
If all the examples in S belong to the same class c, it adds the node (true, c) to the list
and terminates. Otherwise, it selects a term T from the set T(n, k) that covers a portion
of examples that all have the same class c and it adds the pair (T, c) to the list. The examples
covered by the term T are removed from S, and the process is repeated until all the examples
are accounted for. I f no term can be found then the algorithm returns failure.

Selecting an appropriate value for k presents practical difficulties. A small value of k
may prevent the algorithm from finding a solution, while a large value of k may render
the algorithm inefficient, since the size of the search space grows exponentially on k.

In the next section we propose a new paradigm to learn a decision list from examples
that dynamically defines the value of k for the problem at hand. The method is based on
a greedy approach to determine the literals in every term.

7. Separate and conquer

The smallest decision list representation for a concept is a decision list that uses the fewest
literals. Unfortunately, the problem of finding the smallest decision list that is consistent
with a sample is NP-hard [Rivest, 1987]. We can avoid this problem by choosing the literals
in a decision list top-down by a greedy heuristic. In a top-down approach the greedy heuristic
chooses the best literal for the sample set given that a set of literals has already been chosen.
A simple way to model this conditional choice is by sample subdivision.

In this section, we present an algorithm that forms a decision list from examples using
a top-down greedy approach. First, we discuss the sample refinement strategy, called sepa-
rate and conquer, that defines the control structure of the algorithm, and then we discuss
two possible greedy functions to choose the literals.

Table 3 presents a specific implementation of the separate and conquer learning algorithm.
The algorithm begins with a non-empty set of examples S, an empty auxiliary set called
the pot, and an empty decision list DL. If all the examples in S belong to the same class,
the default pair with the common class of these examples is appended to the list and the
learning process ends. Otherwise, the algorithm finds the first term using the greedy heu-
ristic. A select-literal function assigns to each literal a value of merit with respect to the
subdivision process, and then chooses the literal with the highest merit. We discuss in detail
two select-literal functions in the next two sections. After a literal is selected, the examples
that have a zero entry for that literal (that is, do not satisfy the literal) are removed from
the set S and are added to the pot. The pot contains the examples that do not satisfy the
term, and that will be used later to learn the next terms. The literal selection and sample
subdivision process terminates when all the examples in S share a common class label.
At this point, the pair formed by the current term and the common class of these examples
is appended to the list DL. Before learning the next term, the examples covered by this
term are discarded, and the examples in the pot are moved to the set S, while the pot
becomes empty. Then, the algorithm proceeds as described above.

After learning, the hypothesis is pruned to attempt to increase its classification perfor-
mance on new instances of the concept. In the next sections, we discuss two greedy methods
to find a sublist of the hypothesis DL that has at least the same accuracy as DL on an

84 G. PAGALLO AND D. HAUSSLER

Table 3. Control structure for a separate and conquer algorithm.

input : a non-empty sample S

initialize D L := empty list
while not all examples in S belong to the same class do

initialize pot :-- empty set and t e rm :-- t rue
while not all examples in S belong to the same class do

x := select-literal (S, t e rm)
form conjunction of x and t e r m
remove from S all examples with value 0 for x and add them to pot

end
c := class of remaining examples in S
append pair (term, c) to D L
S := pot

end
append default pair with the class common to all examples in S
D L := prune-list (D L)
output D L and halt.

independent sample set. We can reduce the size of a decision list by removing one of its
pairs or by removing a literal from one of its terms. The first heuristic decides which pairs
of DL to keep and which pairs to remove from the list, while the second heuristic decides
which literals to delete from the list.

To end this section, let us contrast separate and conquer and the divide and conquer
method used to learn decision trees. The divide and conquer strategy recursively subdivides
a sample into parts until each part contains examples with a common class label. Instead,
the separate and conquer strategy recursively subdivides only one part at the time, until
all the examples in this part share the same class label. Then, the remaining examples are
gathered together before subdividing them. This helps to keep the sample size larger, so
that more accurate statistics are available to guide the learning algorithm.

7.1. GREEDY3

In this section, we focus on the use of the separate and conquer paradigm to learn a DNF
description for the target concept. A decision list where the default pair has class 0, and
the remaining pairs have class 1 is equivalent to the DNF representation formed by the
disjunction of all terms in the list except the default one.

We use the validity measure to implement the select-literal function for GREEDY3 (a.k.a.
greedy literal, greedy term, greedy prune). The validity of a given literal is defined as the
probability that an instance is a member of a class or category given that it has that cue (that
is, satisfies the literal). The concept of literal, or cue, validity has long been a part of theories
in perceptual categorization [Beach, 1964]. The basic idea is that organisms are sensitive

FEATURE DISCOVERY 85

Table 4. Select-literal function for GREEDY3.

let L be the set of pr imi t ive literals
inpu t : a sample S, and a t e rm t

let T be the set of all literals in t
L : = L - T

for each l in L

m~ : - -b (+ I t -- 1)
choose l such t h a t rn~ is max imized

r e tu rn

to cues that allow them to make correct categorization. For example, in the special case
that a literal has unitary validity, the single literal is enough to make a correct classification.

While learning, the separate and conquer algorithm maintains in the set S the examples
that satisfy the current term. Then the select-literal function estimates the validity of each
literal not already in the term using the set S and selects one with highest conditional prob-
ability. Table 4 presents an implementation of the select-literal function for GREEDY3.
Recall that we use the hat notation to indicate a probability estimate.

Let us analyze briefly what literals the select-literal function would choose when the
target function is a small DNF and examples are drawn from the uniform distribution.
In this case it turns out that there are two reasons for a literal to have high-validity: it belongs
to a short term or it belongs to many terms (or both). The first case leads the algorithm
to identify a term in the formula. In fact, once it chooses a literal in a short term the validi-
ty of the remaining literals in the term increases, making them very likely to be selected
in the next steps.

The second case may lead to crossover terms. A crossover term is a conjunction of literals
that belong to different terms. If the function selects a literal that belongs to many terms,
the validity of the literals that accompany it may not increase enough to assure that any
of them will be chosen in the next step. We discuss an example of crossover term formation
in Section 8.4.

In our experiments, the addition of crossover terms to the hypothesis does not significantly
degrade the classification performance for random small DNF, and they do not occur at
all when the target concept is a I zDNF formula (a DNF where a literal appears at most
once). However, they are a problem for functions with a strong term interaction, like the
multiplexor functions.

Some of the crossover terms can be eliminated from the hypothesis by pruning. In the
second phase of the algorithm, we aim to find the smallest subset of the term set that has
the best classification performance on an independent data set. Unfortunately, this problem
is NP-hard, so we find an approximate solution using the following greedy strategy to reduce
the length of the list.

We denote by P a sample of the target concept drawn independently from the learning
sample, and by D L we denote a hypothesis such that all pairs except the default one are

86 G. PAGALLO AND D. HAUSSLER

Table 5. Prune strategy for GREEDY3.

input : a decision list DL with one or more positive pairs and a negative default pair

DL := (true, O)
R := set of all pairs in DL but default one
/~ := number of errors D-"L makes in classifying P
repeat

for each v in R do
create list DL~ by inserting r into DL
E~ := number of errors DL,- makes in classifying P

end
choose ~ such that E+ is minimized
A E := E ~ - E
if (A E _< 0) then

DL := DLe
/~ :=E+
R : = R - { ~ }

end
until (A E > 0 or R is empty)
output DL and halt.

positive. The algorithm begins with a decision list DL that contains only the default pair
(true, 0) and the set R that contains all of the pairs in DL but the default one. For each
pair r in R we evaluate the change in classification error that would occur if the pair r
is inserted into the list DL. The pair may be added anywhere before the default pair, since
the relative order of the positive pairs is not relevant. The pair that reduces the error the
most is added to the list and is removed from R. The process is repeated until no pair
improves the accuracy of DL or the set R becomes empty. Table 5 presents a specific imple-
mentation of the algorithm.

7.2. GROVE

We now turn to the problem of learning a general decision list using the separate and conquer
paradigm. In a general decision list any pair may have a positive or negative class label,
as opposed to a D N F like decision list where all the pairs except the default one have a
positive class label.

Recall that the separate and conquer algorithm maintains in the set S the examples that sat-
isfy the current term and in the pot the examples that will be processed later. When all the
examples in S share the same class label the current term is complete. At this point, if all
the examples in the pot belong to the same class, they define the class of the default pair,
and the learning process ends. Intuitively, a good literal to choose should reduce the class
mixture in S without increasing too much the class mixture in the pot. This is the basic
idea of the select-literal function we present in this section to learn a general decision list.

FEATURE DISCOVERY 87

Table 6. Select-literal function for GROVE.

input : sample S

for each a t t r i bu t e x
m~ : = m u t u a l in format ion be tween class and a t t r i bu te x

choose ~ such rn~ is max imized

for i = O, 1
let S i be the set of examples in S wi th value i for

if(Hso (Y) -</-/s, (Y)) then
r e tu rn ~ nega ted

else
r e tu rn :~

Recall that the class mixture of a set can be measured by the estimated entropy of the
class variable using the examples in the set (see Section 3.1). We define a new select-
literal function as follows. First, we choose an attribute that maximizes the mutual infor-
mation between the class and the attribute for S. Then, we subdivide the examples in S
into two sets according to their value for that attribute. Second, if the set that contains
the examples with value 1 for the attribute has the lowest entropy we select the attribute,
otherwise we select its negation. Table 6 presents an implementation for this select-literal
function.

In terms of the examples, the first choice minimizes the average class mixture of the
two parts into which we divide the set S. The second choice establishes that we keep the
purer set, and we throw the other set into the pot.

In the rest of this section, we present a greedy pruning strategy to find a sublist of the
learned list D L that has at least the same accuracy as D L on an independent sample P.
Table 7 presents a specific implementation of the following method.

We begin by measuring the classification error E of the decision list D L on the sample
P. Then, for each pair r in the list, we consider the sublist D L r obtained by pruning the
pair r and by modifying the class of the default pair. To prune a pair we proceed as follows:
If the term of the pair has size 1 then the pair is removed from the list, otherwise we prune
the last literal in the term. Since the last literal is selected using a smaller sample size
than any other literal in the same term, it is the most prone to statistical errors. After pruning
the pair, the examples in P are reclassified according to the new list, and the class of the
default pair is set to be the class of the majority of the examples that filter down to the
default pair. This change is made to reduce the error rate of the pruned list over the sample
P. Clearly, other strategies of adjusting the class labels could also be used.

Once the list D L r is generated, we compute the classification error over the sample P.
Finally, we choose to prune the pair, if any, that reduces the classification error the most.
The process is repeated until no pair improves the classification rate or the list contains
only the default pair.

88 G. PAGALLO AND D. HAUSSLER

Table Z Pruning algorithm for GROVE.

input: a decision list DL, and a sample P

E := number of errors tha t DL makes in classifying P
repeat

for each pair r in DL do
DLr := prune-pair (r, DL, P)
Er := number of errors tha t DLr makes in classifying P

end
choose ~ such that E; is minimized

A E := E ~ - E
i f (A E _ < O) then

DL := DLe
E :=E~

end
until (AE >__ 0 or DL has only the default pair)
output DL and halt.

prune-pair (r, DL, P)

let r = (t , c)
if size(t) = 1 then

remove pair r f rom list DL
e lse

remove last literal f rom t
D := set of examples in P that satisfy only default pair
dc := class of the major i ty of examples in D
assign (t rue, dc) to default pair in DL
re turn DL

8. Experiments

The objective of our experiments is to explore the capabilities and limitations of the
algorithms presented to learn Boolean functions that have a small DNF description in the
presence of irrelevant attributes.

We use as a measure of learning performance the percentage of classification errors that the
hypothesis makes on an independently drawn data set. We also report the size of the hypothesis.

We analyze the performance of the algorithms on six functions from three Boolean
domains: random small DNF, multiplexor and parity. The first domain allows us to easily

FEATURE DISCOVERY 89

explore different levels of difficulty by simply changing the size of the formula. The last
two domains have been used as benchmark problems for other learning algorithms.

The multiplexor family is a single parametric class of Boolean functions that represent
concepts of increasing complexity as the value of the parameter increases. Wilson [1987]
proposed it as a test function for his genetic algorithm. Quinlan [1988] showed that accu-
rate decision classifiers can be obtained for three members of the family. We will consider
the problem of learning two concepts from this class in the presence of irrelevant attributes.

The parity class of Boolean functions is a hard domain for any learning algorithm that
uses a top-down, divide-and-conquer approach when the examples are drawn from the
uniform distribution. In a complete sample for a function in this class, half of the examples
are positive and half are negative. Furthermore, any attribute (relevant or not) is present
in half of the positive examples and in half of the negative examples. Knowing the value
of the attribute does not provide any information about the class. In practice, an heuristic
search based on the relevance of the attributes is reduced, in this case, to a random guess.

8.1. Experiment design

We executed ten independent runs for each test function. In each execution, the learning and
testing tasks were performed on two sets of examples independently drawn from the uniform
distribution. The learning set was randomly partitioned into two subsets, training andpruning
sets, using the ratios 2/~ and ½ [Breiman et aL, 1984]. The training set was used to generate
a consistent hypothesis. The pruning set was used to reduce the size of the hypothesis and
(hopefully) to improve its classification performance on new instances of the target concept.

Let N be the number of attributes and K the number of literals needed to write down
the smallest DNF description of the target concept. Let e be the percentage error that can
be tolerated during the testing task. The number of learning examples we used for both
training and pruning combined is given by the following formula:

K * log2(N) (2)

This formula represents roughly the number of bits needed to express the target concept
times the inverse of the error. This is approximately the number of examples given in [Vapnik,
1982, Blumer et al., 1987] which would suffice for an ideal learning algorithm that only
considers hypotheses that could be expressed with at most the number of bits needed for
the target concept, and always produces a consistent hypothesis. Qualitatively, the formula
indicates that we require more training examples as the complexity of the concept increases
or the error decreases. In our experiments we set e = 10%. We used 2000 examples to
test classification performance.

A random observation was generated using random, a UNIX utility. Each component
of the Boolean vector was set to the value of the least significant bit of the random number
returned by the procedure.

90 G. PAGALLO AND D. HAUSSLER

Table 8. Target functions.

target
concept

d n f l random D N F
dnf2 r a n d o m D N F
dnf3 r a n d o m D N F
dnf4 random D N F
mx6 6-mult iplexor

m x l l l l - m u l t i p l e x o r
par4 4-parity
pax5 5-parity

description monotone attributes
yes
yes
no
no
no
no
no
no

term length
terms shortest longest average

80 9 5 6 5.8
40 8 4 7 4.5
32 6 4 7 5.5
64 10 3 5 4.1
16 4 3 3 3
32 8 4 4 4
16 8 4 4 4

32 16 5 5 5

8.2. Test target concepts

We present in Table 8 a concise description of the test functions by listing the total number
of attributes, the number of terms, the length of the shortest and longest term, and the
average term length.

We present in Appendix B a DNF description for the test functions (dnfl, dnf2, dnf3,
dnf4) from the first domain. We generated a small random DNF function using four param-
eters: the total number of terms, the average term length (/z), the standard deviation of a
term length (a), and a flag to indicate if the formula is monotone or not. First, we computed
the length of each term according to the Gaussian distribution with parameters/z and or.
Second, for each term we selected its attributes according to the uniform distribution on
the attribute set. If the formula was non-monotone, we flipped a fair coin independently
for each attribute in a term, if the coin turned up heads we negated the attribute. This
flag permits us to easily generate monotone random DNF (for otherwise most random DNF
would be non-monotone). It is of interest to contrast the performance of the algorithms
over these two types of D N F since, within the Valiant model , Kearns et al. [1987] have
shown that the problem of learning monotone DNF is as hard as the general problem.

The next two functions were selected from the multiplexor domain. For each positive
integer k, there exists a multiplexor function defined on a set of k + 2 k attributes or bits.
The function can be defined by thinking of the first k attributes as address bits and the
last attributes as data bits [Wilson, 1987]. The function has the value of the data bit indexed
by the address bits. We used 6-multiplexor (k = 2) and ll-multiplexor (k = 4) as test func-
tions in the presence of 10 and 21 irrelevant attributes, respectively. The first attributes
were used as the multiplexor bits.

The last two functions were chosen from the parity domain. For each positive integer
k, there exists an even parity function defined on a set of k attributes or bits. The function
has value true on an observation if an even number of attributes are present, otherwise
it has the value false. Analogously, we can define an odd parity function. We used 4-parity
and 5-parity as test functions in the presence of 12 and 27 irrelevant attributes, respectively.
The first attributes were used as the parity bits.

FEATURE DISCOVERY 91

Table 9 presents the number of learning examples we used for each test concept. Two
thirds of the examples were used for training and one third was used for pruning.

Table 9. Number of learning examples.

target
concept

d n f l
dnf2
dnf3
dnf4
mx6

m x l l
par4
par5

examples
training pruning

2195 1097
1457 728
1100 550
1760 880

480 240
1067 533

853 427
2667 1333

Table 10. FRINGE results.

target
concept

dnf l
dnf2
dnf3
dnf4
rex6

r a x l l
pax4
par5

avg. J~ error avg. tree size avg. number
first last first last iterations
12.4 0.0 48.7 9.0 13.1
10.4 0.5 52.6 7.6 10.3

7.4 0.3 45.4 6.1 9.9
24.9 0.0 93.9 10.0 9.9

0.0 0.0 20.2 4.9 5.4
13.1 0.0 97.0 11.6 7.5
38.3 0.0 124.3 4.9 8.9
36.5 22.1 324.2 120.7 4.4

8.3 F R I N G E results

Table 10 presents the results we obtained with F R I N G E for each test function. The table
reports the average percentage error and the average tree size for the first and last hypothesis.
The average was taken over the results of ten executions. The percentage error is the number
of classification errors divided by the size of the test sample. The deviation of the actual
results from the average is within 7.3% in the first iteration and within 0.4% in the last
one, i f we do not include par5. The classification performance was highly variable for that
concept. The size of the tree is the number of its internal nodes.

92 G. PAGALLO AND D. HAUSSLER

The results of the first iteration of FRINGE are the results for our implementation of
the decision tree algorithm. By the last iteration FRINGE learned an exact representation
for the test functions dnfl, dnf4, mx6, mxll and par4, it discovered a very accurate descrip-
tion for dnf2 and dnf3, and it failed to learn the par5 concept. In each run of par5 the
iterative process ended because the maximum number of variables (350) was reached.

Table 11. GREEDY3 results.

target
concept

dnfl
dnf2
dnf3
dnf4
rex6

rex11
par4
par5

av#. lg error avg. num. pa i r s

no p r u n e p r u n e no p r u n e p r u n e

0.4 0.2 11.6 9.3
1.1 0.7 9.8 7.0
1.4 0.6 7.5 5.8
0.0 0.0 10.4 10.0
0.4 0.0 6.2 4.3
1.3 0.5 17.6 9.8

19.3 12.0 69.0 26.7
48.4 45.8 299.1 106.0

The following remarks apply to all the test runs of the algorithm for all target concepts
but par5. FRINGE learns an exact or very accurate representation of the target concept
by discovering relevant combinations of the primitive literals and by using these features
at the decision nodes. The final hypothesis for each test function has the following character-
istic structure. The right branch of every decision node points to the positive leaf, and
the left branch points to a decision node or to a negative leaf (analogous to the second
representation given in Figure 2). For the test functions dnfl and dnf4 every decision variable
is a term in the formula, and all terms are present. For the test functions dnf2 and dnf3,
only the most significant terms are represented by a decision variable. For example, for
dnf3, FRINGE discovers all the terms but the longest one. The examples that satisfy only
this term are very infrequent (about 0.3 %). A favorable interpretation would be that FRINGE
is treating these examples as a sort of noise in the data. For the multiplexor and parity
functions the disjunction of the decision variables in the final tree is a DNF representation
of the target concept. Further experiments with FRINGE are reported in [Pagallo, 1989].

8.4. GREEDY3 results

Table 11 summarizes the results we obtained with ten executions of GREEDY3. The per-
centage error is the number of classification errors divided by the size of the test sample.
The percentage error for a single run differed from the average less than 1.2% without
pruning and less than 0.6 % with pruning, for all concepts but par4 and par5. The accuracy
achieved in each run for these concepts was highly variable. The size of the hypothesis
is the number of positive pairs in the list. GREEDY3 learned an exact representation for
the target concepts dnf4 and mx6; it discovered an accurate hypothesis for the test functions
dnfl, dnf2, dnf3 and mxll; but it failed to learn any of the members of the parity family.

FEATURE DISCOVERY 93

The pruning strategy used by GREEDY3 simplifies and improves the hypothesis by remov-
ing inaccurate terms. There are two types of spurious terms. In the test functions dnfl,
dnf2 and dnf3, the spurious terms were generated at the end of the learning process by
statistically insignificant training sets. These terms could be avoided with a larger training
set. In the multiplexor function the spurious terms removed by the pruning algorithm were
crossover terms. The crossover terms are characteristic of the learning method for functions
with strong attribute interaction like multiplexor.

To illustrate the formation of crossover terms consider the l l-multiplexor function:

XlX2X3X 4 -~- Xl.~2X3X5 --[- XlX2X3X 6 "-[- .~lX2X3X 7 --[-
XI.~2X3Xs q- XlX2X3X 9 d- XlX2X3Xlo q- XlX2X3X11.

For i = 1 , . . . ,8 let t i denote the i-th term in the above expression. The initial conditional
probabil i ty for x4 is given by:

p (+lx4 = 1) = p(.~1.~2.~3 = 1) +

1 7 9
8 16 16

8

p (t i - - 1) --
i=2

where the first equality follows from the definition of conditional probability and observing
that a positive instance satisfies only one term. Similar calculations show that the initial
conditional probabil i ty for any data bit is:

9~
p(+lxj = 1) =]~ f o r j = 4 11,

while the conditional probabil i ty of any address bit is one half. Thus, the algorithm will
choose as the first literal a data bit, say x4. After this selection the conditional probabili ty
of a negated address bit :~i, for i = 1, 2, 3 becomes:

5
p (+] J i = 1, x4 = 1) = ~"

o

The conditional probabil i ty of the address bits x5 and x 6 also increases:

5
p (+ l x 5 = 1, x 4 = 1) = p(+lx6 = 1, x 4 = 1) = g"

while the conditional probabil i ty of the remaining data bits and the conditional probabili ty
of any address bit is smaller than ~ . Now, the algorithm will tend to choose the negation
of an address bit or one of the attributes x5 or x6. A small fluctuation in the probabili ty
estimation decides which. If, for example, x5 is selected, the literals 21 and -~2 are added
to complete the term ~1 ° J2 ° x4 • xs, which is a crossover term.

94 G. PAGALLO AND D. HAUSSLER

Table 12. GROVE results.

targe t

concept

dxffl
dnf2
dnf3
dnf4
rex6

m x l l
par4
par5

avg. ~ error avg. num. pairs
no prune prune no prune prune

3.2 4.0 44.7 40.3
1.8 1.8 30.2 29.4
1.4 1.4 25.5 23.8
9.5 7.8 56.7 50.0
0.9 1.2 10.5 10.4
3.4 3.9 37.2 33.4

10.4 13.0 45.6 45.6
41.6 41.3 223.4 223.0

% error

1 0 . 0 -

8.0-

6 .0-

4 . 0 -

2 . 0 -

0 . 0 -

I
0.5 0.56 0.62 0.68 0.74 0.80 0.86 0.92 0.98

prior p rob~i f i ty ~ r positive e l~s

Figure 4. GROVE performance on dnf4.

8.5. GROVE results

Table 12 summarizes the results we obtained in ten executions of GROVE using uniform
priors. The average percentage error differs from the result of a single run less than 3.7 %
without pruning and less than 3.6 % with pruning, for all concepts but par4 and par5. GROVE
learned a description within the established accuracy for-the test functions in the small
DNF and multiplexor domains, while it failed to obtain an accurate representation of the
parity concepts.

The accuracy of the results can be improved in all the cases by selecting an appropriate
value for the a-priori class probability. GROVE did not perform well using the data priors.
Figure 4 illustrates the dependency of the accuracy of the hypothesis on the value of the
class priors for test function dnf4.

For the prior range 0.86-0.98 for the positive class, the algorithm discovers an exact repre-
sentation of the concept. We observed a similar dependency between priors and performance
for the remaining concepts, but it does not have a characteristic pattern that we could detect.

FEATURE DISCOVERY 95

% error

5 0 -

4 0 -

3 0 -

2 0 -

10

0

I
0

I I I I I I I I I I I I
330 660 1320 1980 2640 3960

training sample size

Figure 5. Learning Curves for dnf4. Learning curves are indicated as: O: Decision Tree, IS]: FRINGE, 0: GREEDY3,
(~) : GROVE.

For concept dnf4 and the prior probability of the positive class in the range 0.86-0.98
the hypothesis is a DNF like decision list (all pairs except the default one are positive pairs).
This observation supports the suggestion made by Quinlan (personal communication) to
learn a decision list representation where all the pairs but the default one belong to the
less numerous class. Then, the default pair would have the class label of the more numerous
class. However, more experiments are needed to validate this strategy to bias the term for-
mation procedure.

8.6. Empirical comparisons among methods

The poor performance of the decision tree algorithm for the random DNF and mxll concepts
is due to a representational limitation of decision trees as a concept description language for
these types of concepts. While learning a decision tree the sample subdivision process has to
fragment the examples into a large number of subsets to find a tree description of the hypoth-
esis (see Section 3). Since the tree is so large, the examples are exhausted before all branches
in the tree can be explored. The better performance of the new methods arises from a more
adequate concept description language for concepts with a small DNF description.

To see if the replication problem can be overcome by varying the size of the training
set, we present in Figure 5 the learning curves for dnf4. A learning curve shows how the
classification accuracy varies as a function of the size of the training sample. Here, each
point in the curve is the average classification error over ten runs. We use the same design
criteria as those described in Section 8.1. A sample of size 2640 is the size of the learning
set predicted by Formula (2) for e = 10%.

96 G. PAGALLO AND D. HAUSSLER

FRINGE's hypothesis for any of the random DNF concepts was a DNF-like decision list,
the same type of hypothesis that GREEDY3 generates. And for this domain, their classifica-
tion performance is quite comparable.

Finally, the better performance of GREEDY3 over GROVE for all test domains except
parity is due to the stronger bias built into GREEDY3. In GREEDY3 only the positive
examples are explained by the hypothesis, while the negative examples are left as the default.
By contrast, GROVE chooses which examples to cover and what class to leave as the default
one. However, this design gives GROVE a greater flexibility in other domains.

9. Conclusions and future directions

In this paper, we view the problem of learning from examples as the task of discovering
an appropriate vocabulary for the problem at hand. We present three new algorithms based
on this approach. The first algorithm uses a decision tree representation and it determines
an appropriate vocabulary through an iterative process. The last two algorithms use a decision
list representation. These algorithms form their hypothesis from the primitive literals using
a top-down greedy heuristic.

We also show empirically that they compare very favorably to an implementation of a
decision tree algorithm. Since the difficulties of the standard decision tree method arise
from a representational limitation, we expect that any reasonable implementation of the
decision tree algorithm will give similar results.

Many more experiments could be done. We would like to test the methods in other domains
that have been used as a benchmark for learning algorithms, and test their sensitivity to
noise in the data. Some FRINGE tests on noisy domains are given in [PagaUo, 1989]. Other
strategies to define Boolean features from a decision tree could also be explored. The
heuristic used by FRINGE is compared to several different feature formation heuristics
in [Matheus, 1989], with favorable results. He also reports learning time curves for the
methods. We also would like to test and explore alternatives to bias the term generation
procedure for GROVE. Finally, GROVE can be easily extended to problems with non-
Boolean attributes and multiple concepts, and experiments need to be done in this direction.

We also have some theoretical results for GREEDY3. In [Pagallo and Haussler, 1989]
we show that a variant of GREEDY3 is a polynomial learning algorithm for/xDNF for-
mulae (DNF where each attribute appears at most only once) under the uniform distribu-
tion in the sense of [Kearns et al. , 1987]. In the formal version of GREEDY3 we need
to resample after each attribute is selected to ensure unbiased estimates of the conditional
probabilities.

Finally, a number of problems remain open. Do any of the algorithms we presented
(FRINGE, GREEDY3, GROVE) learn the class of all monotone DNF concepts under the
uniform distribution in the sense of [Kearns et al . , 1987]? For any of the algorithms RED-
WOOD (or ID3), FRINGE, GREEDY3, GROVE, can one in any reasonable way character-
ize the class of target concepts and distributions that the algorithm works well on?

FEATURE DISCOVERY 97

Acknowledgments

We would like to thank Ross Quinlan for the helpful discussion on the methods, and Wray
Buntine, Tom Dietterich, Jeff Schlimmer and Paul Utgoff for their valuable comments on
an earlier version of this paper. We would like to thank Doug Fisher for bringing Clark
and Niblett's paper to our attention and for his useful comments on an earlier version of
this paper. We would also like to thank Paul Rosenbloom and the reviewers for many useful
comments. The support of the ONR grant N00014-86-K-0454 is gratefully acknowledged.

Appendix A

Let V be a set of n Boolean attributes, and let C be the set of all conjunctions formed with
attributes drawn from the set V. We write a DNF formula f over the set V as

f = C1 + C2 + . . . + Cm

where each Ci E C, and m is a positive integer. For each i, 1 < i < m, we denote by
V/the set of attributes in term Ci and by ki the cardinality of this set.

We say t h a t f i s a / zDNF formula if for any 1 < i, j < m, i ~ j, V(Ci) 0 V(Cj) is the
empty set. Without loss of generality we assume that Um=ICi = V.

We define an assignment x :V~ {0, 1} as an assignment of Boolean values to each attribute
in V. Given an assignment x the resulting value o f f is denoted by fix).

Let T be a decision tree over the set of variables V. An assignment defines a path from
the root node of T to a leaf node. We denote by L(x) the leaf node and by T(x) the class
label of the leaf. We say that T is equivalent to f if for every assignment x, T(x) = fix).

TI-IEOREM. L e t f b e a /zDNF formula over the set of variables E Any decision tree equivalent
to f has at least kl x k2 x . . . x km leaves.

Consider the set Z of all assignments of V where one variable of each term is assigned
to 0 while all other variables are assigned to 1. Clearly, IZI = kl × k2 x . . . × km. Also,
observe that two assignments in Z differ, at least, in the value assigned to two variables
that belong to the same term. Furthermore, for all z ~ Z, f(z) =0.

Let T be a decision tree over V equivalent to f. Assume that there are less than kl x
k 2 x . . . x km negative leaves in T. Then, there exist two distinct assignments zl, z2 ~ Z
such that L(zO = L(z2). In other words, the assignments zl and z2 define the same path
from the root node to a negative leaf. Let V/be one of the variables sets where zl and
z2 differ (by construction there exists at least one of such set), and let y ~ V i be the variable
that zl assigns to 0. Then, z2 must assign y to 1. Therefore, the variable y cannot be tested
in the path from the root to L(zO.

Let r be the assignment that assigns the value 1 to y and coincides with Zl elsewhere.
Hence, L(r) = L(Zl), and T(r) = T(Zl). But this contradicts the fact tha t f (r) = 1. There-
fore, the number of negative leaves in T must be greater or equal to kl x k2 x . . . x km.

98 G. PAGALLO AND D. HAUSSLER

Appendix B: DNF description of test target concepts

dnfl

dnf2

X5X28X38X72X74X76 -~ X2X16X40X52X74

X40X56X58X60X63X72 -~ X6X24X36XTIX39X48

XIlX48X50X64X69X74 q- X2X15XTIX36X50X53
XlX3X14X19X26X35X36 + X8X15X31X37

X 18X20X30X36 + X2X3X9X19X24

X6X7X14X25X26X31X34 -~ XlX6X22X30

q- XlOX21X23X28X30X63 -.}-

q- X3X17X45X55X72X75 --}-
q- X6X12X22X45X60
-k- X5X10X14XTIX29 -'}-

-}- X24XesX27X36X37 -+-

dnf3 XlX2X6X8X25X28X29 q- X2X9X14X16X22X25

.~2X IOX 14X21.~24 -'}- XllXlTX19X21X25

+ x124Sqg~22x27x28
Jr- X lX4X 13XZ5

+

dnf4 XIX4XDX57~¢59 + X 18.~22.~24

.~9X 12.~38X55 -}- X5X29X48

X4X26X38X52 -q- X6XllX36~55

X3X4X21-~37.~55

-[- X30X46X48X58 q-

-~- X23X33X40X52 q-

-1- .~6X9XloX39~46 q-

References

Beach, L.R. (1964). Cue probabilism and inference behavior. Psychological Monographs, Whole. 582.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. (1987). Occam's razor. Information Processing Let-

ters. 24:377-380.
Breiman, L., Friedman, J.H., Olsen, R.A., & Stone, C.J. (1984). Classification and Regression Trees. Wadsworth

Statistic/Probability Series.
Carbonell, J., Michalski, R., & Mitchell, T. (1983). An overview of machine learning. In Machine Learning:

An Artificial Intelligence Approach, 3-24 Morgan Kaufmann.
Clark, P. & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3:251-283.
Flann, N. & Dietterich, T. (1986). Selecting appropriate representation for learning from examples. Proceedings

of AAAI-86, (pp. 460-466). Morgan Kaufmann.
Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Ar-

tificial Intelligence, 36: 177-221.
Kearns, M., Li, M. & Valiant, L. (1987). Recent results on Boolean concept learning. Proceedings of 4th Inter-

national Workshop on Machine Learning, (pp. 337-352). Morgan Kaufmann.
Matheus, C. (1989). Feature Construction: An Analytic Framework and An Application to Decision Trees. Ph.D.

thesis, University of Illinois, December 1989. In preparation.
Muggleton, S. (1987). Duce, an oracle-based approach to constructive induction. Proceedings oflJCAI-87, (pp.

287-292). Morgan Kaufmann.
Pagallo, G. and Haussler, D. (1989). A greedy method for learning/~DNF functions under the uniform distribu-

tion. (Technical Report UCSC-CRL-89-12, Santa Cruz: Dept. of Computer and Information Sciences, Univer-
sity of California at Santa Cruz.

Pagallo, G. (1989). Learning DNF by decision trees. Proceedings oflJCAI-89, (pp. 639-644). Morgan Kaufmann.
Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1:81-106.
Quinlan, J.R. (1987a). Generating production rules from decision trees. Proceedings oflJCAL87, 1; (pp. 304-307).

Morgan Kaufmann.
Quinlan, J.R. (1987b). Simplifying decision trees. International Journal of Man-machine Studies, 27:221-234.
Quinlan, J.R. (1988). An empirical comparison of genetic and decision tree classifiers. Proceedings of the 5th

International Conference on Machine Learning (pp. 135-141). Morgan Kaufmann.
Rivest, R. (1987). Learning decision lists. Machine Learning, 2:229-246.

FEATURE DISCOVERY 99

Schlimmer, J.C. (1986). Concept acquisition through representational adjustment. Machine Learning, 1:81-106.
Utgoff, P. and Mitchell, T.M. (1982). Acquisition of appropriate bias for inductive concept learning. Proceedings

of AAAI-82, (pp. 414-417). Morgan Kaufmann.
Valiant, L.G. (1984). A theory of the learnable. Communications of ACM, 27:1134-1142.
Valiant, L,G. (1985). Learning disjunctions of conjunctions. Proceedings oflJCA1-85, (pp. 560-566). Morgan

Kaufmann.
Vapnik, V.N. (1987). Estimation of Dependencies Based on Empirical Data. Springer Verlag.
Wilson, S.W. (1987). Classifier systems and the animat problem. Machine Learning, 2:199-228, 1987.

