
International Journal of Computer Vision, 6:3, 227-243 (1991) 
© 1991 Kluwer Academic Publishers, Manufactured in The Netherlands. 

A Common Framework for Image Segmentation 

DAVI GEIGER 
Siemens Corporate Research, Inc., 755 College East Road, Princeton, NJ 08540 

ALAN YUILLE 
Division of Applied Sciences, Harvard University, Cambridge, MA 02138 

Received November 2, 1989. Revised November 8, 1990 and April 1, 1991. 

Abstract 
We attempt to unify several approaches to image segmentation in early vision under a common framework. The 
Bayesian approach is very attractive since: (i) it enables the assumptions used to be explicitly stated in the proba- 
bility distributions, and (ii) it can be extended to deal with most other problems in early vision. Here, we consider 
the Markov random field formalism, a special case of the Bayesian approach, in which the probability distributions 
are specified by an energy function. 

We show that: (i) our discrete formulations for the energy function is closely related to the continuous formula- 
tion; (ii) by using the mean field (MF) theory approach, introduced by Geiger and Girosi [1991], several previous 
attempts to solve these energy functions are effectively equivalent; (iii) by varying the parameters of the energy 
functions we can obtain connections to nonlinear diffusion and minimal description length approaches to image 
segmentation; and (iv) simple modifications to the energy can give a direct relation to robust statistics or can en- 
courage hysteresis and nonmaximum suppression. 

1 Introduction 

This article extends the work of Geiger and Girosi [1991] 
in an attempt to unify many methods of image segmen- 
tation under a common framework. First we study the 
weak membrane model that smooths the intensity field 
except at the discontinuities. It has been studied by 
many researchers including Blake and Zisserman 
[1987], Chou and Brown [1988], Gamble and Poggio 
[1987], Geman and Geman [1984], Koch et al. [1985], 
and Marroquin [1987]. 

We also address the problem of relating continuous 
space models [Mumford and Shah 1985] and models 
defined on lattices. This is done by finding a discrete 
formulation based on the continuous model of Ambrosio 
[1988] in which the boundaries are represented by a 
single line process. This contrasts with the usual lattice 
formulation [Geman & Geman 1984] which, by using 
both horizontal and vertical line processes, tends to bias 
lines toward these two directions. We show that using 
a single line process avoids some of these biases (see 
figure 1). In general it is preferable to formulate the 

energy function on the continuous space since it does 
not depend on the particular tesselation of the space; 
however, the lattice formulation proves to be more effi- 
cient for the computational point of view. 

We study these energy function models in terms of 
statistical field theory. In the past years many research- 
ers have investigated the use of statistical field theory, 
in particular Markov random fields, for early vision 
[Geman & Geman 1984; Marroquin 1987; Gamble & 
Poggio 1987]. 

Given an energy function model one can define a cor- 
responding statistical model. If the energy E(f ,  l) 
depends on two fields, f (the smoothed image) and l 
(the discontinuities), then (using the Gibbs distribution) 
the probability of a particular state of the system is 
defined by 

e -13E(f,l) 
P(f ,  l) - Z (1) 

where/3 is the inverse of the temperature parameter and 
Z is the partition function (a normalization constant). 
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Fig. L The surface field f, and the line process l are represented at 
the sites, (i, j) ,  (i + 2, j) and (i - 2, j + 2), of the lattice. Both 
are single quantities. Notice, however, that the line process is actually 
defined in a lattice displaced, from the image lattice, half pixel in 
each direction. 

We can interpret the results in terms of Bayes' formula 

P(f, llg) = P(glf' l)P(f, I) 
P(g) 

where P(g If, l) is the probability of the data g given 
a segmented and smoothed image f, l, P(f,  l) is the 
a priori probability of the segmented smoothed image 
and P(g) is the a priori probability of the data. 

Given these statistical models there are many quan- 
tifies one would like to calculate, for example the max- 
imum a posterior estimates of the fields given the data. 
There are several different approaches, for example 
simulated annealing [Kirkpatrick et al. 1983; Geman 
& Geman 1984], for calculating these quantities. 

This article concentrates on the mean [Geiger & 
Girosi 1991] quantities of the field (in the zero temper- 
ature limit, these are the quantities that minimize the 
energy function). A justification to use the mean field 
(MF) as a measure of the fieldfresides in the fact that 
it represents the minimum-variance Bayes estimator. 
More precisely, the variance of the field f is given by 

v a r / =  E ( f  - ~)2 p(f, 1) 
f,z 

wherefis the center of the variance and the ~f,l repre- 
sents the sum over all the possible configurations of 
f and I. Minimizing vary with respect to all possible 
values off ,  we obtain 

0 
vary = 0 ~ f = ~ f e ( f ,  l) 

This implies that the minimum variance estimator is 
given by the MF value. 

Recently Geiger and Girosi [1991] have shown that 
by applying mean field (MF) theory, as used in statisti- 
cal physics, to coupled Markov random fields (MRFs), 
a set of deterministic equations are obtained, whose 
solutions correspond to the mean fields. In particular, 
while the values of the discontinuity field (the line proc- 
ess) can be statistically 0 or 1, the MF solution for the 
discontinuity field ranges from 0 to 1 throughout the 
continuous values. They also introduced the concept 
of an effective potential for the smoothed image field 
with the line process eliminated. The work proposed 
a link between the statistical algorithms [Geman & 
Geman 1984; Marroquin 1987] and the alternative 
deterministic graduated nonconvexity algorithm [Blake 
and Zisserman 1987]. 

The parameter/3 is external to the energy function 
and can be used to lower the temperature to zero (by 
increasing/3 to infinity) to find the zero temperature 
solution. This method can be thought of as a determin- 
istic form of simulated annealing [Kirkpatrick et al. 
1983] and has been used by many algorithms, for ex- 
ample [Hopfield & Tank 1985; Durbin & Willshaw 
1987; Geiger & Girosi 1991]. It is also related to con- 
tinuation methods [Wasserstrom 1973]. We find that 
several deterministic methods for image segmentation 
are special cases of these equations, namely (i) the 
graduated nonconvexity algorithm [Blake & Zisserman 
1987] (previously shown in [Geiger & Girosi 1991]) 
(ii) the Hopfield network approach [Hopfield and Tank 
1985; Koch et al. 1985; Yuille 1987], and (iii) the 
minimal length encoding [Leclerc 1988]. In addition, 
(iv) there are connections to smoothness with adaptive 
weights [Grimson & Pavlidis 1987; Terzopoulos 1986] 
and (v) we can show that some of the nonlinear diffu- 
sion approaches to image segmentation can be related 
to these equations. 

The energy function contains several parameters 
specifying the relative importance of different terms. 
By varying these parameters we can extend the scale- 
space description of Witkin [1983]. This suggests a 
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different strategy for obtaining the MF solution. Instead 
of calculating the solution by steepest descent (or some 
other method) for a specific set of the parameter values 
one can start with a known solution for a fixed set of 
parameter values and track the solution as these values 
change. This idea enables us to relate the energy func- 
tion and statistical approach to alternative methods of 
image segmentation by nonlinear diffusion equations. 
In particular we show that the network suggested by 
Perona and Malik [1987] to implement an anisotropic 
diffusion equation is an approximation to this approach. 

We then show how the cost function can be adapted 
to deal with salt-and-pepper noise where it is desirable 
to throw away outlying data. This gives a direct link 
to robust statistics [Huber 1981] and therefore provides 
a robust method for image segmentation. 

Finally it is suggested that the interactions described 
in the energy function formalism can incorporate many 
of the basic features used in algorithms for image seg- 
mentation [Canny 1986]. These basic properties are 
(i) smoothing the field that represents the input, except 
at the discontinuities, (ii) encouraging the creation of 
lines in the direction perpendicular to the gradient of 
the field, this is an excitatory mechanism known as 
hysteresis [Canny 1986] for edge detection, and (iii) in- 
hibiting the formation of multiple responses to edges. 
This corresponds to nonmaximum suppression in the 
direction defined by the gradient of the image. 

This article is organized as follows: section 2 dis- 
cusses the continuous and discrete formalization of 
energy function. In section 3 we introduce statistical 
mechanics, considering the winner-take-all problem, 
and use MF theory to obtain equations for the mean 
field solution. Section 4 applies MF theory to image 
segmentation. In section 5 we find dynamic equations 
to solve MF equations and show that this incorporates 
previous deterministic methods. Section 6 introduces 
a parameter space where each element is an MF solu- 
tion for a different set of the parameters. This frame- 
work enables us to relate the nonlinear diffusion 
methods of smoothing to the minimization of an energy 
function. Section 7 shows that cost function can be 
easily extended to introduce robust statistics and/or in- 
corporate nonmaximum suppression and hysteresis. 
Section 8 presents preliminary implementation results. 

2 Continuous and Discrete Cost Functions 

Consider the problem of smoothing the field and at the 
same time detecting discontinuities. This problem can 

be formulated in terms of a simple energy function that 
has the appropriate interaction between the data field 
and the line process (discontinuity field). A simplified 
version of the model is given by the weak membrane 
energy that has been proposed for the continuous case 
by Mumford and Shah [1985], and on the discrete lattice 
by [Geman & Geman 1984; Marroquin 1985; Blake & 
Zisserman 1987]. The continuous formulation of Mum- 
ford and Shah [1985] is 

= f f o  ( f (x )  - g(x)) 2 dx 

+ o< f f  v f ( x ) . V f ( x )  ~ + .y f as 
J J D  - C  J C  

Heref(x) is the smoothed data field, g(x) is the data, 
D is the domain (a subset of R2), and C is curves that 
divide the domain up into separate regions. The energy 
is to be minimized over all possible fieldsf(x) and all 
possible edges C. The first term, called the data term, 
accounts for the error between the data and the field. 
The second term, called the smoothness term, imposes 
smoothness except across the edges C. The last term, 
called the cost term, establishes the price to establish 
the edges C. 

Ambrosio [1988] proposes a continuous formulation 
of the problem which represents the edges using a line 
process l(x). 

e, : f f (f(x) - 

+ a { V f ( x )  • V f ( x )  + Vl(x) • Vl(x)}  

~/l(x)~-~ (2) × (1 - l ( x ) )  2& d- 4e 2 j dx 

Heref(x),  g(x), and D are as before. Ambrosio proves 
that this is equivalent to Mumford and Shah's formula- 
tion as e ,-, 0, the lines where l(x) ~ 0 correspond 
to the curves C. 

However, the lattice based approaches represent the 
edges by horizontal and vertical line processes. These 
occur on two lattices interposed with the lattice repre- 
senting the data field. The concept of a single line proc- 
ess offers a way of going between the continuous and 
the discrete formulations. It suggests using a single line 
process on the lattice, instead of a process using a pair 
of horizontal and vertical lines. We argue that this helps 
reduce the anlsotropy and the bias toward preferring 
horizontal and vertical edges. 
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2.1 The Discontinuity as a Single Field 

Continuous formulations are desirable for mathematical 
reasons [Mumford & Shah 1985], including a lack of 
bias toward vertical and horizontal edges, but lattice 
formulations are more practical. In computer vision the 
image is either captured by a camera or synthetically 
produced. In both cases the image will be stored in the 
computer as an array and therefore the space will be 
discrete. However, different tesselations of the space 
may be used and they may have different properties. 
For instance, a hexagonal shaped lattice has different 
symmetry properties than a square lattice. 

It would be desirable to obtain the lattice formulation 
by directly discretizing equation (2). For example, by 
setting e = 2L, where L is the lattice spacing. However, 
as Richardson [1990] points out, it is unclear if the limit 
of the resulting lattice formulation exists as L ---, 0 
(~ --' 0). Our discrete formulation is inspired by 
Ambrosio but not directly equivalent. 

We argue that a single field formulation couples better 
with any given tesselation of the space (not just the 
square lattice). Although it might seem to be natural 
to define the discontinuity field as a single field on the 
lattice this has not been previously used. Many authors, 
for example [Geman & Geman 1984; Koch et al. 1985; 
Marroquin et al. 1985; Geiger & Girosi 1991], have 
considered a horizontal and vertical line process which 
corresponds to have the line process as a 2-dimensional 
vector field. In a single-field formulation the direction 
of the contour curve is obtained by the derivatives (gra- 
dients) which have different shapes on different tessela- 
tions of the space. 

We propose the discrete model to be 
l 

[ (f ,j  - E 
I_ l,J -q 

+ ot(A~f + A~f)(t  - li,j) + "yli,j~ (3) 

where Air is a discrete derivative o f f  in the x direction 
and A~f is short for (Air) 2. 

The choice of lattice approximation to the derivative 
is very important, since the localization of Aifhas to 
be the same as A j r  and consequently the same as I#. 
The "natural" choice, Air = j~,j --J~-l,j, does not have 
this propriety. We define the derivative o f f  in the x- 
direction as Ai f  = 0.5(j~,j- f i - l , j  -[- J ~ , j - I  - -  f i - - l , j - 1 )  
(see figure 2). Another way to write this is A i f  = gij  
+ Mij and A j f  = K# - Mij, where Mij = 0.5(3~j_1 - 

J~-lj), K# = 0.5(3~j - 3~-1 j-i). Notice however that this 

i-I 

£ i 

iq-I 

J-1 J j+l ~j 
• • • • 

X × × 

x × × 

K ~  : f t . t l . l  - r  U x l / 2  

Mt j  = fit.1 - fi-u x 1/7, 

Fig. 2. This definition of derivative does not break the diagonal 
interactions. 

definition of discrete derivative decouples the lattice 
into two lattices (like black and white squares of a 
chessboard) for places where I/y = 0. We point out that 
the fieldfdoes not coincide with the single-line process. 

3 Statistical Mechanics and MF Theory 

The standard Markov random field approach to seg- 
mentation defines an energy function E(f ,  l) of the line 
process and the field to be smoothed. The ensemble 
of this system is given by all possible states of the sys- 
tem. These states correspond to f ieldsfand l defined 
everywhere on the grid. The energy function E(f,  l) 
defines the probability of a give solution for the fields 
by the Gibbs distribution [Parisi 1988]. 

1 e_OE(f,l ) ee  = 

This implies that every state of the system has a finite 
probability of occurring. The more likely ones are those 
with low energy. 

The parameter a, which can be interpreted as the in- 
verse of the temperature T = 1//3, controls the sharp- 
ness of the distribution. It follows directly from the 
Gibbs distribution that the ordering of the relative 
likelihood of states depends only on their energies and 
is independent of/3. The magnitude of the relative 
likelihood, however, varies with/3. As/3 ~ 0 all states 
become equally likely. Conversely, it can be shown as 
/3 ~ oo that only the state, or states, with lowest energy 
has a nonzero probability of occurring. Thus 1//3 can 
be thought of intuitively as a measure of the uncertainty 
of the model. 

This intuition can be made more precise by inter- 
preting the probability in terms of Bayes' theorem, see 
section 1. This theorem expresses the probability Pe 
in terms of the probability P(dlf,  l) of the data given 
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fields (f, l) times the prior probability P(f, 1) of the 
fields (f, l). For the image segmentation energy func- 
tion, equation (2), the ( f  - g)2 term ensures that 
P(dlf, l) is a Gaussian distribution with variance 1/2/3. 
Thus maximizing PE with respect to the fields (f, l) 
corresponds to maximum a posteriori estimation of 
(f, l) with a model that assumes Gaussian noise in the 
data with variance 1/2/3 [Geman & Geman 1984]. Thus 
1//3 is a measure of the noise assumed to be in the 
data, and hence is a measure of the uncertainty of the 
model. 

Minimizing the energy function will correspond to 
finding the most probable state, independent of the 
value of/3. The MF solution is more general and 
reduces to the most probable solution as T ~ 0. It cor- 
responds to defining the solution to be the mean fields, 
that is, the averages of thefand l fields over the proba- 
bility distribution. This enables us to obtain different 
solutions depending on the uncertainty. Statisticians 
refer to it as the minimal variance estimator. 

One can now estimate the most probable states, or 
the mean states, of this probability distribution by, for 
example, using Monte Carlo techniques [Metropolis et 
al. 1953]. The drawback of these methods is the amount 
of computer time needed for the implementation. 

The/3 parameter may now be used to fulfill a dif- 
ferent purpose. It is often easier to compute the solu- 
tions at higher temperatures (low/3) and slowly reduce 
the temperature at the same time as updating the solu- 
tion. This is the essence of the extremely useful sim- 
ulated annealing [Kirkpatrick et al. 1983] approach and 
the deterministic annealing approach that we describe 
next. 

It should be emphasized that the a parameter has two 
independent purposes. Firstly, it is used as a parameter 
to specify the probability distributions assumed by the 
model. Secondly, it can be used as a continuation 
parameter, as in simulated annealing, to help compute 
the most probable states or the mean field values. 

3.1 MF Theory and the Winner Take All (W.T.A) 

MF theory gives methods for obtaining fast determi- 
nistic algorithms that make use of the richness of the 
statistical formulation to find the MF solution. The MF 
solution corresponds to the average solution of the prob- 
lem and is obtained by averaging all possible states 
according to their probability. So the MF solution will 

not necessarily correspond to the solution that mini- 
mizes the energy, especially if that state is very isolated 
from the others. However, if there is uncertainty in the 
model, then the MF solution may be more reliable 
[Berger 1985] than the minimum energy solution. 
Moreover for the limit of/3 ~ oo (no uncertainty) the 
MF solution becomes the minimum of the energy. 

We introduce MF theory by using it to solve the prob- 
lem of W.T.A. The W.T.A. problem can be posed as: 
given a set {T/} of N inputs to a system how does one 
choose the maximum input and suppress the others. 
For simplicity, we assume all of the T/'s to be positive. 
We introduce the set of binary variables {V/}, such 
that Vw = 1 selects the winner and V i = 0 for i ~ w. 

We will calculate the partition function in two sepa- 
rate ways for comparison. The first method uses the 
mean field approximation and gives an approximate 
answer. The second method is exact and is best for this 
application, but cannot be used for all problems. It in- 
volves calculating the partition function for a subset of 
the possible V/'s, a subset chosen to ensure that only 
one V i is nonzero. 

3.L1 W.T.A. with the Mean-Field Approximation. 
Define the energy function 

i=1 j¢:i,=l i=1 

(4) 

where X is a parameter to be specified and V = (V~, 
. . . .  VN) denotes the state of the system. The solution 
of the W.T.A. will have all the V/to be zero except for 
the one corresponding to the maximum T/. This con- 
straint is imposed implicitly by the first term on the 
right-hand side of (4) (note that the constraint is encour- 
aged rather than explicitly enforced). 

Now we formulate the problem statistically. The 
energy function above defines the probability of a state 

to be P[P] = 1/Z e -t~elw"fFl, where/3 is the inverse 
of the temperature parameter and and Z is the normal- 
ization constant, called the partition function, given by 

Z = Z e-t3E1WtA[p] 
p 

where the sum is taken over all admissible configura- 
tions ~.. 



232 Geiger and Yuille 

The mean values, { I?/}, of the fields can be com- 
puted directly from the partition function, 

1 0 
z~x ark 

EexpI-~ ~-~J[I ~ ViVjl- XTiVi 1 
i= l  j~i,=l 

1 I OZ 
~x z ark 

1 OlnZ 
~x OTk 

Using the mean field approximation [Geiger & Girosi 
1991] we can now approximate the partition function 
Z. We can write Z as 

Z : ~ e -ae~tA|~] 

=~J~i expI-~Vilj~i Vj-XTtl 

When calculating the contribution of Z from a specific 
element V/, the mean field approximation replaces the 
values of the other elements Vj by their mean values 
l?j. This assumes that only low-order correlations be- 
tween elements are important [Parisi 1988]. This yields 
an approximate partition function Z, pprox 

Zappr°x =~ ~i exp I-~Vilj~i VJ - XTt 1 
The expression for Zapprox is now a product of indepen- 
dent terms, which can be summed over independently. 

Zapprox =" 

I~i ~vi={O~,l}expI-15Vilj~i ~-Till ) 

= I ~ I / ( 1  + e x p l - / S I j ~ / ~ - X T / I I  ) 

We can now differentiate Zapprox with respect to the 
{T/} to obtain consistency conditions for the { I//}, the 
mean field equations 

~ =  1 

EI 1 + e x p  /~ ~ ~ - X  j~i,=l 
To solve (5) we can arrange for it to be the fixed point 

of a dynamical equation, for example 

d l / / _  I~/+ 1 

The problem with this method is that we cannot guar- 
antee that it will converge to the correct solution (there 
may be several solutions to (5)). Though, provided that 
X < l/T] ~x (so XTI < 1 for all i), then as/5 --* ~ the 
correct solution will satisfy (5), that is, l;' i = 1 for the 
maximum T i and Vi = 0 otherwise. For the finite 
values of a the solution is more general and iassigns 
a weight for each value of Ti that can be used to en- 
hance the signal. 

Because this method is not guaranteed to give the 
correct solution we now discuss a more efficient way 
of dealing with the winner-take-all problem. 

3.L2 W..T.A Without the Mean Field Approximation. 
We now impose the constraint that, for each admissible 
state, the V/sum to 1 explicitly during the computation 
of the partition function. The first term on the right- 
hand side of (4) is now unnecessary and we use an 
energy function 

N 

i=l 
We compute Z by summing over all possible ffunder 

the constraint that the components sum to one (i.e., we 
sum over the states V = (1, 0, 0, . . . ,  0), (0, 1, 0, 0, 
. . . .  0) . . . . .  (0 . . . . .  0, 1). This gives 

ZkVk=1 
{vi=0,H i 
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In this case no approximation is needed and we obtain 

_ 1 O In Z e ~7) 
VJ ~ 0 r j  - -  E i e ~  (6) 

Thus as j3 ~ oo the V i corresponding to the largest T~. 
will be switched on and the other Vj will be off. This 
method is guaranteed to converge to the correct solution. 

4 MF Theory and the Effective Energy 

The tools of statistical mechanics enable us to calculate 
the MF solution directly, provided the partition function 
is known. Unfortunately, however, it is often impossible 
to directly compute the partition function and saddle- 
point approximations must be used [Parisi 1988]. This 
gives rise to a set of consistency equations for an ap- 
proximation to the mean fields. To obtain the correct 
solution to these equations, a heuristic continuation 
method known as deterministic annealing is used, 
which involves the equations at high temperature and 
tracking the solution to lower temperatures. 

We now compute the partition function associated to 
the energy function by summing the probability over 
all possible states of the fields. Following [Geiger and 
Girosi 1991], we first sum over all possible l/j, and an 
effective energy is obtained. The analysis of this effec- 
tive energy allows us to better understand the system. 
Moreover by using a saddle point approximation we 
can find the mean value ofj~j by minimizing the effec- 
tive energy with respect to this field. 

4.1 MF and the Effective Potential 

For the weak membrane model (given by (3)) the par- 
tition function is given by 

Z = E  E { f }  {l=0,1} exp(-/3I~i,j  (fi 'J- gi'J)2 +'r 

+ (c~L2(A}f+ A ~ f ) - 3 ' ) ( 1 -  li , j)]) 

where the ~ {f} Z {l=o,~} represents the sum over all the 
possible configurations of the fieldfand l. Computing 
the sum over all the possible states l we obtain 

1 In(1 + e~HiJ)l t (7) 

where 

H/j = 7 - cq:(A~f + A~f) 

The interaction of the fieldfwith itself has changed 
after the line process has been averaged in the partition 
function. From (7) we notice that the partition function 
can be rewritten as 

Z = E e- f3Eeff( f ) 
{f] 

where 

1 
Eeff(f) = ~ (fij - gij) 2 + ~ - -~ In [(1 + eaHi,:)] 

i , j  

(8) 

We then plot the effective potential (without the data 
term) as a function of the gradient o f f  (see figure 3). 
This is equivalent to the result obtained by Geiger and 
Girosi, but for the scalar line process. As they point 
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Fig. 3. The effective potential is shown as a function of A 2 f. a. For ~ = 0.002. b. Zero temperature limit (/3 ~ ~). Taken from Geiger and 
Girosi [1991]. 
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out, an exact computation of Z by means of the transfer 
matrix method shows that this potential is highly non- 
local and it becomes hard to solve the problem. It is 
possible however, by using the saddle-point approxima- 
tion, to substitute the sum over all possible states of 
the f ieldfby its maximum value. This approximation 
holds if the fluctuations of the values of f a re  small and 
we make this assumption. The partition function then 
becomes (up to a scaling constant) 

Za = exp {-/3 minf [Eeff(f)]} (9) 

Alternatively, we can choose our estimate o f f  to be the 
maximum a posteriori estimate of (1) after summing 
out the line process fields. This corresponds to mini- 
mizing Eeff(f) with respect to f, and gives identical 
results without need of the saddle-point approximation. 
The MF equation for the line process field is given by 

1 0 1 n Z A _  1 (10) 
li,j = 13 anij 1 + e#ni,J 

where i-lid is computed with the mean value of f and 
H O. = [~/ - etv[(Aifi) 2 + (Ajf)2)]. It is interesting to 
notice that the mean value of the line process can vary 
continuously from 0 to 1. For the zero tempe_rature limit 
(13 ~ 0o) equation (10) becomes 1/,j = O(-Hi,j)  where 
O(x) is the step function. 

5 Deterministic Solutions for f 

The aim of this section is to show that several existing 
algorithms using line processes are essentially the same. 

There are several dynamic methods to compute the 
MF solution f o r f  The first one, discussed in this sec- 
tion, defines a dynamic equation with respect to time 
such that the fixed point of the equation (as time ~ co) 
is the MF solution. The temperature of the system can 
be gradually reduced to provide deterministic anneal- 
ing. It was previously shown [Geiger & Girosi 1991] 
that the graduated non convexity algorithm [Blake & 
Zisserman 1987] is an approximation to this. We now 
show that another deterministic approach based on 
Hopfield networks [Koch et al. 1985] is also equivalent. 
Moreover several approaches based on adaptive 
smoothness are also related [Grimson & Pavlidls 1985; 
Lee & Pavlidis 1987; Terzopoulos 1986]. 

The second method, described in the next section, 
considers variations of the MF solution over the param- 
eter space. We derive the mean field equations with 
respect to a particular parameter and provide suitable 
initial conditions. 

5.1 Dynamic Equations 

As we discussed before, the MF solution minimizes 
Eeff(f).  A possible way to introduce dynamics is to 
make the f ieldf t ime dependent and perform steepest 
descent on the energy function. 

dfj( t )  _ OEeff(f) 
dt afij(t) (11) 

In this case the fixed point, that is, ffix such that 
(df/dt)(fax) = 0, is the solution of the static MF equa- 
tion. For discrete time, (11) becomes the gradient de- 
scent algorithm 

OEeff(f) 1 ( f.n÷ l 
ofo 

where o~ is the time step and n counts the number of 
steps. For the effective energy equation (8), the dynamic 
equation becomes 

f.,,+l ,, ,, ,j =f/~ - 2~0{hij(fi~ - go) 

+ °tL2[Ko(1 -- l(i) -- Ki+lj+l(1 - -  li+lj+l) 
- Mi+U(1 - li+lj) + MO+I(1 - l/j+l)]} (12) 

where the index n indicates the step of the evaluation 
procedure and M U = 0.5(fj_l - f - l  i), KO = 0.5 
( f j  - f i - l j - O .  

We can then find the fixed point by updatingfrecur- 
sively according to (12), coupled with the updating rule 
for the line process given by (10). For dense data the 
fixed point f will satisfy 

fij = gij -- °tvtKij(1 - 10) 

-- Ki+lj+l(1 - -  ~'+lj+l) 

- M i + ~ j ( 1  - ~ + ~ j )  

+ g/j+l(1 -- 1/j+l)] (13) 

From now on, for simplicity, we drop the index L 2 
of or. 

5.2 The Hopfield Network Approach 

An alternative approach to minimizing energy functions 
was developed by Koch et al. [1985] and Yuille [1987] 
by adapting a technique used by Hopfield [1984]. This 
led to a method that was similar to graduated noncon- 
vexity [Blake & Zisserman 1987] and had analogies to 
the MF theory. Indeed it was shown by Yuille [1987] 
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that this method generated solutions to the MF theory 
equations. We now show the correspondence to MF 
theory. 

In Koch et al. [1985] and Yuille [1987], the binary 
line process fields lij become continuous variables in 
the range [0, 1]. They are related to variables mij by 
lij = g(mij, X) where 

1 
g(mij, X )  - -  1 + e-Xmij 

is a sigmoid function. The energy is modified by the 
addition of a term (this is equivalent to the inverse gain 
function term used by Hopfield [1984] which can be 
thought of as entropy 

C 
E G = ~-~ ~__j.. {lij log (lij) + (1 - lij) log (1 - lij)} 

t,J 

The dynamics of the system are given by 

o 
dt - O--~ij {E + EG} 

dmij _ O {E + EG} (14) 
dt Olij 

where E is given by equation (3). It is straightforward 
to show [Koch et al. 1985], following Hopfield [1984], 
that the system converges to a minimum of E + E G. 
As ), ~-. 0 the energy E + E G becomes convex and 
there is a unique minima. As )~ ~ oo the additional 
energy E G ~ 0 and we recover the original energy 
function. This suggests minimizing the energy for small 

and tracking the solution as X increases. 
Equations (14) converge to solutions of 

O 
0f, j {E + = 0 

{E + EG} = 0 (15) 
O10 

Equation (15) gives for the weak membrane model 

1 
--c~(A~f + A~f) + 3' + X (log l/j -- log (1 -- lij)) 

1 
= 0 '~ li, j =-  (16) 

1 + eX(3'-~(a}f+A2J f)) 

This is identical to the MF solution in (10) provided 
we set X = /~. By substituting lij, given by (10), into 
the effective energy we obtain the same energy E + E G 
as above. We conclude that the methods using the 
Hopfield technique [Koch et al. 1985; Yuille 1987] are 

equivalent to those using mean field theory [Geiger & 
Girosi 1991]. MF theory applied to the fieldsf(input) 
and l (output) naturally accounts for the continuous 
values of l and the gain term introduced by Hopfield. 

5.3 Smoothing with Adaptive Weights 

By adapting recent work from Durbin [private commu- 
nication] on the elastic-net algorithm for the traveling 
salesman problem [Durbin & Willshaw 1987], we can 
propose an alternative minimization algorithm. This 
algorithm minimizes E[ f , / ]  with respect to thefvari-  
ables with l fixed, then calculates the most probable 
estimate of the l's analytically using (10), and repeats 
the minimization-estimation process. It is closely related 
to the EM algorithms [Dempster et al. 1977]. An advan- 
tage of this algorithm is an increased speed-up in time 
since, when the l's are fixed, the energy function is 
quadratic in thef 's  and quicker algorithms than steepest 
descent can be used for minimizing it. Since the l's are 
computed analytically, both stages of the EM strategy 
are very fast. 

This new algorithm is also related to smoothing algo- 
rithms using variable weights. These typically do 
smoothing with a quadratic energy function, readjust 
the weights of the smoothing terms based on some fit- 
ness criterion and smooth again. Terzopoulos [1986] 
proposes smoothing over discontinuities and then break- 
ing the surface at places where the tension is too high. 
This breaking can be achieved by adjusting the weights 
of the smoothness terms and would correspond to set- 
ting the l's to be 1 at such places. Grimson and Pavlidis 
[1985] and Lee and Pavlidis [1987] discuss ways to read- 
just these weights iteratively on the basis of the residual 
difference between the data and the interpolated surface. 

6 Parameter Space: Generalized Scale Space 

The energy function is specified by a set of parameters. 
As we vary these parameters we obtain different MF 
solutions. This generates a parameter space of solutions 
where each point in the space is the MF solution for the 
corresponding set of parameters. This can be thought 
of as a generalization of scale space [Witkin 1983; YuiUe 
& Poggio 1983]. Several authors have suggested varying 
the values of the parameters of the energy function 
either to obtain a scale space description [Blake & 
Zisserman 1987] or to relate the discontinuities of this 
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model to zero crossings of certain linear operators 
[Mumford & Shah 1985]. 

The techniques described above will obtain the MF 
solution. Altering the parameter values will change the 
probability distributions and lead to different solutions. 
In some situations the optimal values of these param- 
eters can be estimated [Geiger & Poggio 1987], but in 
general they are unknown. 

The/~ parameter is used to take into account the 
uncertainty of the model. Changing/3 will not alter the 
ordering of the probabilities of states, since/3 multiplies 
all the terms of the energy function, but it will affect 
the relative probabilities of states. The more confident 
we are the bigger we make 8. In the limit as B ~ 0o 
the probability distribution is infinitely strongly peaked 
about the state with least energy. In this case the mean 
solutions of the field will correspond to values of the 
field in the least-energy configuration. Increasing/3 dur- 
ing the computation gives rise to annealing. 

The parameters ot and 3" are more closely related to 
the scale of the structure in the image that we wish to 
extract. Increasing ot (with the other parameters fixed) 
will correspond to increasing the smoothness. Increas- 
ing 3' (with the other parameters fixed) reduces the 
number of lines. 

We now investigate what happens as we vary the 
parameters (see figure 4). For any specific values of 
the parameters we can use the steepest descent tech- 

f°<292 ~2 

Bg. 4. The parameter space for the parameters a, B, and 3'. Each point 
in space corresponds to an MF solution for that set of parameters. 

niques to obtain solutions of the mean field theory. We 
can now track a path through parameter space by seeing 
how the solutions vary as the parameters change. This 
could be done by two methods: (i) we use the solution 
for one set of parameter values as initial condition for 
steepest descent for neighboring values, (ii) we differen- 
tiate the MF equations with respect to the parameters 
to obtain first-order equations for how the solutions 
change as the parameters vary. 

The second approach by-passes the need to perform 
steepest descent at all provided we have an initial solu- 
tion to start from. One method of obtaining such a solu- 
tion is to observe that for a = 0 the global minimum 
of the energy function (and the MF solutions) corre- 
spond t o f  = g, so the solution is known for this case. 
Starting with a solutionf = g for a = 0 and then in- 
creasing a leads to a method very similar to the non- 
linear diffusion methods for edge detection. In particu- 
lar we show in the next section that the method pro- 
posed by Perona and Malik [1987] is an approximation 
to these techniques. 

6.1 Nonlinear Diffusion: Varying a, B, and 3/ 

We now consider finding a solution of the system and 
tracking it as the amount of smoothness increases. This 
gives a direct connection between methods of image 
segmentation using Markov random field techniques 
and approaches using nonlinear diffusion. We study 
properties of the MF solution when the scale parameter 
varies. 

For et = 0 (no smoothness imposed) the MF solution 
i s f  = g since the line-process fields are decoupled from 
the data fields, and for quadratic fields the mean solu- 
tion corresponds to the minimum of the energy func- 
tion. We can now track the solution as the amount of 
smoothness increases. Intuitively, as we increase the 
amount of smoothness we will blur the image and ob- 
tain a scale space description. By using the equations 
for the MF solution we can obtain an equation for how 
the solution varies with a.  

The continuous version of the discrete MF equations 
given by (13) and (10) are 

f ( x )  = g(x) + ~ v .  (Vf(x)(1 - i(x))) 

i(x) = 1 (17) 
1 + exp {/~[3" - ~Vf (x ) .  Vf(x) ) l}  

We can take the derivative off(x)  with respect to a to 
see how the solution varies in the parameter space. 
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a](x) _ V .  [V3~(x)(1 - l(x))] 

0V- [Vf (x ) (1  - l(x))] (18) 
+ c~ 0or 

If we use (10) to substitute for i(x) we obtain an initial 
value equation for f i n  c~ with initial conditions f = g 
(for a = 0). For small values of the parameter a 
(a ~ 0), equation (18) becomes 

Of(x) _ 
O~ 

V-  1 + exp { - B [ ~  --- ~-Vf(x) • Vf(x)l} 
(19) 

This is a diffusion equation where the line-process field 
l(x, et) controls the anisotropy of the diffusion process. 
It is equivalent to a method defined by Perona and Malik 
[1987] that produced good experimental results for im- 
age segmentation. An advantage of (18) is that, since 
it gives a solution of the MF equations, it is easier to 
interpret. We can also vary the dependence of 3' on c¢ 
to obtain different edge thresholds during the evolution 
of the process. The Markov field formalism has the 
additional advantage that it can be used as a general 
formulation of early vision with an elegant probabilistic 
interpretation. 

It should be emphasized that tracking a solution in 
parameter space by repeatedly minimizing the energy 
function for different parameter values may be more 
reliable than using the explicit equation for Of/Oa. 

a l l  An Alternative Analogy to the Diffusion Equa- 
tion. There is an alternative analogy to the diffusion 
equation (also noticed by Nordstrom [1990] and a 
related method has been found by Lumesdaine-- 
personal communication). The dynamic equation (12) 
in the continuous case gives 

Of(x, t) 
Ot 

where 

- f ( x ,  t )  - g ( x )  

+ V" {otV[f(x, t)(1 - l(x, t))]} (20) 

l(x, t) = 1 + exp {/3[7 - otV2f(x, t)]} 

The first term on the r.h.s, of (20) is given byf(x ,  t) 
- g(x). If we start with initial conditionsf(x, 0) = g(x), 

then this term is initially zero. In a number of situa- 
tions, for example when the noise is small for small 
t, this term can be neglected. In this case, (20) becomes 

Of(x, t) 
Ot - c~V- {V[f(x, t)(1 - l(x, t))]} (21) 

This is an anisotropic nonlinear diffusion equation and 
is basically the same (after substituting for l(x, t) as 
(19). However, as we discussed before the MF solution 
is only obtained from (21) as t ~ oo. Therefore at any 
step the value o f f  can not be interpreted as the mean 
field value. Although, formally (21) is like (19) their 
difference resides on the different roles of the param- 
eters c~ and the time t. More precisely, (21) is a gradient 
descent method and the only meaningful solution is 
obtained at the minimum, while (19) produces mean 
field values throughout the whole path. 

62 Minimal Length Encoding 

We can also relate the line process method to an alter- 
native approach to image segmentation suggested by 
Leclerc [1988] based on Rissanen's work on minimal 
length encoding [Rissanen 1978]. In its simplest version 
it corresponds to fitting the image to a set of piecewise 
constant regions while minimizing the length of the 
boundaries between regions. The intuitive idea of the 
approach is that for a given problem a solution for it 
can be seen as the one that requires minimal encoding 
length. There is a direct correspondence between min- 
imal length encoding and Bayesian probability. Given 
a cost function for encoding we can define the corre- 
sponding probability theory using the Gibbs distribu- 
tion. Then the maximum a posteriori (MAP) estimate 
corresponds to the minimal length encoding. 

Leclerc starts with the minimal length idea and 
arrives at a functional of the following form (in one 
dimension) 

~i ( (f -- gi) 2 
0 + b[1 - 6(f  - f - l ) ] )  (22) 

and in order to solve it he suggests a continuation 
method starting from the functions. 

~ i  ((_fi -- gi)2 .~2 q_ b I1 _ exp ( f - f  1_~ _ 2]) 

(23) 
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where as the parameter s decreases to zero we obtain 
the original energy function. He noticed that as s ---, co 
the solution isfi = gi. He uses this as initial conditions 
and minimizes (23) with respect to fi while decreas- 
ing s. 

By comparing (23) with (8) we can see that both 
potentials have essentially the same form, shown in fig- 
ure 3. The parameter 1/a 2 is equivalent to our/3 (it is 
easier to see the whole comparison by multiplying (8) 
with/3). In this way Leclerc works with a finite temper- 
ature a 2. The parameter b relates directly to 3' since in 
the limit of large gradients off ,  both potentials become 
"flat" with constants b and 3' respectively. The parame- 
ter l/s is equivalent to or. We can see that a similar result 
will be achieved by our model as we increase ct, since 
the membrane term will now be strictly enforced 
(leading to approximately piecewise constant regions). 
We can find a more precise relation between s and ot 
by finding the inflection point of both effective poten- 
tials (without the data term) with respect to the gra- 
dient, that is, the zero of the second derivative of  the 
potential (without the data term) with respect to the gra- 
diem, (3~ - 3~-0. For (23) the inflection point is at 
(3~ - J~-l) 2 = s/2 and for (8) it occurs at 

2c~ [ 20~/~(J~ -- J~-l)2 1 
1 + exp ( - 3 / ~ i )  1 - 1 + ~ - x p ( - ~ )  = 0  

Where Hi = [3' - ~s5 - f /- t)  2] is the one dimen- 
sional version of H o. For the special case of zero 
temperature (corresponding to a = 0) the inflection 
occurs at (s5 - sS-1) 2 = 3'/o~ and the inverse relation 
between s and ~ becomes transparent, for a constant 
value of 3". In the general case, for finite 3, we can see 
that as o~ ,-. oo the inflection point moves to (f~ - 
sS_l) 2 = 0, which corresponds to s = 0. In this case 
the solution is piecewise constant. 

Therefore Leclerc's algorithm can be interpreted 
within our framework as a continuation method, corre- 
sponding to increasing o~ in a parameter space, for the 
mean-field effective energy and finite 3 = 1/a 2. This 
also suggests that a mean length encoding may be more 
appropriate than a minimal length encoding. 

Effectively this approach will lead to results similar 
to the nonlinear diffusion one, discussed above, but it 
does not fully exploit the temperature parameter (as, 
for example, the annealing methods do). More sophisti- 
cated versions of the minimal length encoding approach 
using polynomial patches will similarly correspond to 
higher-order smoothness terms. 

Leclerc's penalty for the creation of  lines is propor- 
tional to the total length of the line, hence it is similar 
to our model. More sophisticated methods of minimal 
length encoding [Keeler 1990] put penalties on lines 
that are proportional to the amount of information 
needed to describe the line. For example a straight edge 
requires four numbers to specify it, the coordinates of 
the initial and final points, and hence its cost is indepen- 
dent of  its length. 

7 Results 

We have implemented a combination of the gradient- 
descent method with the continuation method on the 
smoothing parameter (~) and the temperature (/3). We 
used equations (13) and (10) starting with or,/3 = 0 and 
varying these parameters as the gradient descent was 
applied. This initial value of the parameters gives the 
exact initial condition thatfij = gij. The final value of 
/3 is oo (in our case, oo = 2, which is a high enough 
value that guarantees 1/j = 1, 0). We used a linear 
schedule for updating ~ and ~ and we demonstrate in 
two image examples to a final a = 1 and 4 (see figures 
5, 6, and 7). 

8 Extensions 

This section describes two simple modifications that 
can be done to the energy function. 

8.1 Robust Statistics 

The energy function model we have been considering 
is inappropriate for a certain class of images. In partic- 
ular, for images corrupted with salt and pepper noise 
it seems inferior to classical techniques such as median 
filtering. We briefly show how the energy function can 
be easily modified to deal with this situation. The 
method presented here is obtained from the work of 
Geiger and Pereira [1990] for the problem of minimal 
visual encoding and from Woodward Yang (private 
communication), however an alternative derivation is 
presented by Girosi, Poggio, and Caprile [1989]. By 
use of mean field techniques we can show [Yuille et 
al. 1990] that this reformulation is closely related to 
robust statistics [Huber 1981] and can be thought of  as 
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Fig. 5. a. An 8-bit image of 256 × 256 pixels, b. The smoothed image for final/z = 0.7, Yij = 60, and 500 iterations, c. The corresponding 
line process. 

robust visual reconstruction. Robust techniques are 
designed to be reliable in the presence of noise and to 
small errors in the assumptions of the model [Huber 
1981]. 

The basic idea is to allow the algorithm to ignore cer- 
tain data points by paying a penalty. We introduce, for 
the 1-D case, a binary valued field V/such that V/= 0 
if the ith data point is included in the surface recon- 
struction and V,. = 1 if it is discarded. Discarded 
points must pay a penalty v. This modifies the [Geman 
& Geman 1984] cost function to give 

EIf,  l, V] = ~ (1 - V/)(J~ - gi) 2 
i 

+ X ~ (Z+I -f,.)~(1 - 10 
i 

i i 

We can apply the same mean field theory techniques 
as above to average out the V field as well as the I field. 
This gives 

E e f f [ f ]  = - ~  ~ .  log {e -a(sS-ai)' + e -~v } 

--1 ~ {e_#(s%t _fi)~ e_t3 ~ 3 . log + } 
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8,. 

Fig. 6. a. For figure 5a. the smoothed image for final # = 16, Yij 

The first part of the energy function has the same 
functional form shown in figure 3, though the argument 
of the function is now (3~ - di) 2. This shows that the 
interaction between 3~ and d/ is quadratic for small 
(~ - di) 2 but becomes constant as (3~ - di) 2 becomes 
large. Hence data points will have little influence if their 
values are too far from the surface and so salt-and- 
pepper noise will be ignored. 

The property of interactions being locally quadratic 
and becoming constant for large distances is character- 
istic of redescending M-estimators [Huber 1981] used 
in robust statistics. Huber describes three estimators of 
this type derived using different criteria. The forms of 
these estimators are very close to figure 3. Huber usually 
graphs the derivatives of these functions (which fall to 
zero for large distances, hence the name redescending). 

Techniques from robust statistics have been applied 
to different aspects of vision (e.g., [Pavlidis 1986; 
McKendall & Mintz 1989; Hallinan & Mumford 1990]) 
and are probably desirable for visual reconstruction. 
The connection described here between robust statistics 
and Markov models is extended by Yuille et al. [1990] 
where we also show a relation to the or-trimmed mean 
estimator [Huber 1981] and a method used by Girosi 
et al. [1989] for a neural network learning algorithm. 

&2 Hysteresis and Nonmaximum Suppression 

There are two important directions at a boundary, 
parallel to the boundary and perpendicular to it. We 

" S a ' ~  

b l 
= 256, and 500 Aerations. b. The corresponding line process. 

want to encourage edges in one direction, hysteresis, 
and suppress them in the other, nonmaximum suppres- 
sion. Hysteresis and nonmaximum suppression [Canny 
1986] are two important heuristics used for segmenting 
and detecting discontinuities in an image. 

Hysteresis acts by extending strong edges to places 
where the intensity discontinuities are weak. This is 
a desirable property for an edge detector and one can 
enforce it by an additional term E hys in the energy 
function, with 

E hys = ~ f f. Vl) 2 dx (24) 

wherefis the intensity field, I is the discontinuity field, 
and V-Lfis the vector perpendicular to Vfand with the 
same norm. This energy, when minimized, will enforce 
the discontinuity field to be smooth (V l small) along 
the line perpendicular to Vf(hence along the edge) and 
therefore it will be associated to the hysteresis term for 
edge detection. Since the fieldsfand I are coupled, this 
additional term will reduce the smoothing of the field 
f across that line. 

Nonmaximimum suppression thins edges selectively 
on the basis of their strengths. To account for it we pro- 
pose the energy term 

E nms = --~ f ( V f .  Vl) 2 dx (25) 

wherefis the intensity field, I is the discontinuity field, 
and Vfis  the gradient of the fieldf. This energy, when 
minimized, will enforce the discontinuity field to be 
discontinuous (Vl) along the gradient o f f ( V  f ) .  This 
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Fig. 7. a. An 8-bit image of 256 × 256 pixels, b. The smoothed image 
line process. 

implies that if a line is created it will inhibit a creation 
of a line along the gradient field and therefore this gives 
rise to nonmaximum suppression. It should be empha- 
sized that the discretized (lattice) total energy function 
can be made bounded below, despite the negative sign 
in (25), by choosing ~ sufficiently small. 

9 Conclusion 

One of the chief goals of this article was an attempt 
to unify different methods of image segmentation. We 
used MF theory [Geiger & Girosi 1991] to show that 
several deterministic approaches were essentially equiv- 

C. 

,. ! 

for # = 9.0 Yij = 256 and 1000 iterations, c. The corresponding 

alent and were closely related to the statistical ap- 
proaches (Markov random fields). By introducing the 
concept of parameter space we could relate these energy 
function methods to alternative approaches using non- 
linear diffusion equations or minimal description length. 
An overview is provided by figure 8. 

An important advantage of the mean field approach 
is that it enables to integrate out the line process fields 
and get an effective energy that depends only on the 
smoothed imagef. This can be used to show that some, 
apparently different, energy functions are closely 
related. For example, it was shown [Geiger & Girosi 
1991] that the graduated non-convexity algorithm [Blake 
& Zisserman 1987] can be directly related to the Geman 
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Gibbs d~tributton 

P = e 'nl( t '~ 5 
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Hopfieid network I 

I b. Path in parameter .pace 
~ 4  Special cases: Non linear DUfusion 

Minlmud Description Length 

c. EM algorithm ] 
Special case: Adaptative weight 

big. ~ An overview of the relations between different methods of image segmentation. 

and Geman [1984] approach. Similarly it can also be 
shown that the effective energy terms used by Geman 
and McClure [1987] can be related to Geman and 
Geman [1984] by the mean field approach (although 
the data terms are rather different). 

The relation between energy functions and nonlinear 
diffusion approaches may lead to new efficient ways 
to obtain approximate solutions. This is supported by 
recent work by Nitzberg and Shiota [1990] on a non- 
linear filter which preserves edges. They relate their 
filter both to that of Perona and Malik [1987] and to 
the adaptive filtering for noise cleaning in television 
pictures [Graham 1962]. 

We also introduced the idea of a single line process 
field on a lattice, instead of the conventional pair of 
horizontal and vertical line process fields. This helped 
us relate to the continuous formulations of Mumford 
and Shah [1985] and Ambrosio [1988]. By encouraging 
the creation of diagonal lines it also decreased the bias 
toward horizontal and vertical lines found in most lattice 
formulations of the problem. We point out that we had 
to redefine discrete derivatives in order to preserve the 
symmetry of both diagonals' interactions. 

We also showed that the energy function, or Markov 
random field, approach can be easily extended to give 
robust methods [Huber 1981] for smoothing with dis- 
continuities. It could also incorporate many of the basic 
elements used in most edge detectors, such as nonmax- 
imal suppression and hysteresis. 

Finally we believe that these results support the view 
that the Bayesian approach, including Markov random 
fields as a special case, is sufficiently rich to give an 
overall theoretical framework for early vision. We stress 
that most of the work described here assumed a specific 
Markov model corresponding to Gaussian noise in the 
data and a specific smoothness assumption. If this 
assumption is invalid then other Markov models should 
be considered, for example our robust model in sec- 
tion 7.1. 
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