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The diffusive thermal conductivity x(T) of superfluid *He-B is calculated in
the s-p-d-wave approximation by solving the Boltzmann equation for the
Bogoliubov-Valatin quasiparticles variationally. A new set of Landau para-
meters calculated from recent heat capacity data as well as old ones given in
Wheatley’s review are used to estimate the scattering amplitudes of the
collision integral. Landau parameters F3, Fi, and F3 are treated as free
parameters under the constraint that kexael(Te) = Kexp(Te), Where K exae: And Kexp
are the exact theoretical value and the experimental value, respectively. We
have wvaried F3 F3, and F5 over a wide range {—10<Aj"=

T /[1+F7°/Q2l+1)]< 10} and found the possible range of the reduced
diffusive thermal conductivity R(T) =k (T)T/k(T.)T.. The behavior of &(T)
in the s-p-d-wave approximation does not much depend on the values of the
Landau parameters, and K(T) decreases monotonically with decreasing tem-
perature.

1. INTRODUCTION

Since the discovery of the superfluid phases of *He in 1972, a large
number of investigations have been carried out on transport phenomena in
the superfluid phases.’>*

The diffusive thermal conductivity (T') of superfluid *He-B has been
studied by several authors.*® Pethick et al.®” have calculated the diffusive
thermal conductivity in the low-temperature region (T« T.). In the limit
T =0, they have found an exact solution of the Boltzmann equation for the
Bogoliubov-Valatin (BV) quasiparticles, and have obtained the exact
expression of the diffusive thermal conductivity: The reduced diffusive
thermal conductivity < (T') = x (T) T/« (T.) T. in the s-p-wave approximation
for the scattering amplitude is about 0.7 in this limit at 21 bar.

*For a theoretical review of the transport properties of superfluid *He, see Wolfle.! For a
review of the experimental properties of superfiuid *He, see Wheatley.z‘
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Wélfle and Einzel®® have studied the temperature dependence of the
diffusive thermal conductivity «(T") of superfluid *He-B over the whole
temperature range by using the Boltzmann equation for the BV quasi-
particles. They have calculated the collision integral, approximating its
kernel by a separable form. Instead of using the partial wave approximation
for the scattering amplitude, they have estimated the relevant parameters
for the diffusive thermal conductivity, 7. (0) and A, from other experi-
mental data. The reduced diffusive thermal conductivity £ (T') calculated by
them first increases with decreasing temperature and then decreases toward
the low-temperature limiting value £(0)=0.74.**

In previous papers,w'12 which will be referred to as I, II, and III, we
have investigated the shear viscosity 1 (T') over the whole temperature range
by solving the Boltzmann equation for the BV quasiparticles variationally.
In the calculation of the collision integral, the scattering amplitude was
estimated in the s-wave approximation (I), and in the s-p-wave and s-p-d-
wave approximations (II and III).

The results of the reduced shear viscosity 7(T) = n(T)/n(T.) in the
s-p-d-wave approximation are in good agreement with experiments at 20
bar,">™*® and the behavior of 71 (T) does not much depend on the values of
the Landau parameters as long as we impose the condition that nexace(T.) =
Nexp(Te), Where nexace and neyp are the exact theoretical value'”™" and the
experimental value,’ respectively.

The purpose of this paper is to investigate the diffusive thermal conduc-
tivity « (T') of superfluid *He-B by making use of the variational method to
solve the Boltzmann equation, which was also employed in I, II, and III.
For the variational solution of the Boltzmann equation, we adopt the
following trial function:

7.(E) =71+ Ci/[#*+ (BE)*]+ C,(BE)*} 1)

where E is the excitation energy of the BV quasiparticles, 7, and the C; are
constant parameters, and 8 =1/kgT. In the limit T =0, if we choose the
appropriate variational parameters (i.e., Ci = C,=0), this trial function
becomes the exact solution of the Boltzmann equation.®’ Furthermore, this
trial function yields a very good value of the diffusive thermal conductivity
at the transition temperature T, (see Section 3). Therefore our trial function
is expected to be a good solution of the Boltzmann equation over the whole
temperature range 0=¢=T/T.=<1.

Transition probabilities of various scattering processes in the superfluid
phase can be expressed in terms of the scattering amplitudes of the normal
quasiparticles multiplied by various coherence factors. In calculating them,
we treat the coherence factors correctly over the whole temperature range
and estimate the scattering amplitudes in the s-p-d-wave approximation,
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using a new set of Landau parameters”® as well as old ones given in
Wheatley’s review” (F3, F3, and F§). Landau parameters F3, Fi, and F3,
whose values are also needed to estimate the scattering amplitudes in the
s-p-d-wave approximation, are treated as free parameters under the
constraint given by

Kexact( Tc) = Kexp( Tc) (2)

where kexact 18 the exact theoretical value of the diffusive thermal conduc-
tivity''® and keyp i its experimental value.?

We have varied F5, F3, and F3 over a wide range (—10=< A5*, AT <10)
and found the possible range of £(T). The values of the Landau parameters
do not significantly affect the behavior of <(7T’) as long as we impose the
constraint given by Eq. (2). The reduced diffusive thermal conductivity < (T)
calculated in the s-p-d-wave approximation decreases monotonically with
decreasing temperature,® in contrast to the result by Wélfle and Einzel.>

In the next section we microscopically derive the Boltzmann equation
for the BV quasiparticles. The variational solution of the diffusive thermal
conductivity is discussed in Section 3. In Section 4, the diffusive thermal
conductivity is calculated in the s-p-d-wave approximation. A summary and
discussion are given in Section 5.

2. BOLTZMANN EQUATION IN THE PRESENCE OF A
TEMPERATURE GRADIENT

In this section, we derive the Boltzmann equation for the BV quasipar-
ticles in the presence of a temperature gradient’® (Ref. 22 will be referred
to as IV).

As has been shown in IV, the deviation of the matrix Wigner distribu-
tion function from the local equilibrium distribution is given by the sum of
the “particle” part 8F.; and the ‘“hole” part 8F_;.

The matrix kinetic equation for 6F, (v = 1) in the presence of the
temperature gradient is

1 §> of~ _o¢ 1\
. ’+_____ _.V(_.)+_ , =1,
2(14)3 £)35PE5 V(g) tyles RI=L® 3)
where [A, B]= AB — BA is the commutator, £ is the kinetic energy of *He
quasiparticles measured from the Fermi energy, f~(E) = 1/[exp (BE)+1]is
the Fermi distribution function, and I,(p) is the collision term, which has
the same form as Eq. (8) in II. The matrix eo = &3 + Ap} (P) expresses the

121

*A similar result has recently been obtained by Dorfle et al.”” within the relaxation time

approximation.
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equilibrium energy matrix and the p; are the Pauli matrices in the particle-
hole space, given by

b _ 170 Ag , (1 0

‘(")'A(A; o)’ ”3_”(0 —1) @
where A, is the 2 X 2 matrix of the equilibrium energy gap of the BW state, >
A is its magnitude, and j is the unit vector parallel to p.

Assuming that the solution of Eq. (3) can be expanded into a power
series in terms of the parameter #/Ar (7 is a typical collision time) and also
that the density of states has the particle-hole symmetry, we obtain the
lowest order solution of Eq. (3) of the form>>

oo RE (R e @

This form of 8F, suggests that the deviation of the BV quasiparticle
distribution function from the local equilibrium distribution is represented
by

oI, f 65
T o0 Lpers-v(3) ©®

The deviation (3f~/3E)¢, or 7(£), obeys the following Boltzmann
equation:

of" . @ 1
a_fE'Tlfl 5‘:? J dp: dps dpa v:éw 8p13+51( ) f (El)fvsz3fV4

X {[W1 + WaC12Css— Wi(Cos+ C13)]§1 7(51)

& & a&2 }

+(W,i+ Ws C34) - V2§2— 7(&) N

where
8, =8(p+p2—pP3—Ppa), 8., =8(vE + 1 Ey—v3E3—v4Ey)
i =FFE)f =1-f7)
Cii = ViV,"yijAz/E'E' (l, ] # 1), C i = Vj'Ylez/ElE~

and y; = (; - p;). The quantities W, are expressed in terms of the scattering
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amplitudes in the normal state as
W, =Qu/h)(T? +3T7)/8
Wo=Qa/W(T5 = T?)+4T2(To~ T2,))/8
Wi = Q2m/B)(T; + T:)(T2s + T2) +4T:T2.1/8 (8
Wa=Qua/W(T? +3T7)—-2(T3 +3T3,)1/8

Ws=Q2a/W)[(Tss + Ts)(Tos — T2:) —4T5,T2,1/8
with
T2s,22 = Ts,t(pla — P4 P3, _pZ)

Tss3:= s.:(lh, —P3, — P2 P4) 9

Here T,(T,) is the singlet (triplet) scattering amplitude for quasiparticles in
the normal state. The quantities T;,(p1, P2, p3, P+) give the amplitudes for
the process in which the incoming quasiparticles have momenta p; and p,,
and the outgoing quasiparticles have momenta p; and p..

By virtue of the Fermi distribution functions and the momentum and
energy delta-functions in the collision integral, we can assume that the
scattering amplitudes depend only on angle variables and can convert the
integral over the momenta p,, p3, and p4 into integrals over the energy
variables &;, &3, &4 and the angles.24

Performing the angular integrations, we finally obtain

af = _ 2 *\3 1 ° < < > o>
b= [ dde des 3 wn* (5 unBl BN
1 vovsvye m
4

x| g+ —_—
{ [31 32D2V3YV4E1E2E3E4

A2 A2
- 33(V2V4_E—ZE;+ V3E_1E;)]§1T(§l)

A?
'*‘(B4+35V3V4E_3E)é—11%1/2§27(§2)} (10

where m* is the effective mass at the Fermi surface, the 8; are
B1=(Qm/h)T: +3T7)/8
Bz=Qm/BX((T? — T7)+4T2(Toc — T2s)1v12734)/8
B3 = Qa/W{[(T; + T)(Tas + T2,) + 4T T2, ]v13)/8 (11)
Ba=Qm/BN(T? +3T7)~2(T3 +3T2)1v12)/8
Bs= Qm/t){[(Tss + T3 ) (Tas — T2) —4T3,T2]v347v12)/8
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and the brackets mean the angular average defined by

do, dg, _sin 6, J dé
47 cos (61/2)

where 6, is the angle between p; and p,, ¢ is the angle between the planes
spanned by (p1, p2) and (ps, p4), and q5 is the azimuthal angle of p, around
the axis p;.

It is to be noted that the B3; are the same quantities as the «; in II for
i=1, 2, and 3, and are related to Einzel and Wolfle’s pararneters9 as

B2/B1= 80, B3/B1= Yo, Bs/B1=A1, and Bs/B1=v:.

(A) =j (12)

3. VARIATIONAL SOLUTION OF THE DIFFUSIVE THERMAL
CONDUCTIVITY

In this section we determine a trial function 7,(E) to solve the
Boltzmann equation (10) variationally. The variational solution of the
diffusive thermal conductivity is compared with exact solutions in the two
limits T=T, and T =0.

The diffusive thermal conductivity (T is expressed as>

G0 (13)

where Er is the Fermi energy, Nris the density of states at the Fermi surface
for both spin projections, and {A) denotes the energy average defined by

m»—j &—A (14)

It is difficult to solve directly the Boltzmann equation (10) in the
superfluid phase and to calculate the diffusive thermal conductivity from
Eq. (13) using its solution. Therefore we calculate the diffusive thermal
conductivity by a variational method. R

There are exact solutions of the Boltzmann equation (10) in the two
limits T = T,"” and T =0,%’

w’ .~i a, _187 o
2 +(BE)° 126—a. 216020—a,

x(l—%(—ﬁfﬁ—z>+---], T=T. 15)

7(&) = const, T=0

(=m0
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where 7« (0) [= 167°4°8%/(m*)*B,] is the relaxation time for a quasipar-
ticle in the normal state at the Fermi surface and a, = 284/8:. Inspecting
the above limiting forms of 7(£), we adopt the trial function 7,(E) given by
Eq. (1) in the whole temperature region,

1,(E)=1.[1+ C1/[m*+(BE)*]+ C2(BE)’]
=7.X(E)

where 7., C1, and C, are constant parameters.
Accordng to the variational principle,” the true diffusive thermal
conductivity x (T') is bounded from below by «,(T') calculated variationally:

2 EFNF

€)=k, (T) = | § E5E (X (BN (16)

max

where 7, is related to C; and C; implicitly through the relation

1
—(&EIX(ED)Y =
= B1(EIX(EY).
134 2vr2
+32<V2V3V4m§1X (El)>

R JéxE)
3 V2V4E2E4 7/31_.5115.3 1 1

+ﬁ"4<§1 & V2§1§2X(51)X(E2)>
b & A

—VaV3Vy4
E,\E,

+ —_—
B 5< E;E,

sleX(El)X(E2)> (17)

The notation [A Jn.x denotes the maximum value of A as a function of the
variational parameters C; and C,, and (B), is defined by

6

(B)e= ”‘J-_O:o déydéxdésdés Y (m*) ( > 8.k,

vav3vs

x Bf (EVf>,frsf..B (18)

The energy integrals in Eq. (17) are calculated numerically by using
Gauss’ method. In this calculation we use the same expression for § (= 84)



540 Jun’ichiro Hara

of the weak coupling theory as was employed in I:

2 51/204 _ £1/2
5= [78{7(73)] a tt) \ 0.99=<¢=<1.0
7A(T) 1 (19)

where y =1.78107 is the Euler number and the values of A(T)/A(0) have
been given by Miihlschlegel.’® The reduced diffusive thermal conductivity
Ro(T) [= 4o (T)T/k,(T,)T.] is a function of the parameter & alone. If one
uses other expressions for § (strong coupling effect), one has to replace the
value of ¢ by an appropriate value corresponding to the value of the new 4.
In the present calculation, however, this effect is not so great.

Let us now discuss the diffusive thermal conductivity in the two limits
T=T,and T=0. At T = T, the exact theoretical expression of the diffusive
thermal conductivity kxact(T.) was derived by Hgjgaard Jensen er al.'” and
Brooker and Sykes,ls‘19

4p15= 1

€xac TC TC=
K t( ) 3772(m*)2h3 N12=B1

K (20)
where pg is the Fernﬁ momentum and the quantity K is given by"’

1 ) 2n+1 1
—~(12—-7)+
K=302-m) 4a"n.§enn2(n+1)2n(n+l)-—a,<

21

For the relevant value of a,. (i.e., 3.0 =a, =4.0; see Table II), the vari-
ational result «,(7T.) agrees very well with xexaci(T.) Within 1% error. This
indicates that our trial function is a very good solution at the transition
temperature.

In the limit T =0, 7(£) = const is an exact solution of the Boltzmann
equation (10), as was noted by Pethick et al.®’ Since our trial function
includes this exact solution, «,(7T) tends to the correct diffusive thermal
conductivity «(0):

-1

K(T)T|T=o=

4pz 1 (3 3 B2 2 Bs) 22)

—_ +_ —— e — —_—
3m2(m* ' h NEg:\8" 8" 8, 8 B
From Egs. (20)—(22), we obtain the following exact expression of £(0),5®

cn_ 173 3 B 2 B\
0 =-(- g2 2 —)
() X 877 8#31 8’”31
Equations (20)—(23) can be used for the examination of a numerical
calculation of the diffusive thermal conductivity. As we shall see below, our

numerical results of «,(7) are consistent with these limiting values.

(23)
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4. DIFFUSIVE THERMAL CONDUCTIVITY IN THE
s-p-d-WAVE APPROXIMATION

In this section, we calculate the diffusive thermal conductivity using the
transition probability estimated in the s-p-d-wave approximation. A new
set of Landau parameters*® as well as old ones® are used to estimate the
scattering amplitudes in the collision integral.

In order to calculate the diffusive thermal conductivity from Egs. (16)
and (17), we have to estimate the values of 8; in Eq. (17). Using the
properties of the Fermi distribution functions as well as the momentum and
energy conservation laws in the collision integral, we can assume that the
scattering amplitudes depend only on the angles 6; and ¢; as

Ts,t = Ts,t(ela ¢1)
T2s,2t = Ts,t(62$ &) (24)
T3s,3t = s,t(03’ ¢3)

where the angles 6; and ¢, are defined as follows: 8, is the angle between p;
and p,, and ¢, is the angle between two planes spanned by (p1, p2) and
(ps, p+). The angles 6> and ¢, are defined similarly to 6; and ¢; by
interchange of p,<> —p, and the angles #; and ¢; by interchange of
p>< —ps. Employing the potential scattering model for the scattering
amplitudes of the normal quasiparticles, we obtained the following form for
T..(8:, #,) in the s-p-d-wave approximation:'"*">°

NeT(0;, ¢;) = So+ 81 cos §; +S2[%(3 cos” 6; — 1)
+2(cos §; — 1)*(cos® ¢; —1)] (25)
NeT(6,, ¢,~) =[Ti(cos §;~1) +3T5(cos> 6, — 1)] cos ¢;
Using the forward scattering sum rule

LT;=0 (26)
14

we have eliminated T, in Eq. (25). Landau parameters F;* are related to
T,and S; as T, =Aj+ A} and S;=A; -3A7 with

A3 = F/[14+ F1*/ 21+ 1)] @7

Substituting the above expressions for T, into Eq. (11), we find the
following expression for 8; in terms of So, S1, S, T4, and T as

. h
Bi=N:—B,
m

= 3 [E5,5.8mSn + E'r. v TnTo+ E5 1.SnT,] (28)



542 Jun’ichiro Hara

TABLE 1
Values of E,,s,, E,,1,, and E§, .,

i 4 5
Esos, 1/6 7/30
Esos, 3/10 -11/210
Ess, 11/210 ~1/30
Es,s, -1/42 —29/630
Ess, -3/70 ~5/462
Es,s, ~191/2310 185/2002
Erm, ~24/35 52/63
Ernm 8/35 100/231
Eryrs 216/385 . 68/143
Esor, 0 ~16/105
ESoT2 0 _16/105
Es 1, 0 —88/315
Es,t, 0 -8/165

. 0 8/1155
Es,z, 0 24/585

Since the B; are the same quantities as the «; in II for i =1, 2, and 3, as was
mentioned in Section 2, we tabulate the coefficients E5, s,, ET, 1., and Ex_r.
in Table I only for i =4 and 5 (see also Table III of II).

As is shown above, we need the values of the Landau parameters to
estimate the B8, Recently new heat capacity data for He between 1 and
10 mK at pressures from 0 to 32 bar have been reported.?®**>! Using this
new heat capacity data at 20.94 bar,’® we calculate the Landau parameters
Fo, Fo,and F: Fo =42.35, Fg = —0.8111, and F; =8.077 (set I). On the
other hand, values of the Landau parameters tabulated in Wheatley’s
review” are F§ =59.78, F3 = —0.7357, and F§ =12.51 at 21 bar (set D).
We calculate the diffusive thermal conductivity using these two sets of
Landau parameters (sets I and II).

First we use the values of set I, which yield A{=0.9769, A} =
—4.2938, and A] =2.1875. Since the values of F3, F3;, and F3 are not
known explicitly, we treat A3, A}, and A3 as free parameters under the
constraint given by Eq. (2);

Kexact(T’c) = Kexp(Tc)

where x.xa iS the exact theoretical value of the diffusive thermal conduc-
tivity [see Eqgs. (20) and (21)], and k., is the experimental value,
Kexp(T:)T. = 15.3 erg/sec cm at 21 bar.” We have varied A3, A}, and A3
over the range —10< A5®, A7 <10 under the constraint given by Eq. (2),
and found the maximum and minimum values of the reduced diffusive
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thermal conductivity at T' =0, &,(0). The Landau parameters A3, A}, and
A} corresponding to the maximum value of %,(0) are given in row A of
Table II with values of «,(0) and 8. The same parameters for the minimum
value of &, (0) are given in row B of Table II.

Using these values, we have calculated the reduced diffusive thermal
conductivity <,(T) = «,(T)T/«,(T,) T, which is shown in Fig. 1. We have
found that the curves denoted as A and B in Fig. 1 give good upper and
lower bounds for £, (T') in the whole temperature range. The curves of &, (T)
for other values of Landau parameters (A5, A7, and A%) lie between these
upper and lower bounds over the whole temperature range as long as we
impose the constraint (2).

In the same way, we also calculate «,(T) using the values of set I, which
yield Ap=0.9835, Aj=—2.7843, and A} =2.4197. The Landau para-
meters A3, Af, and A3 for £,(0) =maximum (minimum) are given in row
C (row D) of Table II with values of £,(0) and 8;. In Fig. 2 we show the
results of <,(T) using these values. Again the curves C and D give good
upper and lower bounds for «,(T) in the whole temperature range.

From Figs. 1 and 2, we find that the upper and lower bounds are fairly
close to each other. We can therefore conclude that the values of Landau
parameters do not affect significantly the behavior of £,(T’) in the s-p-d-
wave approximation as long as we impose the condition given by Eq. (2).

1'0 T T T
{4
/
//
~ //
KV ///’ b
o5 .- 1
7 A
——————— B
0.0 1 L 1
0.0 05 t=TIT 1.0

s’
Fig. 1. Reduced diffusive thermal conductivity
Ky =k (T)T/x,(T.)T. as a function of reduced
temperature ¢ = T/ T, (new Landau parameter
results). The solid curve A is for &,(0)=
maximum and the dashed curve B is for £,(0) =
minimum.
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1.0 T T T
7
/
,/
7/
~ i // |
R, .
-
05 ¥ el ]
7 c
R, D
0.0 1 L 1
0.0 05 =T/, 1.0

Fig. 2. Reduced diffusive thermal conductivity
Ky =Ko (T)T/k,(T.)T, as a function of reduced
temperature ¢ (0ld Landau parameter results).
The solid curve C is for «,(0) = maximum and
the dashed curve D is for &,(0) = minimum.

In particular, for any possible Landau parameters, «,(T) decreases
monotonically with decreasing temperature. It has already been shown in
II1 that the behavior of the reduced shear viscosity 7(T) = n(T)/n(T.) does
not much depend on the values of the L.andau parameters in the s-p-d-wave
approximation as long as we impose the condition Nexact(T:) = Nexp(Te)s
where nexact is the exact theoretical value of the shear viscosity’”™'® and Nexp
is the experimental value.?

Finally, we calculate «,(7T) in the s-wave and s-p-wave approximations
using the values of set II for comparison. In Fig. 3, we show the results of
K,(T) in the s-wave, s-p-wave, and s-p-d-wave approximations together
with the result by Wolfle and Einzel.” There are considerable differences
in the behavior of £,(T) among the three approximations. This indicates
that large-! components of scattering amplitudes play a significant role in
the diffusive thermal conductivity as well as in the shear viscosity.'*

The reduced diffusive thermal conductivity <,(T') in the s-p-d-wave
approximation decreases monotonically as the temperature decreases and
approaches the low-temperature limiting value «,(0) [0.3=<£,(0)=0.5].
This behavior of £,(T) is very different from that found by Woélfle and
Einzel,”> which first increases with decreasing temperature and then
decreases toward the value <(0) =0.74. In order to examine the validity of
the approximate kernel of the collision integral used by Wélfle and Einzel,®
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Fig. 3. Reduced diffusive thermal conduc-
tivity £, =k (T)T/x,(T.)T. in the three
approximations for the scattering amplitude,
as a function of reduced temperature ¢. The
solid curves C and D are the resuits in the
s-p-d-wave approximation with Landau
parameters of rows C and D in Table II,
respectively. Dashed curve is the result in the
s-p-wave approximation, and the dash-dot
curve is the result in the s-wave approxima-
tion with set II of Landau parameters. The
thin solid curve is the reduced diffusive ther-
0.5 1.0 mal co;xzductivity calculated by Wolfle and
t=TITe Einzel.

00 ! 1 I

0.0

we have made a variational calculation of < (T") using the same values of B;
as Woélfle and Einzel: B8,/8:1=0.303, B83/8:=0.097, B4/B:=0.9, and
Bs/B1=0.0.* We have found that the result of £(T) is in good agreement
with their result. Therefore, this discrepancy seems to be due to the
difference in the values of 8; used in each calculation. In particular, the value
of a, (=1.8) used by them is much smaller than the present value, which
falls between 3.0 and 4.0 (see Table II).

5. SUMMARY AND DISCUSSION

We have calculated the diffusive thermal conductivity of superfluid
*He-B, solving variationally the Boltzmann equation. The transition proba-
bility is calculated in the s-p-d-wave approximation. In this calculation, we
have used the new set of Landau parameters calculated from recent heat
capacity data”® as well as the old ones given in Wheatley’s review? (A5, A3,
and A}). Since the values of the Landau parameters A3, A, and A5 are
not known explicitly, we have treated A3, Af, and A3 as free parameters
under the constraint given by Eq. (2). We have varied A3, A}, and A5 over
the range —10=<A3", A1 =10, and found the values of A3, A}, and A3
corresponding to the maximum and minimum values of £,(0), from which
the upper and lower bounds of the reduced diffusive thermal conductivity
k,(T) have been found in the whole temperature range.

The upper and lower bounds are fairly close to each other. This
indicates that the values of the Landau parameters do not much affect the
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behavior of the reduced diffusive thermal conductivity ,(7T) as long as we
impose the condition given by Eq. (2).

The reduced thermal conductivity «,(7T) calculated in the s-p-d-wave
approximation decreases monotonically with decreasing temperature, in
contrast to that of Wolfle and Einzel.*® It seems that this discrepancy is
mainly due to the difference between the values of a, used in each
calculation.

Finally, we discuss the values of 75 (0) [=16724°B%(m*)*B1], a.
(=284/B1), and a,, The quantity a., which was denoted a (= —~2as/a1) in
IT, is an important parameter in a calculation of the shear viscosity.

We estimate typical values of A5, Aj, and A5 using the following
conditions: kexact(T,) = Kexp(Te), Nexact(Te) = Nexp(Te), and the truncated for-
ward scattering sum rule. The truncated sum rule is written as

b+AS+AI+AT+AS+AS=0 (29)

For A}, Aj, and A}, we have used the values of set II, since these values
have been used in the other estimations of 7x(0)T2, «., and o, The
estimated values of A3, A}, and A5 are as follows: A5 =17, Al=-14,
and A3 = —0.98. Using these values, we have calculated 75(0)T2, a,, and
an: ™ (0)T2 =0.29 usec mK>, a, = 3.2, and a,, = 1.5.

The values of 7x(0)T? and a, are in good agreement with those
calculated in 11 [75 (0)T? = 0.28 usec mK*and a,, = 1.5]and 7 (0) T2 is also
in agreement with the values estimated from experimental results.” The
value a, is consistent with the values tabulated in Table II. The reduced
diffusive thermal conductivity ,(7T") decreases monotonically with decreas-
ing temperature and tends to £(0)=0.45.
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