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The diffusive thermal conductivity K(T) of superfluid 3He-B is calculated in 
the s-p-d-wave approximation by solving the Boltzmann equation for the 
Bogoliubov-Valatin quasiparticles variationally. A new set of Landau para- 
meters calculated from recent heat capacity data as well as old ones given in 
Wheatley's review are used to estimate the scattering amplitudes of the 
collision integral. Landau parameters F~, F~, and F~ are treated as free 
parameters under the constraint that Kexac t (Tc)  = Kexp (Tc )  , where Kex=~t and rex p 
are the exact theoretical value and the experimental value, respectively. We 
have varied F), F~, and F~ over a wide range {-IO<-A~ '~=- 
F~t'~/[l +F~t'~/(21+ I)]<-lO} and found the possible range of the reduced 
diffusive thermal conductivity J(T) = K(T)T/K(Tc)Tc. The behavior of J(T) 
in the s-p-d-wave approximation does not much depend on the values of the 
Landau parameters, and ~(T) decreases monotonically with decreasing tem- 
perature. 

1. INTRODUCTION 

Since the discovery of the superfluid phases of 3He in 1972, a large 
number of investigations have been carried out on transport phenomena in 
the superfluid phases. 1-3'* 

The diffusive thermal conductivity K (T) of superfluid 3He-B has been 
studied by several authorsf  -9 Pethick et a l l  "7 have calculated the diffusive 
thermal conductivity in the low-temperature region (T<< To). In the limit 
T = 0, they have found an exact solution of the Boltzmann equation for the 
Bogoliubov-Valatin (BV) quasiparticles, and have obtained the exact 
expression of the diffusive thermal conductivity: The reduced diffusive 
thermal conductivity ~ ( T ) = K ( T ) T/ K ( Tc ) Tc in the s-p-wave approximation 
for the scattering amplitude is about 0.7 in this limit at 21 bar. 

*For a theoretical review of the transport properties of superfluid 3He, see W~lfle. 1 For a 
review of the experimental properties of superfluid ~He, see Wheatley. 2"3 
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W61fle and Einzel 8'9 have studied the temperature dependence of the 
diffusive thermal conductivity K(T) of superfluid 3He-B over the whole 
temperature range by using the Boltzmann equation for the BV quasi- 
particles. They have calculated the collision integral, approximating its 
kernel by a separable form. Instead of using the partial wave approximation 
for the scattering amplitude, they have estimated the relevant parameters 
for the diffusive thermal conductivity, ~'N(0) and A 1, from other experi- 
mental data. The reduced diffusive thermal conductivity Y(T) calculated by 
them first increases with decreasing temperature and then decreases toward 
the low-temperature limiting value Y(0) = 0.74. 32 

In previous papers, 1~ which will be referred to as I, II, and III, we 
have investigated the shear viscosity ~ (T) over the whole temperature range 
by solving the Boltzmann equation for the BV quasiparticles variationaily. 
In the calculation of the collision integral, the scattering amplitude was 
estimated in the s-wave approximation (I), and in the s-p-wave and s-p-d- 
wave approximations (II and III). 

The results of the reduced shear viscosity ~(T)=r / (T) /~(Tc)  in the 
s-p-d-wave approximation are in good agreement with experiments at 20 
bar, 13-16 and the behavior of r~(T) does not much depend on the values of 
the Landau parameters as long as we impose the condition that ~7 . . . .  t ( Z c )  = 

r/exp(Tc), where r/~x,ct and ~xp are the exact theoretical value 17-19 and the 
experimental Value, 2 respectively. 

The purpose of this paper is to investigate the diffusive thermal conduc- 
tivity K (T) of superfluid 3He-B by making use of the variational method to 
solve the Boltzmann equation, which was also employed in I, II, and III. 
For the variational solution of the Boltzmann equation, we adopt the 
following trial function: 

ro (E) = r~{1 + C1/[zr 2 + (BE) 2] + C2(BE) 2} (1) 

where E is the excitation energy of the BV quasiparticles, rK and the C~ are 
constant parameters , and B = 1/kBT. In the limit T = 0, if we choose the 
appropriate variational parameters (i.e., C1 = C2 = 0), this trial function 
becomes the exact solution of the Boltzmann equation. 6'7 Furthermore, this 
trial function yields a very good value of the diffusive thermal conductivity 
at the transition temperature Tc (see Section 3). Therefore our trial function 
is expected to be a good solution of the Boltzmann equation over the whole 
temperature range 0 --- t = T~ Tc <- 1. 

Transition probabilities of various scattering processes in the superfluid 
phase can be expressed in terms of the scattering amplitudes of the normal 
quasiparticles multiplied by various coherence factors. In calculating them, 
we treat the coherence factors correctly over the whole temperature range 
and estimate the scattering amplitudes in the s-p-d-wave approximation, 
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using a new set of Landau parameters 2~ as well as old ones given in 
Wheatley's  review 2 (F~, F~, and F0a ). Landau parameters F s2, Fl,a and F2,a 
whose values are also needed to estimate the scattering amplitudes in the 
s-p-d-wave approximation, are treated as free parameters under the 
constraint given by 

Kexact(Tc) = K~xp(Tc) (2) 

where x . . . .  t is the exact theoretical value of the diffusive thermal conduc- 
tivity 17-~9 and Kexp is its experimental value. 2 

We have varied s a and F~ wide . . . .  range ( -10<-A2  , A1 < 10) F2, F1, over a 
and found the possible range of ; ( T ) .  The values of the Landau parameters 
do not significantly affect the behavior of ; ( T )  as long as we impose the 
constraint given by Eq. (2). The reduced diffusive thermal conductivity ~ (T) 
calculated in the s-p-d-wave approximation decreases monotonically with 
decreasing temperature,* in contrast to the result by WSlfle and Einzel. 32 

In the next section we microscopically derive the Boltzmann equation 
for the BV quasiparticles. The variational solution of the diffusive thermal 
conductivity is discussed in Section 3. In Section 4, the diffusive thermal 
conductivity is calculated in the s-p-d-wave approximation. A summary and 
discussion are given in Section 5. 

2. B O L T Z M A N N  E Q U A T I O N  IN T H E  P R E S E N C E  OF A 
T E M P E R A T U R E  G R A D I E N T  

In this section, we derive the Boltzmann equation for the BV quasipar- 
ticles in the presence of a temperature gradient 22 (Ref. 22 will be referred 
to as IV). 

As has been shown in IV, the deviation of the matrix Wigner distribu- 
tion function from the local equilibrium distribution is given by the sum of 
the "part icle" part t~F§ and the "hole"  part 8F_1. 

The matrix kinetic equation for "SF, (v = + 1) in the presence of the 
temperature  gradient is 

v (3) 

where [A, B]  = A B  - B A  is the commutator,  ~: is the kinetic energy of 3He 
quasiparticles measured from the Fermi energy, f< (E)  = 1/[exp (fiE) + 1] is 
the Fermi distribution function, and Iv(p) is the collision term, which has 
the same form as Eq. (8) in II. The matrix eo = ~:p~ +Ap~ (~) expresses the 

*A similar result has recently been obtained by DiSrfle et al. 21 within the relaxation time 
approximation. 
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equilibrium energy matrix and the p~ are the Pauli matrices in the particle- 
hole space, given by 

(4) 

where Ao is the 2 •  matrix of the equilibrium energy gap of the BW state, 2a 
A is its magnitude, and ~ is the unit vector parallel to p. 

Assuming that the solution of Eq. (3) can be expanded into a power 
series in terms of the parameter h/Az (r is a typical collision time) and also 
that the density of states has the particle-hole symmetry, we obtain the 
lowest order solution of Eq. (3) of the form 22 

0 < . V 1  fl. 8F~=r(E)Of'3EO~oE Op ( ~ ) ~  ~(X + v~)e~ + o(~-~)h (5) 

This form of 8F~ suggests that the deviation of the BV quasiparticle 
distribution function from the local equilibrium distribution is represented 
by 

o f  < , o f  < o~o~:  v ( ~ )  
Tf~ = ~(~:)~-m~. (6) 

The deviation (Of</OE)&, or z(~:), obeys the following Boltzmann 
equation: 

Of < . O~q f 
r = - | dp2 dp3 dpr 

0El d 

where 

1 6 

\27rh] 4 /.'2/.'31.'4 

f OE1 
X ~ [ W 1.4- W2C12C34- W3(C24 + C13)]E 1 ~---- g(~l  ) 

t opl 

+(W4+ w5c34)~1 2 p2 J (7) 

8p = 8 (p 4" P2 --P3 --P4),  8rE = 8 (t.,E + v2E2 - p 3 E 3 -  p4E4) 

f~ = f%,E) ( f  > = 1 - f<)  

Cii = ~'iu?YiiA2/EiEj (i, / ~ 1), Clj = ~,~yljA2/E~E~ 
and 3'o = (~i �9 ~j). The quantities W~ are expressed in terms of the scattering 
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amplitudes in 

with 

the normal state as 

Wx = ( 2 ~ r / h ) ( r  2 +3T,2)/8 

W2 = (2~r/h)[( T 2 - T2 ) + 4 T2,(T2,- T2,)]/8 

W3 = ( 2 ~ / h ) [ ( T ,  + Tt)(T2s + T2t )+ 4T tT2 t ] /8  

W ,  = ( 2 r r / h ) [ ( T  2 + 3 T 2 ) - 2(T2s + 3 T2,)]/8 

W5 = (27r/ti)[(T3s + T3t)(T2s -- r2t)  - 4  Tatr2 t] /8  

( 8 )  

Y2s,2t = Ts,t(pl, -P4, P3, -P2) 

T3s,3, = T~ , , (px ,  - p 3 ,  - p2, p4) ( 9 )  

Here Ts (T t) is the singlet (triplet) scattering amplitude for quasiparticles in 
the normal state. The quantities Ts, t(px, P2, P3, P4) give the amplitudes for 
the process in which the incoming quasiparticles have momenta pl and P2, 
and the outgoing quasiparticles have momenta P3 and p4. 

By virtue of the Fermi distribution functions and the momentum and 
energy delta-functions in the collision integral, we can assume that the 
scattering amplitudes depend only on angle variables and can convert the 
integral over the momenta P2, P3, and p4 into integrals over the energy 
variables ~2, ~3, ~4 and the angles. 24 

Performing the angular integrations, we finally obtain 

Of < " r [ ~ 1  6 2 , 3 < < > > 
glc~E1 - J d , 2  d~:3 d,4 ~v2v3v4 ~ r ( m ) k ~ h )  8+Ex~f (El)fv2fvafv4 

A 4 

x { [ [3x + 32v2b'3V4ExE2E3E4 

A 2 A 2 

A a ~'x ~2  
"[- ( "  4 + fl 5/"3//4E----~) ~x ~2/,-'2~27 (~2) } (10) 

where m* is the effective mass at the Fermi surface, the fll are 

[3t = ( 2 7 r / h ) ( r  2 + 3 T2t )/8 

f12 = (2~r/h)([( r2~ - T2  ) + 4T2,(T2,- T2s)]'Yx2"Y34)/8 

f13 = (2~r/h)([(Ts + Tt)(T2~ + T2,)+ 4 TtT2,]3q3)/8 (11) 

B4 = (27r /h ) ( [ (T  2 + 3 T 2 ) -- 2(T2~ + 3 T~t)]yx2)/8 

B5 = (2~'/h)([(T3~ + T3,)(T2, - T2,)- 4 T3,T2,]V34V12)/8 
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and the brackets mean the angular average defined by 

I dO1 dqbl sin 01 ~ cos(O1/2) I ~A (.12) (A> 

where 01 is the angle between Pl and P2, ~bl is the angle between the planes 
spanned by (pl, P2) and (P3, P4), and ~b is the azimuthal angle of P2 around 
the axis pl. 

It is to be noted that the/~i are the same quantities as the al in II for 
i = 1, 2, and 3, and are related to Einzel and W61fle's parameters 9 as 
• 2 / • 1  = ~0,  f l a / / f l l  = 70,  ~ 4 / / f l l  = h l ,  and/~5/B1 = 71. 

3. V A R I A T I O N A L  S O L U T I O N  OF T H E  D I F F U S I V E  T H E R M A L  
C O N D U C T I V I T Y  

In this section we determine a trial function ~-v(E) to solve the 
Boltzmann equation (10) variationally. The variational solution of the 
diffusive thermal conductivity is compared with exact solutions in the two 
limits T = Tc and T = 0. 

The diffusive thermal conductivity K(T) is expressed as 22 

2 NFEF 1 
K ( T ) = 3  rn* T ((~:2z(sc))) (131 

where EF is the Fermi energy, N F  is the density of states at the Fermi surface 
for both spin projections, and ((A)) denotes the energy average defined by 

(14) 

It is difficult to solve directly the Boltzmann equation (10) in the 
superfluid phase and to calculate the diffusive thermal conductivity from 
Eq. (13) using its solution. Therefore we calculate the diffusive thermal 
conductivity by a variational method. 

There are exact solutions of the Boltzmann equation (10) in the two 
limits T = Tc 17 and T = 0, 6'7 

2 ~" 5 aK 187 O/k 

Z(~)=rN(0) 7r2+(/3~:)2 1 2 6 - - a ,  216020--a~ 

r(~) = const, T = 0 
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where rN(0) [ = 16"n'2h6/32/(m*)3/31] is the relaxation time for a quasipar- 
tide in the normal state at the Fermi surface and a~ = 2/34//31. Inspecting 
the above limiting forms of ~'(r we adopt the trial function ~'v (E) given by 
Eq. (1) in the whole temperature region, 

~-o (E) = TK [1 + C1/[7r 2 + (/3E) 2] + C2(/3E) 2] 

- " ~ , X ( E )  

where r,, C1, and Cz are constant parameters. 
Accordng to the variational principleY the true diffusive thermal 

conductivity K (T) is bounded from below by K~ (T) calculated variationally: 

[~EFNF1 2 1 
K(T)~Kv(T)=  ~ -  ~((r X(E)))~.Jmax (16) 

where ~-~ is related to C1 and C2 implicitly through the relation 

- ( ( ~ X ( E 1 ) ) )  1 
7" K 

=/31(r 

A 4 
+ / 3 2 ( ' 2 " 3 " 4 / ' 7  ~ ~ ~"  r  

\ ~ 1 . ~  2/= 3E ,4  t c 

A 2 A 2 
-/33((p2114-~..-.-----2E4...[-l13--~--.--.--1E~,3)r 

/ r & \ 

r r A2 
'~ /35(-J~11 -FS21121131"4EF_]~-~-44 r162 (tl)X ( t 2 ) )  c (17) 

The notation [A]max denotes the maximum value of A as a function of the 
variational parameters C1 and C2, and (B)c is defined by 

co 

= - -  ~ + E  1 
OO b'2/.~3 k' 4 

• (E1)f,,Jv~f,,4B (18) 

The energy integrals in Eq. (17) are calculated numerically by using 
Gauss' method. In this calculation we use the same expression for 8 ( =/3 A) 
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of the weak coupling theory as was employed in I: 

r 8~2 ] 1/2(1-t)1/2 0.99--< t--< 1.0 
8 = L 7 - - ~ J  t ' 

r A(T) 1 (19) 
8 =  0.0--< t < 0 . 9 9  

y A(0) t '  

where 3' = 1.78107 is the Euler number and the values of A(T)/A(O) have 
been given by Miihlschlegel. 26 The reduced diffusive thermal conductivity 
Rv(T) [=  K~(T)T/Ko(Tc)T~] is a function of the parameter 8 alone. If one 
uses other expressions for 8 (strong coupling effect), one has to replace the 
value of t by an appropriate value corresponding to the value of the new 8. 
In the present calculation, however, this effect is not so great. 

Let us now discuss the diffusive thermal conductivity in the two limits 
T = Tc and T = 0. At T = To, the exact theoretical expression of the diffusive 
thermal conductivity Kexact(T~) was derived by Hajgaard Jensen et al. t7 and 
Brooker and Sykes, 18't9 

4p~ 1 
Kexact(Tc)Tr --- 3,rr2(m ,)2h3 N2/31K (20) 

where PF is the Fermi momentum and the quantity K is given by 17 

2n + 1 1 
K =  (12--~r2)+4a"nevenY~ n2(n+l)2n(n+l)-a,, (21) 

For the relevant value of a ,  (i.e., 3.0-<o~, _<4.0; see Table II), the vari- 
ational result x~ (To) agrees very well with K~a~t(T~) within 1% error. This 
indicates that our trial function is a very good solution at the transition 
temperature. 

In the limit T = 0, ~'(~:) -- const is an exact solution of the Boltzmann 
equation (10), as was noted by Pethick et  al. 6"7 Since our trial function 
includes this exact solution, K~(T) tends to the correct diffusive thermal 
conductivity K (0): 

. . . . .  4p~ 1 [3 , 3 f12 2 ~3~ -1 
Ktl )l lr=O=alr2(m,)2ha N~F[31~Tr-r~Tr~--~r~) (22) 

From Eqs. (20)-(22), we obtain the following exact expression of R(0), 6-8 

1 3 3 fie 2 f13~ -1 
~(0) = ~-(~Tr (23) 

Equations (20)-(23) can be used for the examination of a numerical 
calculation of the diffusive thermal conductivity. As we shall see below, our 
numerical results of Ko (T) are consistent with these limiting values. 
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4. D I F F U S I V E  T H E R M A L  C O N D U C T I V I T Y  IN T H E  
s.p-d-WAVE A P P R O X I M A T I O N  

In this section, we calculate the diffusive thermal conductivity using the 
transition probability estimated in the s -p -d-wave  approximation. A new 
set of Landau parameters 2~ as well as old ones 2 are used to estimate the 
scattering amplitudes in the collision integral. 

In order to calculate the diffusive thermal conductivity from Eqs. (16) 
and (17), we have to estimate the values of /~i in Eq. (17). Using the 
properties of the Fermi distribution functions as well as the momentum and 
energy conservation laws in the collision integral, we can assume that the 
scattering amplitudes depend only on the angles 0i and r as 

Ts.t = Ts,t(Ob 01) 

T2s,2t = Ts, t(02, r (24) 

T3s,3t = Ts,t(03, ~b3) 

where the angles 0i and r are defined as follows: 01 is the angle between Pl 
and Pz, and r is the angle between two planes spanned by (Pl, P2) and 
(P3, P4). The angles 02 and r are defined similarly to 01 and r by 
interchange of p2~-->-P4 and the angles 03 and ~ 3  by interchange of 
P2 <'-> -P3. Employing the potential scattering model for the scattering 
amplitudes of the normal quasiparticles, we obtained the following form for 

I �9 . 11 2 7 - 2 9  T~,t(Oi, ,hi) in the s -p -a -wave  approximation: 

N F T s  (Oi, r = So-[-Sl  c o s  Oi ~ $2 [�89 cos 2 0 i -  1) 

+ 43-(c0s Oi-  1)2(cos 2 r  1)] (25) 

NrT,(O,, &,) = [TI(cos 01-1) +3T2(cos20i - 1)] cos r 

Using the forward scattering sum rule 

Y~ Tt = 0 (26) 
l 

we have eliminated To in Eq. (25). Landau parameters F~ '~ are related to 
Tt and St as TI = A~ + A~ and St = A ~ -  3A~ with 

A~ 'a = F?'a/[1 +F~'a/(21 + 1)] (27) 

Substituting the above expressions for T~,t into Eq. (11), we find the 
following expression for/3i in terms of So, S~, $2, T~, and T2 as 

/3~ ~=u~h/3i 
7/" 

~--- ~ i i [ESms.S,nS,, + E'rmT.T, nT,, + E~mT S.,T,,] (28) 
trl,n 
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TABLE I 
E i E i E i Values of sins., r~r. ,  and s ~ r .  

i 4 5 

Esoso 1/6 7/30 
Esos~ 3/10 -11/210 
Esos2 11/210 -1/30 
Eslsl -1/42 -29/630 
Esls2 -3/70 -5/462 
Es2s2 -191/2310 185/2002 
ET1T1 --24/35 52/63 
Er~r2 8/35 100/231 
ET2T2 216/385 68/143 
ESoT1 0 -- 16/105 
ESoT2 0 --16/105 
ESlT1 0 -88/315 
ESIT2 0 -8/165 
ES2T~ 0 8/1155 
ES2T2 0 24/585 

Since the/~i are the same quantit iesas the ai in II for i = 1, 2, and 3, as was 
mentioned in Section 2, we tabulate the coefficients E isms~, E ir~r., and E ~  r ,  
in Table I only for i = 4 and 5 (see also Table III of II). 

As is shown above, we need the values of the Landau parameters to 
estimate the fl~. Recently new heat capacity data for 3He between 1 and 
10 mK at pressures from 0 to 32 bar have been reported. 2~176 Using this 
new heat capacity data at 20.94 bar, 2~ we calculate the Landau parameters 
F~, Fg, and F ]  : F~ -- 42.35, Fg = - 0.8111, and F ]  = 8.077 (set I). On the 
other hand, values of the Landau parameters tabulated in Wheatley's 
review 2 are F~ = 59.78, Fg = -0 .7357 ,  and F ]  = 12.51 at 21 bar (set II). 
We calculate the diffusive thermal conductivity using these two sets of 
Landau parameters (sets I and II). 

First we use the values of set I, which yield A ~=0 .9 7 6 9 ,  Ag = 
-4 .2938 ,  and A] = 2.1875. Since the values of F~, F~, and F~ are not 
known explicitly, we treat A ~ a a 2, A~, and A2 as free parameters under the 
constraint given by Eq. (2); 

. . . .  ~ ( T c )  = ~ o x p ( T c )  

where K . . . .  t is the exact theoretical value of the diffusive thermal conduc- 
tivity [see Eqs. (20) and (21)], and rexp is the experimental value, 
Kexp(Tc)Tc = 15.3 erg/sec cm at 21 bar. 2 We have varied A~, A~, and A~ 
over the range - 10 < A ~,a, A ~ < 10 under the constraint given by Eq. (2), 
and found the maximum and minimum values of the reduced diffusive 
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thermal conductivity at T = 0, E~(0). The Landau parameters A),  A~, and 
A~ corresponding to the maximum value of Eo(0) are given in row A of 
Table II with values of E~ (0) and/~i. The same parameters for the minimum 
value of Eo (0) are given in row B of Table II. 

Using these values, we have calculated the reduced diffusive thermal 
conductivity Eo(T)=  Ko(T)T/K~(Tc)Tc,  which is shown in Fig. 1. We have 
found that the curves denoted as A and B in Fig. 1 give good upper and 
lower bounds for E~ (T) in the whole temperature range. The curves of E~(T) 
for other values of Landau parameters (A~, A~, and A~) lie between these 
upper and lower bounds over the whole temperature range as long as we 
impose the constraint (2). 

In the same way, we also calculate K~ (T) using the values of set II, which 
yield A~ = 0.9835, Ag = -2 .7843 ,  and A~ = 2.4197. The Landau para- 
meters A~, A~, and A~ for E~(0)= maximum (minimum) are given in row 
C (row D) of Table II with values of E~ (0) and fli. In Fig. 2 we show the 
results of Eo(T) using these values. Again the curves C and D give good 
upper and lower bounds for ~ ( T )  in the whole temperature range. 

From Figs. 1 and 2, we find that the upper and lower bounds are fairly 
close to each other. We can therefore conclude that the values of Landau 
parameters do not affect significantly the behavior of E~(T) in the s-p-d-  
wave approximation as long as we impose the condition given by Eq. (2). 
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o.o 0.5 1.o 
t =mITc 

# 
Fig. 1. Reduced diffusive thermal conductivity 
~ = Ko (T) T/ro ( Tc ) Tc as a function of reduced 
temperature t = T/Tc (new Landau parameter 
results). The solid curve A is for Ev(0)= 
maximum and the dashed curve B is for ~(0) = 
minimum. 
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Fig. 2. Reduced diffusive thermal conductivity 
~ = Ko ( T) T/ Ko ( T~) T~ as a function of reduced 
temperature t (old Landau parameter results). 
The solid curve C is for ~(0)= maximum and 
the dashed curve D is for ~ (0) = minimum. 

In particular, for any possible Landau parameters,  go(T)  decreases 
monotonically with decreasing temperature.  It has already been shown in 
III that the behavior of the reduced shear viscosity ~ (T)  = r/(T)/7/(  Tc ) does 
not much depend on the values of the Landau parameters in the i-p-d-wave 
approximation as long as we impose the condition ~Texact(Tc)= ~/exp(Tc), 
where r/exact is the exact theoretical value of the shear viscosity 17-19 and T/~xp 
is the experimental value, z 

Finally, we calculate Ko (T)  in the s-wave and s -p -wave  approximations 
using the values of set II for comparison. In Fig. 3, we show the results of 
do(T) in the s-wave, s-p-wave, and s -p -d -wave  approximations together 
with the result by W61fle and Einzel. 3z There  are considerable differences 
in the behavior of go(T) among the three approximations. This indicates 
that l a rge- /components  of scattering amplitudes play a significant role in 
the diffusive thermal conductivity as well as in the shear viscosity. 11 

The reduced diffusive thermal conductivity go(T)  in the s -p -d -wave  
approximation decreases monotonically as the temperature  decreases and 
approaches the low-temperature limiting value go(0) [0.3 ~< go(0) ~< 0.5]. 
This behavior of go(T) is very different from that found by W61fle and 
Einzel, 32 which first increases with decreasing temperature  and then 
decreases toward the value g(0) = 0.74. In order  to examine the validity of 
the approximate kernel of the collision integral used by W61fle and Einzel, 8 
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Fig. 3. Reduced diffusive thermal conduc- 
tivity E~=Kv(T)T/K~(T~)T~ in the three 
approximations for the scattering amplitude, 
as a function of reduced temperature t. The 
solid curves C and D are the results in the 
s-p-d-wave approximation with Landau 
parameters of rows C and D in Table II, 
respectively. Dashed curve is the result in the 
s-p-wave approximation, and the dash-dot 
curve is the result in the s-wave approxima- 
tion with set II of Landau parameters. The 
thin solid curve is the reduced diffusive ther- 
mal conductivity calculated by W61fle and 
Einzel. 32 

r 

we have made a variational calculation of E(T)  using the same values of fli 
as W61fle and Einzel: fl2/[31=0.303, fl3//31=0.097, /~4//31=0.9, and 
[35/13~ = 0.0. 32 We have found that the result of E(T)  is in good agreement  
with their result. Therefore,  this discrepancy seems to be due to the 
difference in the values of/3i used in each calculation. In particular, the value 
of a~ ( =  1.8) used by them is much smaller than the present  value, which 
falls between 3.0 and 4.0 (see Table II). 

5. S U M M A R Y  A N D  D I S C U S S I O N  

We have calculated the diffusive thermal  conductivity of superfluid 
3He-B, solving variationally the Bol tzmann equation. The transition proba-  
bility is calculated in the s-p-d-wave approximation.  In this calculation, we 
have used the new set of Landau parameters  calculated f rom recent heat  
capacity data 2~ as well as the old ones given in Wheat ley 's  review 2 (A~, Ag, 
and A~). Since the values of the Landau parameters  A2,' Al,a and A a2 are 
not known explicitly, we have treated A) ,  A1, and A a a 2 as free parameters  
under the constraint given by Eq. (2). We have varied A) ,  A~, and A~ over  
the range -10-----A~'a, A~ < 1 0 , _  and found the values of A s2, AI,~ and A2a 
corresponding to the maximum and minimum values of Ev (0), f rom which 
the upper  and lower bounds of the reduced diffusive thermal  conductivity 
E~(T) have been found in the whole tempera ture  range. 

The upper  and lower bounds are fairly close to each other. This 
indicates that the values of the Landau parameters  do not much affect the 
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behavior of the reduced diffusive thermal conductivity ~v (T) as long as we 
impose the condition given by Eq. (2). 

The reduced thermal conductivity Sv(T) calculated in the s - p - d - w a v e  

approximation decreases monotonically with decreasing temperature,  in 
contrast to that of W61fle and Einzel. 32 It seems that this discrepancy is 
mainly due to the difference between the values of aK used in each 
calculation. 

Finally, we discuss the values of ~-N(0) [=  16"lr2h6132(m*)3131], otK 
(=2f14/ f l l ) ,  and an. The quantity an, which was denoted a (=  - 2 a 4 / a l )  in 
II, is an important  parameter  in a calculation of the shear viscosity. 

We estimate typical values of A~, A~, and A~ using the following 
conditions: K . . . .  t(Tc) = Kexp(Tc), ~7 . . . .  t(T~) = ~%xp(T~), and the truncated for- 
ward scattering sum rule. The truncated sum rule is written as 

A o + A g + A ] +  " s . =  s A1 + A 2 + A 2  0 (29) 

For A~, Ag, and A] ,  we have used the values of set II, since these values 
have been used in the other estimations of rN(O)T 2, aK, and an. The 
estimated values of A~, A~, and A~ are as follows: AS = 1.7, A~ = -1 .4 ,  

A a _ and 2 - -0 .98 .  Using these values, we have calculated zN(O)T 2, a~, and 
a n : zN(O)T 2 = 0.29 tzsec mK 2, aK = 3.2, and an = 1.5. 

The values of ~-N(0)T 2 and a n are in good agreement with those 
calculated in II [~-N (0) T 2 = 0.28/~sec mK 2 and a n = 1.5] and zN(O) T 2 is also 
in agreement with the values estimated from experimental results. 3 The 
value a~ is consistent with the values tabulated in Table II. The reduced 
diffusive thermal conductivity So (T)  decreases monotonically with decreas- 
ing temperature  and tends to ~(0) --- 0.45. 
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