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The transition temperature of superfluid 3He is calculated as a function of the 
size of an infinitely long cylindrical pore or an infinite slab container with 
diffusely scattering walls. We present the exact asymptotic behavior for large 
and small containers and a full numerical calculation for intermediate sizes. 

1. INTRODUCTION 

P-wave superfluids are strikingly different from s-wave superfluids in 
that ordinary scattering from walls or any foreign object can lead to local 
suppression of the order parameter. ~ A large density of foreign objects or 
confinement to a limited space is likely to reduce the transition temperature 
and finally eliminate the transition altogether. For regular enough container 
shape the scattering boundary condition plays an important role in this 
context. This fact could eventually be used to investigate the scattering 
properties of surfaces. 

We investigate quantitatively the lowering of the superfluid transition 
temperature of 3He as a function of the size of the system in two simple 
geometries, the infinitely long cylindrical pore and the infinite slab with 
diffusely scattering boundaries. Both these geometries have the property 
that the transition temperature should remain unchanged and there should 
be no critical smallest size for the superfluid transition to occur if the walls 
reflect specularly. A measurement of the transition temperature in either of 
these geometries should therefore bring direct information on the degree of 
diffusiveness of the surface scattering. 
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The next obvious simple geometry,  the sphere, seems a much more  
complicated problem and we have not treated it. In addition to the wall 
effects in the sense of the present paper,  there is the texture problem in a 
sphere. As there is no direction for a conserved current in a sphere, specular 
scattering alone can lead to suppression of the order paramete r  in a spherical 
container. One should therefore exercise some care in applying the present 
quantitative results to other than geometries that reasonably may be 
described as pores or slabs. 

Another  interesting application of the present  results could be in the 
design of an experiment  looking for an ordinary "external"  Josephson effect 
in3He. The fact that the order paramete r  is reduced in a pore may essentially 
improve the chance for observing such an effect in 3He, as the coupling 
strength may be controlled with the temperature.  

There  are several known experimental  studies of 3He in confined 
geometries where no transition to the superfluid phase has been observed. 
To our knowledge, however,  no systematic investigation of the size effect 
has taken place. 2 

Previous theoretical studies of 3He in slabs or cylinders concentrate on 
textures and are restricted to large sizes compared  with the coherence 
length. In all of them use is made of the Ginzburg-Landau  expansion 3 or of a 
long-wavelength hydrodynamic approach.  4 We are interested in size effects 
on the scale of the coherence length so0 -~ 150 ~ .  This requires that we 
include nonlocal effects in our analysis. 

In this paper  we present numerical results on the critical tempera ture  of 
a narrow cylinder (slab) for all radii as well as analytic t reatments  of the two 
asymptotic limits: the case of large radius and the case of small deviations 
from the critical radius where the transition tempera ture  goes to zero. We 
find the critical sizes Rc = 1.5sr for a pore  and Dc = 1.3sr for a slab. 

In Section 2 we give the theoretical background for the integral 
equation that determines the transition tempera ture  as a function of the size 
of the system. The asymptotic solutions are discussed in Sections 3 and 4 and 
the numerical results in Section 5. All these results are summarized in Figs. 2 
and 3. 

2. T E C H N I C A L  D E T A I L S  

We are interested in the lowering of the superfluid transition tempera-  
ture of SHe in finite containers brought  about  by the pair-breaking effect of 
the walls. No reliable theory for calculating the bulk (infinite-system) 
transition tempera ture  T O itself is available, 5 as T O depends on unknown 
high-energy structures of the excitation spectrum of SHe. In contrast, the 
change in the transition tempera ture  is determined by the low-energy 
excitations, the quasiparticle part  of the spectrum. It can be calculated with 
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the theory, correct in the weak coupling limit (T~ ~ 0), developed in Ref. 
6. Tc is determined by the linearized gap equation 

A,,(r) = Z I d3r' Kii(r, r')A,i(r') (1) 

Io Ki~(r, r') = 6rrN(0)gT ~ '  dt exp ( -  21e.]t) 

x ( l / v2X j , ( r ,  O)jj(r', t))c,.~i~., (2) 

where Q" �9 is the classical current--current correlation function in a 
microcanonical ensemble of particles with velocity v~. The frequency sum 
over e, 7 = (2n - 1)TrT is cut off at an arbitrary energy E~ >> T O and g is a 
pseudo coupling constant chosen to reproduce the correct bulk transition 
temperature. Any sensible result must be insensitive to the cutoff Ec, which 
can be eliminated according to the limiting procedure 

g ~ 0  such that T o = 1.13 E~exp N(O)g =cons t  

Vt t �9 q 

Fig. 1. Two reflected paths whose contributions to the kernel in 
the gap equation cancel each other. Both paths have the same 
length but end up with opposite velocity components along the 
wall. 
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The current--current correlation function and hence the kernel of the gap 
equation depend on the geometry of the container. The current-current 
correlation function, complicated to calculate in general, can be easily 
determined for a cylinder or a slab with diffusely scattering walls by the 
following considerations. 

The equilibrium order parameter has in both cases only components 
parallel to the walls and these only vary as a function of distance from the 
walls, i.e., the radial coordinate of a cylinder or the z coordinate of a slab in 
the (x, y) plane. Hence only the current-current correlation function 
integrated over the coordinates parallel to the wall (z, ~b for a cylinder; x, y 
for a slab) enter the gap equation. In the integrated correlation function of 
the velocity components along the walls only such correlations survive that 
result from direct propagation from one point to another; paths scattered by 
the diffusely scattering walls cancel each other pairwise as demonstrated in 
Fig. 1. To determine the transition temperature of a cylinder (slab), one only 
needs the free particle (bulk) correlation function. The effect of reduced 
transition temperature arises from the restrictions on the integration volume 
1) as compared with the bulk case. We then have the bulk kernel 

3N(O)gTE, ( r -  r'), ( r -  r')i 21e. I Ir-  r'l K b u l k  
ii " (r, r ' )= 2V-----F n ~ exp VF (3) 

After integrations over the coordinates parallel to the wall one finds the 
one-dimensional integral equations for radial dependence of the order 
parameter in the pore (z dependence in a slab. respectively) 

P 

AA,.(r)= Jo dr' k P ~  r')A,,(r') (4) 

f+o/2 k (z - AA,II(z)= _o/2 dz' sl~b z,)A,u(Z, ) (5) 

where A = 4/3N(O)g, and 

kP~ r ' )=  r' d~b ,/2 

exp { - (2n - 1)(r 2 + (r') 2 - 2rr' cos & + r/E) 1/2} 
• [ r  2 + ( r ' )  2 --  2rr' cos & + r/2] 2 (6) 

N 
kS'~b(z - -z ' )=  2 E {El[(2n - 1)]z -z ' ] ]  

n = l  

- E3[(2n - 1)lz - z']]} (7) 

and all lengths are expressed in units of the coherence length vv/2~rT. 
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One obtains the size-dependent transition temperature from the largest 
eigenvalue A in the following parametric representation: 

Tc/T O = exp (�88 rr(2N - 1) 

R/~o = 1 .13(2N-  1)d~ exp (-43-A) 

(Sa) 

(8b) 

R is the radius of the pore and Tc = Tr is its transition temperature. N 
and /~  are parameters in the eigenvalue problem (4). The corresponding 
parametric representation of To(D) for a slab is simply obtained by replacing 
R (/~) in (8b) by D (/9) and using A from Eq. (5). 

Equations (4)-(8) still contain the cutoff energy Ec and the pseudo 
coupling constant g. It was convenient for the calculations of Section 5 to 
keep this spurious cutoff dependence in the numerical algorithm. The final 
results were made practically cutoff-independent by choosing a large 
enough cutoff. The numerical analysis of Section 5 is based on the gap 
equations (4) and (5) with the kernels specified by (6) and (7). The analytical 
results of Sections 3 and 4, on the other hand, are based on a cutoff- 
independent version of the gap equation. In order to eliminate the cutoff we 
have to write the gap equation (1) in the unconventional form 

~ [~'J- f d3r' K'(r'r')] A~i(r) 

= ~ I d3r' K,(r, r ')[A,i(r ')-A,j(r)] (9) 

The limit Ec ~ oo is now trivial on the right-hand side since the singularity of 
the kernel at r = r' is cancelled by the vanishing factor Asi(r ' )-  As/(r). We are 
left with an integral equation of the form [we have taken the bulk kernel, Eq. 
(3)] 

Y 4,,(r, T)A,j(r) 
i 

= ~i ln d3r ' (r-r')i(r-r')i . I r -  r'l 4 

3T/2VF 
. . . . . . . .  [A,j(r ' )-  A.(r)]  (10) 

x sinh t z c r z l r - r  I/VF) 
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where the function ~bij(r, T) is given as the Ec ~ oo limit of the following 
expression: 

/ 8,, 3T , f  
~bq(r,T)= li.m 0 /N(0)g  2V-FF~ Jn d3r' 

(r-- r')i(r-- r')i 21~.11r-r' l  / 
• ir __ r,14 exp ~FF ' (1 1) 

We note that this integral is independent of the order parameter. It does 
depend, however, on the geometry of the container. The low-temperature 
limit of ~bij(r, T) can be found analytically for cylindrical and slab 
geometries: 

( R 4 1 R 2 - r  2 ) 
~bz~re(r, T = 0 ) =  - l O g ~ o o + ~ + ~ l o g ~  (12a) 

cbSlab , / D 4 1 DE-4z2~ 
xx tz, T = 0 ) = - t l O g ~ o o + ~ + ~ l o g  D2 ] (12b) 

The cutoff-independent gap equation (10) is used in Section 4 to calculate 
the critical size below which superfluidity is absent in a pore or a slab. 

3 .  G I N Z B U R G - L A N D A U  L I M I T  

At large radius of the cylinder the order parameter varies slowly 
compared with the range of the kernel in (1). One may then use a local 

14 Tc/Tc ~ 

0 S I '/11//1~" 

// 
I Jl 

i/ I 

2 3 4 s 6 ~ ~ ~ 1'o " R/~o 

Fig. 2. Transition temperature as a function of the radius R in a cylindrical pore with 
diffusely scattering walls. The asymptotic results in the Ginzburg-Landau range and 
near the critical pore size are given as a dashed line and a dotted line, the full numerical 
result as a solid line. 
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Fig. 3. Transition temperature as a function of the thickness D in a slab between diffusely 
scattering planes. The asymptotic results in the Ginzburg-Landau #ange and near the critical 
thickness are given as a dashed line and a dotted line, the full numerical result as a solid line. 

approximation for the kernel, which leads to the Ginzburg-Landau equation 

T O 3 2 
log-~-As/(r) + ~ : s  ~ (~ijV2 + 2V,vj)a, i(r)  = 0 (13a) 

~2 = 7v~((3)/[487r2(rO)21 

together with the boundary condition 

A,i(r at boundary)=  0 (13b) 

These equations (including third-order terms in the order parameter  on 
external perturbations) have been discussed by several authors for the slab 
as well as the cylinder geometries. 4 They can be easily solved and yield the 
size-dependeqt transition temperatures 

3 2 2 2 Tc = T O exp ( - ~ G a  /R  ) (pore) (14a) 

for a cylinder of radius R and 

T~ T O exp ( -3"2  21r-~2\ = ~r / u  ) (slab) (14b) 

for a slab of thickness D, where a = 2.4048 is the first zero of the Bessel 
function Jo(x). They are shown in Figs. 2 and 3 together with exact numerical 
results, with which they agree reasonably down to a pore size of the order of 
R/~o = 5 (slab thickness D/~o = 6). At smaller sizes, however, they give too 
high superfluid transition temperatures and do not lead to finite critical sizes. 
To pin down the lower end of the curve we now turn to the low critical 
temperature limit. 
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4. CRITICAL SIZES 

The transition temperature to the superfluid phase goes to zero at a 
critical size below which the system no longer becomes superfluid at all. In 
contrast to the Ginzburg-Landau limit, the sample dimensions here are 
much smaller than the coherence length ~ = Vv/2"n'Tc. We therefore look for 
the smallest radius that gives a nonvanishing solution of the gap equation 
taken at T = 0. It is convenient to start with Eq. (10), where the cutot~ Ec and 
the pseudo coupling constant of the conventional gap equation (1) have been 
eliminated in favor of the bulk transition temperature.  Taking the limit 
T = 0 and integrating over those spatial variable components that do not 
appear in the order  parameter,  we find the parameterless eigenvalue equa- 
tions 

Epore~(P)=log(1-O)~(p)+ Io+l do'~p,~p~[~(p')-~(p)] (15a) 

P + 1  

Es,ab~(~') = log (1 -- sr2)~(~')+j_ 1 d s r ~ _ ~  ,i [~(sr') - ~(~')] (15b) 

The eigenvalues Eporr and Estab determine the critical sizes R~ and D~ 
through the relations 

Rc 4~o exp 1 4 = (-- ~Epore-- ~) (16a) 

= ( -  ~E~ab-~) (16b) D~ 4f0 exp 1 4 

We calculated the eigenvalues with standard computer  routines, using two 
different expansions for the eigenfunctions, an expansion in terms of 
Legendre polynomials and an expansion in terms of piecewise constant 
functions. We find Epor~ = - 0 . 7 1  and E~D = --0.47 and critical sizes 

R~ = 1.5fo (17a) 

Dc = 1.3~:0 (17b) 

The profile of the amplitude of the order parameter  near the critical size is 
shown in Fig. 4. It is also interesting to determine how the critical tempera- 
ture departs from zero as a function of R - Rc or D - De. This is determined 
by the leading finite-temperature corrections to Eqs. (15), which can be 
calculated from Eq. (10). In a pore the corrections take the form T 2 log T, 
which implies that T~ starts with an infinite slope at the critical radius. For a 
slab the leading correction is linear in T and can be evaluated analytically. It 
results in a linear departure of Tc as a function of D - D c :  

D - D~ D~ 31og 2 T T 
~:-~ = ~:2o 4 T~--- 0"92-~  (18) 
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Fig. 4. Amplitude of the order parameter (a) in a pore and (b) in a slab, near the critical sizes 
normalized to 1 at the center and computed with a Legendre polynomial expansion (15 
polynomials) for the order parameter. This approximation fails right at the wall, where the 
correct order parameter has an infinite slope. 

The  l o w - t e m p e r a t u r e  b e h a v i o r  is also shown in Figs, 2 and  3, t o g e t h e r  with 
the  numer ica l  resul ts  for  a rb i t r a ry  sizes. O n e  can see that  the  a sympto t i c  
resul ts  at  large  sizes on the one  hand  and  at low cri t ical  t e m p e r a t u r e s  on the  
o t h e r  hand  give a fair ly we l l -de f ined  idea  a b o u t  the  size d e p e n d e n c e  of  the  
t rans i t ion  t e m p e r a t u r e  in pores  and  slabs with diffusely sca t t e r ing  walls. 
T h e y  also p rov ide  checks  on  the numer ica l  t r e a t m e n t  of  the  full in tegra l  
equa t ion  necessa ry  for  fu r the r  deta i ls .  
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5. N U M E R I C A L  C A L C U L A T I O N  

In order to determine the transition tempera ture  for other than the 
asymptotic limits one has to solve the gap equation numerically. It reduces to 
a one-dimensional  integral equation for both the cylindrical pore and' the 
slab. For the slab the kernel of the equation is explicitly known, whereas it is 
only given as a two-dimensional singular integral for the cylindrical pore. 
This makes  the pore an essentially more difficult case than the slab. For the 
slab the integral equation can be t ransformed into a standard matrix 
equation by simply approximating the order paramete r  with piecewise linear 
functions. The matrix elements can be evaluated analytically and the matrix 
equation solved with library routines. We show the results in Fig. 3. 

In the case of the cylinder we took the order paramete r  to be a piecewise 
constant function of the radius and t ransformed the integral equation to a 
matrix equation where the elements of the matrix were given as integrals of 
the kernel over squares in the (r, r ') plane. To speed up the calculation we 
used various approximations for the kernel, such as the slab kernel for large 
and roughly equal r and r', or the asymptotic form for r '  >> r, which depends 
on r'  only. Those elements containing the singular point r = r' we handled 
either with the bulk transition tempera ture  sum rule (which states that the 
kernel integrated over one of its variables gives a constant) or using the slab 
kernel for r = r' large. The initially heavily approximated kernel was cal- 
culated exactly for a growing number  of squares until the results no longer 
changed. The full details of the calculation can be found in Ref. 7. The 
transition tempera ture  for an arbitrary radius is depicted in Fig. 2. 
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