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We report ultrasonic dispersion and attenuation measurements near the 
liquid-gas critical point of 3He at frequencies from 0.5 to 5.0 MHz and 
densities from O. 89pc to i. 15pc. The singular part of the sound attenuation and 
the dispersion on the critical isochore pc = O. 0414 g/ cm 3 are analyzed in terms 
of the Kawasaki-Mistara theory. I f  the Ornstein-Zernike order parameter 
correlation function is assumed in the analysis, good agreement with our data 
is achieved, except close to the critical temperature Tc in the high-frequency 
region, where to* = to/toD >> 1. Here toD is the characteristic relaxation rate of 
the critical fluctaations. From a fit of the theory to our data, and assuming the 
inverse correlation length K is expressed by K = roe ~, where e = (T-Tc) /Tc 
with ~ = 0.63, we obtain Ko = (3 .9•  109 m -1. It is found that a more 
realistic form of the correlation function, as proposed by Fisher and Langer and 
calculated by Bray, yields even poorer agreement with out data than does the 
classical Ornstein-Zernike form for to * > i0. The same difficulties appear in 
the analysis of the available data for xenon. Thus, the present mode coupling 
theory is unable to satisfactorily describe the acoustic experiments on fluids 
near the liquid-vapor critical point over a large range of reduced frequencies 
to*. In the appendix, we reanalyze previously reported ultrasonic data in 4He, 
taking into account the nonsingular term of the thermal conductivity. Using 
u = 0.63, we obtain a good fit of the experiment to the theory in the 
hydrodynamic region with Ko = (5.5+ I) x 109 m -1. 

1. INTRODUCTION 

Sound propagation has proven to be a valuable tool in the investigation 
of dynamic behavior of systems near critical points. For instance, near the 
liquid-gas critical point of a monatomic pure fluid, the very large sound 
attenuation and velocity dispersion are caused by hysteresis energy loss 
when the decay rate wo of density fluctuations becomes on the order of the 
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sound wave frequency w/27r. There are two frequency and temperature 
regions with very different behavior of the attenuation and dispersion: the 
low-frequency hydrodynamic region, where ~o << wD, relatively far from the 
critical point, and the high-frequency nonhydrodynamic region, where 

>> ~oD, very close to the critical temperature To. In this paper we present 
dispersion and attenuation data for 3He in both these regions and analyze 
them in terms of the Kawasaki 1 formalism. A comparison with several forms 
of the order parameter correlation function is made, taking into account 
several modifications of the classical Ornstein-Zernike (OZ) form. Further- 
more, a reanalysis of earlier acoustic experiments in 4He is presented in the 
appendix. 

We have measured the sound velocity and attenuation as a function of 
temperature at six densities near the critical point of 3He, but in this analysis 
we will concentrate on the critical isochore p =pc =0.0414 g/cm 3. The 
frequency range investigated was from 0.5 to 5.0 MHz, and the temperature 
ranged from Tc = 3.3 K to 3.7 K, the critical temperature being 3.3083 K. 

This is a continuation of our earlier work in 4He,2 which we were able to 
compare with low-frequency acoustic experiments 3 and light scattering 
experiments. 4-6 Xenon has also been thoroughly investigated by low- 
frequency acoustics, 7 ultrasonic, 8-1a Rayleigh scattering, 12 and Brillouin 
scattering 13,14 experiments. Experiments in monatomic fluids have gener- 
ally been interpreted in terms of the Kawasaki a mode coupling calculation of 
attenuation and dispersion due to the divergence of the bulk viscosity. The 
rederivation by Mistura 15 in terms of a frequency-dependent specific heat 
and the modification of these results to correct for large dispersions 9 have 
been extensively used. 2'11,16 Unfortunately, when the OZ form for the order 
parameter correlation function is used in these calculations, the results 
contradict experiments 2'9'11 in the extreme nonhydrodynamic region. 

Kawasaki17 has shown that if a better form for the correlation function 
is assumed, the calculated attenuation and dispersion have approximately 
the same temperature and frequency dependence as found by experiments 
in the extreme nonhydrodynamic region. Kawasaki calculated only the 
limiting high-frequency behavior, though, and no explicit expression was 
given for the attenuation and dispersion over the entire frequency and 
temperature range. The validity of Kawasaki's arguments has been tested in 
xenon by Tartaglia and Thoen,16 who fit the existing data to the theory using 
the OZ correlation function in the hydrodynamic region. In the high- 
frequency region they used a modification of the Fisher-Langer 18 form for 
the correlation function. We shall come back in some detail to the basic 
problems encountered with this comparison in the high-frequency region. 

In this paper, we will show that the Kawasaki-Mistura calculations 
assuming the OZ correlation function fit well the acoustic data in 3He in the 
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hydrodynamic region if the hyperscaling value v = 0.63 (using a = 0.11)19 is 
assumed. The magnitudes of the correlation length and thermal conductivity 
found in this fit are on the order of those expected from other experiments. 
We have also attempted to compare our data with the Kawasaki-Mistura 
expressions using the Fisher-Langer correlation function in the non- 
hydrodynamic region. The intermediate region w/o)o >-10 has a quite 
different behavior than is actually observed if the correct sign of the leading 
order correction term, as calculated by Bray z~ or Fisher and Aharony, 21 is 
used. In order to achieve a good fit to our data, the opposite sign must be 
used. This unphysical sign has also been assumed in the analysis 16 of the 
xenon data, as we shall explain below. 

2. EXPERIMENTAL PROCEDURE 

The ultrasonic measurements were carried out with the same acoustic 
etalon and cryostat as was used to measure the dispersion and attenuation in 
4He, and which is described in Ref. 2. The sample chamber, to be described 
below, contained two X-cut quartz transducers separated by a few milli- 
meters of fluid 3He through which the sound pulses traveled. The velocity 
and attenuation measurements were made by observing the time of flight 
and the amplitude of the pulse after it has passed through the fluid. The 
ultrasonic cell was strongly thermally coupled to a 4He reservoir near the 
3He critical temperature. Its temperature, which was controlled electroni- 
cally to within 20/~K, was measured by a germanium resistance thermom- 
eter calibrated against the 4He vapor pressure scale. Since the sample 
chamber, acoustic techniques, and cryostat have been previously described, 
only the changes pertinent to this experiment will be discussed here, and the 
reader is referred to Ref. 2 for further details. 

Two pairs of matched 1-in.-diameter quartz transducers, having fun- 
damental frequencies of 0.5 and 1.0 MHz, were used in the acoustic cell shown 
in Fig. 1 of Ref. 2. In the first set of experiments, the 0.5-MHz crystals were 
excited at 0.5, 1.0, and 1.5 MHz, and the velocity and attenuation were 
measured at each frequency along six isochores, including reduced densities 
p/Oc of 0.89, 0.96, 1.00, 1.015, 1.06, and 1.14. The transducers were held 
2.37 mm apart by a rather convoluted spacer, as shown in Fig. 1 of Ref. 2. The 
idea was to reduce the amount of sound passing through the spacer relative to 
that through the fluid. In fact, the attenuation became so large close to the 
critical point that the received pulse through the sample at 1.0 and 1.5 MHz 
became undetectably small. To correct this problem, the fluid thickness was 
reduced to 1.33 mm in the 1.0-MHz crystal cell. With this smaller spacing, 
velocity and attenuation could be measured right up to the critical point at 
1.0 Mt-Lz, but not at 3.0 or 5.0 MHz. 
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The capillary through which the 3He sample was inserted into the 
sample chamber was heated to reduce the amount of residual 3He in the 
capillary. Although the temperature profile is uncertain, we estimate that 
less than 0.3% of the sample was in the capillary. Thus, a nearly constant 
density was achieved by closing a valve to the fill line immediately on top of 
the cryostat. 

The velocity was measured by determining the time of flight of a pulse 
by a phase comparison technique. 22 The velocity resolution was 10 -3 m/sec 
out of 80 m/sec, but the long-term reproducibility was about 10 -2 m/sec. 
However, very close to the critical point or where the received amplitude 
was very small, the reproducibility was only 3 x l 0  -2  m/sec. The effective 
acoustic spacing between the transducers and the electronic delay in the time 
of flight were determined by comparing the measured times of flight in 3He 
gas at very low pressures with the sound velocity data of Grimsrud and 
Werntz. 23 We estimate that the absolute velocity derived from the effective 
spacing and time delay correction is accurate to within 0.3 m/sec. However, 
the dispersion measurements, which rely on changes in velocity, are much 
more accurate, as discussed below. Note that since the time-of-flight method 
is sensitive to changes in the phase of the received pulse rather than the 
change in delay of the pulse envelope, the velocity measured is the phase 
velocity, not the group velocity. These differ by as much as 3% near the 
critical point because of the large dispersion. The phase velocity will be used 
throughout this paper. 

The attenuation measurements were done with a different technique 
from that of Garland eta/., 7-1~ who used a variable-path-length inter- 
ferometer. Essentially, we measured the amplitude of the received pulse as a 
function of temperature. The effects of any departure in linearity in the gain 
of the amplifiers used was eliminated by changing a calibrated step 
attenuator to keep the received signal amplitude constant, as measured by a 
boxcar integrator. When the signal became very small at high frequencies 
near the critical point, the attenuator could not be used, and the attenuation 
was determined from the calibrated gain curve of the video amplifier. 
Because the sound velocity of the 3He changes considerably over the 
experimental temperature range, the acoustic impedance of the fluid 
changes enough to cause the apparent attenuation to change by several 
decibels. We have calculated the correction due to this effect (see Appendix 
A of Ref. 2), and it has been included in all data presented here. 

3. RESULTS 

Since the method of measuring the received signal amplitude to deter- 
mine the sound attenuation does not give the absolute acoustic attenuation, 
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Fig. 1. The singular attenuation o~sing(T ) along several isochores at the frequency of 
0.5 MHz. The vertical line with the hatches indicates the coexistence curve boundary. Data 
taken beyond T = 3.40 K, where %~g(T) is small, are not shown. 

we concentrate on the singular attenuation near the critical point and 
subtract off the small, slowly varying background attenuation due to shear 
viscosity and thermal conductivity. We write the observed attenuation as 

a o b s ( r )  = Olback -Jr- Otsing(r ) (1) 

The critical attenuation asing decreases rapidly as the temperature is raised 
far above To, and for all practical purposes, aobs(T) = aUack when T is greater 
than 3.6 K. After the value of o~back to be subtracted from the data has been 
determined in this way, small self-consistency corrections were made to 
ensure that OLsing is proportional to o) a in the hydrodynamic region far from 
Tr The critical attenuation calculated in this way is shown along several 
isochores in Fig. 1. Smoothed data for the attenuation per wavelength 
ax = aA along the critical isochore are presented for all our experimental 
frequencies in Table I. We note that close to T~, ax for 1 MHz becomes 
systematically smaller than for 0.5MHz by about 7%. This is slightly 
different from the experiments for Xe, 11 and also from theoretical expecta- 
tions. 17 We do not understand what instrumental effects could have caused 
this small discrepancy at these very high attenuations. 

The velocity measurements at 0.5 MHz are presented along several 
isochores in Fig. 2. Because the electronic time delay depended slightly on 
the frequency, the time of flight was adjusted so that the velocity was 
independent of frequency far from Tc ( T >  3.5 K), where the dispersion is 
negligible. 
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TABLE I 

Smoothed Ultrasonic At tenuat ion at Various Frequencies 

Sound at tenuat ion per wavelength ax, Np 

T, deg e 0.5 MHz 1.0 MHz 1.5 MHz 3.0 MHz 5.0 MHz 

3.4737 5.0 x 10 -2 . . . .  0.004 
3.4406 4.0 x 10 -2 - -  0.002 - -  - -  0.006 
3.4076 3.0 x 10 -2 - -  0.003 - -  - -  0.012 
3.3910 2.5 x 10 -2 0.002 0.004 - -  - -  0.017 
3.3745 2.0 x 10 -2 0.003 0.006 - -  - -  0.026 
3.3579 1.5 x 10 -z  0.006 0.011 0.016 0.028 0.043 
3.3480 1.2 x 10 -2 0.009 0.016 0.022 0.037 0.057 
3.3414 1.0 x 10 -2 0.013 0.022 0.030 0.047 - -  
3.3348 8.0 x 10 -3 0.020 0.031 0.042 0.063 - -  
3.3282 6 . 0 x  10 -3 0.031 0.047 0.061 0.089 - -  
3.3249 5 . 0 x  10 -3 0.040 0.060 0.077 0.106 - -  
3.3216 4.0 x 10 -3 0.054 0.077 0.096 - -  - -  
3.3182 3 .0x  10 -3 0.078 0.101 - -  - -  - -  
3.3149 2 . 0 x l O  -3 0.114 0.135 - -  - -  - -  
3.3133 1 . 5 x l O  -3 0.140 0.159 - -  - -  - -  
3.3116 1 .OxlO -3 0.174 0.186 - -  - -  - -  
3.3106 7.0 X 10 -4  0.20 0.21 - -  - -  - -  
3.3100 5 . 0 x  10 -4  0.22 0.22 - -  - -  - -  
3.3096 4.0 x 10 -4 0.23 0.23 - -  - -  - -  
3.3093 3.0 X 10 -4 0.25 0.24 - -  - -  - -  
3.3090 2.0 • 10 -4  0.26 0.25 - -  - -  - -  
3.3088 1.5 • 10 -4  0.27 0.26 - -  - -  - -  
3.3087 1.0 • 10 -4  0.28 0.26 - -  - -  - -  
3.3085 5.0 • 10 -s  0.28 0.27 - -  - -  - -  
3.3084 2.0 x 10 -5 0.29 0.27 - -  - -  - -  
3.3084 1.0 x 10 -s  0.29 0.27 - -  - -  - -  

U n l i k e  4 H e  ( R e f .  3 )  a n d  X e  ( R e f .  7) ,  n o  l o w - f r e q u e n c y  s o u n d  v e l o c i t y  

m e a s u r e m e n t s  h a v e  b e e n  r e p o r t e d  i n  3 H e .  T h e s e  w o u l d  h a v e  b e e n  m o s t  

u s e f u l  i n  d e t e r m i n i n g  t h e  d i s p e r s i o n  A U ( o J ) =  U ( w ) - U ( 0 ) .  I n s t e a d ,  w e  

m u s t  c a l c u l a t e  t h e  l i m i t i n g  z e r o - f r e q u e n c y  ( o r  t h e r m o d y n a m i c )  v e l o c i t y  

f r o m  t h e  r e l a t i o n  

1 1 T [01~ 2 
ULe~m (0) = pKs = pKr  + ~ ~-d-T) v (2 )  

w h e r e  Ks a n d  K r  a r e  t h e  a d i a b a t i c  a n d  i s o t h e r m a l  c o m p r e s s i b i l i t i e s ,  p i s  t h e  

m a s s  d e n s i t y ,  a n d  Cv is  t h e  s p e c i f i c  h e a t  a t  c o n s t a n t  v o l u m e  p e r  u n i t  m a s s .  

O n  t h e  c r i t i c a l  i s o c h o r e ,  w e  u s e  t h e  a v a i l a b l e  d a t a  f o r  Kr, 24 Cv, 2~ a n d  

(OP/aT)v 25 t o  c a l c u l a t e  Utherm(0) .  U n f o r t u n a t e l y ,  h o w e v e r ,  t h e  c o m b i n e d  

systematic e r r o r s  i n  t h e s e  q u a n t i t i e s  a m o u n t  t o  s e v e r a l  p e r c e n t ,  w h i c h  is  

c o m p l e t e l y  u n a c c e p t a b l e  f o r  c a l c u l a t i n g  t h e  d i s p e r s i o n  t o  t h e  a c c u r a c y  o f  
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Fig. 2. The sound velocity U along several densities at the frequency of 0.5 MHz. The symbols 
correspond to the same densities as in Fig. 1 and the coexistence curve boundary is again 
indicated by the line with the hatches. It is expected that far above the critical region, say at 
T> 5 K, the velocity would increase monotonically as a function of density. This fact explains 
why the low-density velocity rises less steeply as a function of temperature. 

10 -3 U(0) .  The next step, then, was to adjust the calculated thermodynamic 
velocity Uthe,m(0) to fit the measured 0 .5 -MHz data in the temperature 
range where the dispersion is small, namely 3.37 < T < 3.53 K. To preserve 
the expected weak singularity in U(0) ,  we  used the form 

U ( 0 )  = (1 - 60)Utherrn(0) -[- 3 1 e  "[- 3 2 e  2 _[_ 3 3 8 3  (3) 

where e = ( T - T c ) / T c .  The implicit temperature dependence  of U(0)  and 
Utherm(0) is understood and the 6i are free parameters with 13o[ << 1. The 
difference between U(0) and U(0.5  MHz)  is less than 0.01 m / s e c  through- 
out the range of the fit. Table II gives U(0)  as a function of temperature. It is 
subtracted from the acoustic velocity to determine the dispersion as a 
function of temperature and frequency along the critical isochore. 
Smoothed  velocity data at several frequencies are also given in Table II. A 
technical report tabulating all the velocity and attenuation data is in 
preparation. 

Despite  very small transducer separations, gravity-induced density 
gradients remain a nontrivial problem in our cell very close to the critical 
point. We can only e s t i m a t e  the corrections close to To, because the precise 
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TABLE lI 

Smoothed Ultrasonic Velocity at Various Frequencies and the Limiting Velocity at Zero 
Frequency U ( 0 )  

U(w/2rr), m/see 
Z u(0), 

deg e m/see 0 . 5 M H z  1 . 0 M H z  1 . 5 M H z  3 M H z  5 M H z  

3 .5068  6 . 0 •  10 -2  91.47  91 .47  91 .47  91 .47  91 .47  91 .48  

3 .4737  5.0 • 10 -2  89.77 89 .77  89.77 89 .77  89 .78  89 .78  

3 .4406  4.0  X 10 -2  87.89  87 .89  87.89 87 .89  87 .90  89.91 

3 .4076  3.0 x 10 -2  85.73 85.73 85 .74  85 .74  85.75 85 .76  

3 .3910  2.5 x 10 .2  84 .49  84 .49  84 .50  84 .52  84.53 84.55 

3 .3745  2 . 0 x  10 . 2  83.08 83 .08  83 .09  83.11 83 .14  83 .18  

3 .3579  1.5"x 10 . 2  81.38 81 .39  81.41 81.43 81 .50  81 .58  

3 .3480  1 . 2 x 1 0  -2 80 .14  80 .16  80 .20  80 .23  80 .34  80.47 

3 .3414  1.0 x 10 . 2  79 .17  79 .20  79 .26  79.31 79 .47  - -  

3 .3348  8.0 x 10 -3 78 .03  78 .09  78.21 78 .27  78 .53  - -  
3 .3282  6.0 • 10 -3  76.61 76 .74  77 .00  77 .06  77 .44  - -  

3 .3249  -5.0 x 10 -3 75 .74  75 .95  76 .29  76 .39  76 .86  - -  

3 .3216  4.0 • 10 . 3  74.71 75 .03  75 .48  75 .66  - -  - -  

3 .3182  3.0 • 10 -3  73 .42  74 .00  74 .55  - -  - -  - -  

3 .3149  2.0 • 10 . 3  71.68  72 .80  73 .60  - -  - -  - -  

3 .3133  1.5 • 10 -3 70 .48  72 .12  73 .09  - -  - -  - -  

3 .3116  1 . 0 x  10 -3  68 .86  71 .40  72 .56  - -  - -  - -  

3 .3106  7.0 • 10 -4  67 .47  70 .97  72.21 - -  - -  - -  

3 .3100  5.0 • 10 . 4  66 .20  70.68 72 .00  - -  - -  - -  

3 .3096  4.0  • 10 . 4  65 .38  70 .54  71 .90  - -  - -  - -  

3 .3093  3.0 • 10 . 4  64.34  70.41 71.81 - -  - -  - -  
3 .3090  2 . 0 •  10 - 4  62 .90  70.2~ 71.71 - -  - -  - -  

3 .3088  1.5 • 10 . 4  61 .90  70 .22  71 .66  - -  - -  - -  

3 .3087  1 . 0 •  10 . 4  60.53  70 .16  71 .60  - -  - -  - -  

3 .3085  5 . 0 •  10 .5  58 .26  70 .09  71.55 - -  - -  - -  

3 .3084  2.0 • 10 .5  55 .39  70 .05  71 .52  - -  - -  - -  
3 .3084  1 . 0 x l 0  -5 53 .32  70 .03  71.51 - -  - -  - -  

behavior of the velocity and attenuation as a function of density is not 
known. Nevertheless, as in Appendix B of Ref. 2, we assume that the 
quadratic density dependence of the velocity and attenuation (see Fig. 3) a 
few millidegrees above Tc persists even very close to the critical tempera- 
ture. Then the shift due to gravity is a weighted average of the velocity (or 
attenuation) over the density profile of the cell. This density profile is 
calculated 26 as a function of temperature assuming the linear model equa- 
tion of s t a t e s  In the cell with 2.37 mm vertical spacing between the quartz 
transducers, the calculated gravity correction to the velocity increases from 
0.035 m/sec at T -  Tc -- 1.0 mK to 0.50 m/see at the critical temperature, as 
shown in Fig. 3. The corrections for the cell with 1.33 mm spacing are 
slightly smaller. The attenuation per wavelength is calculated to be too small 
by 0.024 Np at Tc in the larger ceil. 
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calculated velocity profiles corrected for gravity effects. The solid curves 
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analysis. For explanation of the curves, see text. 

Since these calculations of the gravity effect overcorrect for the round- 
ing of the data near To, we feel it is possible that the gravity-induced density 
gradient may not become fully established in the cell. Perhaps the mechani- 
cal agitations of the transducers or a slight temperature gradient might 
produce enough convection in the cell to disturb the formation of the density 
gradient, thus reducing the correction to the velocity and attenuation. There 
is some uncertainty in the exact behavior of the velocity and attenuation 
within 0.5 mK of the critical temperature, but, as a guess, we suppose that 
they should continue the linear temperature dependence, as in Fig. 3, rather 
than being cusped, like the calculated corrections, or flattened, like the 
observed data points. We have therefore used the solid lines in Fig. 3 as the 
true velocity, and have treated the attenuation in a similar manner. Fortu- 
nately, these corrections to the velocity have almost no effect on the 
dispersion, because the dispersion itself is so much larger than the correction 
due to gravity. At 0.5 MHz and e = 10 -5, for instance, the dispersion is 
almost 17m/sec,  but the maximum correction due to gravity is only 
0.5 m/sec. In a similar spirit, we have corrected the 0.5-MHz data of the 
attenuation per waveiength from 0.285 to 0.294 Np at To, rather than the 
calculated correction of 0.310 Np. 
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4. THEORY, ANALYSIS, AND DISCUSSION 

Kawasaki ~ has used the mode coupling formalism to calculate the sound 
dispersion and attenuation near the liquid-gas critical point, assuming the 
OZ correlation function. Mistura ~s has derived essentially the same result in 
terms of a frequency-dependent specific heat, although he has taken into 
account the Fisher 28 modification of the OZ behavior. The physical idea is 
that the sound wave requires rapid response from the order-parameter 
fluctuations in the fluid. If these do not respond as fast as the frequency ~o of 
the sound wave, energy is dissipated, leading to absorption and dispersion. 
Thus the crucial factor is the ratio co* = ~o/o~o, where COD is the rate of decay 
by heat diffusion of the characteristic density and entropy fluctuations and 

COD = 2AK 2/pCe (4) 

Here A is the thermal conductivity, Cp is the specific heat per unit mass at 
constant pressure, and K is the inverse correlation length. Eden et al. 9 
improved the theory by compensating for the assumption that the dispersion 
was small compared to the low-frequency velocity. We now review their 
expressions for sound velocity dispersion and attenuation for a general 
Fourier-transformed correlation function 

G(k, K) = K'-2f(k/K) (5) 

where k is the wave number and "0 is the critical exponent introduced by 
Fisher. 28 The attenuation per wavelength ax and dispersion are given by 1~ 

a, = aU(~o)/2~rw = 27rA(T)U2(CO)K(OK/OT)~I(w*) (6) 

u-z(0) - U-  Z(~o ) = 2A ( T)K (oK~or)s2j(~o*) (7) 

A (r)  = (kBT3/2~rzp 3) U-4(O)Cv2(Op/OT)~ (8) 

Since CO* is very roughly proportional to CO le-2, small values of ~o* corres- 
pond to the low-frequency hydrodynamic region, while large values corres- 
pond to the high-frequency, nonhydrodynamic region close to Tc. Almost all 
the frequency and temperature dependence of the velocity and attenuation 
is expressed in terms of functions of the single variable ~o *. These functions, 
I(~o*) and J(w*), are given by definite integrals over the scaled wave number 
x = k/K: 

Io ~ r , ,12 w*K(x)  
I(w *) = dx Lxgtx )] " o o ~ x )  (9) 

fo 
oo (1) * 2  

J(to*) = dx [xg(x)]2~o,Z+K2(x ) (10) 

The function g(x) is related to the logarithmic derivative of the correlation 
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function G(k, K) by 

g ( x ) = l - ~ - +  x dr(x) (11) 
2 2f(x) dx 

and K(x) is the Kawasaki function 31 defined in terms of the decay rate of 
fluctuations of wave number k, 

C(k, ~) = (A~ ~/pG,)K(k/, ,)  = ko~oK(k/,,) (12) 

Kawasaki has calculated an explicit form for K(x) in the OZ approximation: 

Ko(x) = �88 + x2 + (x 3 -  1/x) arctan (x)] (13) 

However, when the effect of the nonlocal high-frequency shear viscosity is 
taken into account, 3~ the behavior of K(x) at large x is considerably 
modified. From Fig. 3 of Ref. 30, we have inferred the following functional 
form for K(x), which reproduces the calculated values to within 1% for 
x < 3 0 :  

K(x) = Ko(x)[1.055 a + (0.93 + 0.29 loglo x)a] 1/a (14) 

with the fitting exponent a = 13. The effect of other corrections to K(x), 
such as vertex corrections 31 and the departures from the OZ correlation 
function, 32 are much smaller, and do not have a significant influence on the 
integrals l(w*) and J(w*). Even the shear viscosity correction 3~ changes 
these integrals by less than 10% for any value of ~o* 

Once the form of the correlation function f(k/K) is specified, the 
functions I(w*) and J(oJ*) may be computed via Eqs. (9)-(14). These can 
then be compared with the reduced attenuation and dispersion: 

crx[2vrA(T)U2(to)K(OK/OT)~] -1 = I(to*) (15) 

[u-Z(0) - u-z(w)][2A(T)K(OK/OT)2] -1 = J(w*) (16) 

Evaluation of K(Ok/OT) 2 and the thermodynamic quantities in A(T) 
is quite tedious in general. ~1 On the critical isochore, however, several 
simplifications occur. First, (OK/OT)s = (OK/OT)v and K = Koe ~, so that 

3 2 3 u - - 2  
K = K 0 v  - - e  ( 1 7 )  

s r~ 

K0 will be treated as an adjustable fitting parameter. Furthermore, the 
expected divergences of Cv and U(0) -2 cancel, so that A (T) is finite and at 
most cusped at To. We have used the data of Refs. 25, 19, and 24 to compute 
A(T), and find that it decreases by about 15% from Tc to e = 10 -1, mainly 
because of the increase of (OP/OT)v in Eq. (2) as e increases. 
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The computation of to* via Eq. (4) requires knowledge of #Ce and A. 
The fact that the second term of the expression 

pCp = pCv + T(OP/OT)~KT (18) 

dominates close to Tc due to the strong divergence of KT allows us to 
estimate 

pCp - 9.5 x 1048  -3, (j/m3_deg) (19) 

with the exponent 3' = 1.18, using the data of Refs. 24 and 25. 
The thermal conductivity A presents more of a problem since the 

measurements 33 of this quantity in 3He have not particularly focused on the 
critical region. If the singular and background terms in the thermal conduc- 
tivity are separated in the form 

A = Aoe-~+~ + Aback (20) 

it is clear from the measurements that the background term is not insignific- 
ant in our temperature range, and cannot be neglected. The background 
term Aback can be estimated to be (1.55 +0.1)x  10 -2 W/m-deg. With 3 ' -  
v = 0.55, we estimate Ao = (8 + 4) • 1 0  - 4  W/m-deg. Considering this uncer- 
tainty, it seemed better to use Ao as a second adjustable parameter in the 
analysis of the acoustic data. Finally, we use this expression to compute to*: 

t o ,  ~ 2 2v topCe/[2Koe (Aback + A0e-'r+~)] (21) 

where we use Eq. (19) with 3' = 1.18, Aback = 1.55 X 1 0  - 2  W/m-deg, and Ao 
and Ko as adjustable parameters. 

We now proceed to the comparison of the reduced attenuation and 
dispersion [Eqs. (15) and (16)] with the definite integrals I(o9") and J(to*) 
calculated using different forms of the correlation function. The simplest 
choice is the OZ form 

foz  = 1/(1 -{-X 2) (22) 

goz = 1/(1 +X 2) (23) 

with ~/= 0 in Eq. (11). Since the OZ form is expected to break down for large 
x, the integrals I(to*) and J(to*) will not represent the data well for large 
values of to*. Accordingly, we have fitted the data only for values of to* less 
than a maximum value to*max. 

A nonlinear weighted least squares program was used to determine the 
best values of the two parameters Ko and Ao [see Eqs. (17) and (20)]. All 
other parameters were held constant; in particular, the exponent v was set 
equal to the hyperscaling value ( 2 - a ) / 3 = 0 . 6 3 .  The attenuation and 
dispersion data were always fitted simultaneously to ensure the self-consis- 
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Fig. 4. Fit of the reduced attenuation and dispersion data to the integrals J(o)*) and I(o)*) 
of Eqs. (9) and (10). The solid lines represent the integrals using the classical Ornstein- 
Zernike correlation function, and the dashed lines use the truncated Fisher-Langer 
correlation function as adapted from the paper by Bray. 2~ 

tency of the fits to the data. A typical fit to the O Z  correlation function, with 
O~*ax ---- 6.5, is shown in Fig. 4. The consistency between the attenuation and 
dispersion data is excellent for * * w <~o . . . .  and the fit to the calculated 
integrals is also good in this region. The agreement  of the dispersion and 
at tenuation is to some extent a justification of the extrapolated calculation of 
U(0) used to calculate the dispersion close to To. The fit values of the 
parameters  Ko = 3.89 x 1 0  9 m - 1  and Ao = 1.11 x 10 -3 W / m - d e g  are consis- 
tent with expectations: first, Ko should be nearly the same for all fluids, 34 
about  5 x 109 m -1, and second, Ao is consistent with our earlier estimation 
f rom heat conductivity data, A -- (8 • 4) x 10 -4 W/m-deg .  From the change 
in the quality of the fit with different values of the parameters  Ko and Ao and 
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taking into account the correlation of these variables, we estimate that the 
possible error in Ko is 10% and Ao, is 30%. 

Ohbayashi and Ikushima 35 have measured both the intensity and 
linewidth of the Rayleigh-scattered light near the critical point of 3He. From 
the intensity experiments they find u and K0 as presented in Table IIIB. 
From their reported value of the high-frequency shear viscosity, one can 
compute Ao -- (5 + 2) x 10  - 4  W/m-deg. A direct comparison of these results 
with ours is difficult because of the different values of u, but the agreement is 
not very good. 

For different values of the upper limit W*ax of the least squares fit, the 
values of Ao and K0 change slightly, as summarized in Table IIIA. Attempts 
to fit the data with a still higher cutoff lead to a progressive deterioration of 
the fit for o9" < 1, reinforcing the belief that the OZ form does not describe 
the data in the nonhydrodynamic region o9" >> 1. It might be argued that the 
decrease in reduced absorption very close to Tc and predicted by the OZ 
correlation function is obscured in this experiment by gravity effects. 
However, we feel that this predicted decrease should be large enough 
sufficiently far from Tc that it could not possibly be masked by density 
inhomogeneity. A similar argument holds for the velocity. For instance, at 

TABLE IlIA 
Parameters Found in Various Acoustic Experiments in 3He 

K0 X 109, Ao • 10 -3, Correlation Quality of 
--1 v m W / m - d e g  O~max* function used fit for ~o* > 10 

0.595 3.31 0.95 ~ O Z  Fair 
0.63 ~ 3.86 1.08 1.5 O Z  Poor 
0.63 ~ 3.89 1.11 6.5 O Z  Poor 
0.63 a 3 .99 1.26 30. O Z  Poor 
0.63 ~ 3.9 1.1 oo T F L  2~ Very poor 
0.63 a 3 .89 1.00 ~ Shown in Very good 

Fig. 5 

"The hyperscaling value u = 2 - a  is assumed. 

TABLE IIIB 
3 Parameters Found in Light Scattering and Thermal Conductivity Experiments in He 

K0 >< 10 9, Ao X 10 -3, Experimental 
u m -  W/m-deg technique Ref.  

0 . 5 9 + 0 . 0 4  2 . 1 + 0 . 8  - -  Rayleigh scattering 35 
intensity 

0 . 5 8 •  4 . 2 •  1.7 0 . 5 •  Rayleigh linewidth 35 
- -  - -  0.8 • 0.4 Thermal conductivity 33 
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e = 2 . 5 x  10  . 4  the predicted attenuation and velocity at 1 .0MHz are 
0.145%p/wavelength and 70.6m/sec,  respectively, rather than the 
observed values of 0.247 %p/wavelength and 71.9 m/sec. These differences 
are well outside the errors ascribable to density inhomogeneities. 

As a final attempt to use the OZ form of the correlation function, we 
allow the exponent v to be adjustable in the course of the least squares fit, as 
well as Ko and Ao. The best values of these parameters fitting all the data are 
v = 0.595, Ko = 3.31 x 10 9 m -1, andAo = 9.51 x 10  . 4  W/m-deg.  This fit is, of 
course, much better in the high-frequency region, but there are still serious 
discrepancies. Also, the data in the low-frequency region do not fall on a 
single curve as well as with v = 0.63. This fit value of v = 0.595 does not 
reflect a departure from the scaling law 3v = 2-o~, but only the futility of 
trying to fit the data in the extreme nonhydrodynamic region to the OZ 
correlation function. This value for v seems to be quite close to that found by 
the experimenters in xenon. 8-1~ 

The task now is to find a functional form for the correlation function 
f(x) in Eq. (5) that better represents the acoustic data, particularly in the 
high-frequency region to* >> 1 where the contributions to the definite integr- 
als I(to*) and J(to*) come primarily at large values of x = k/K. Hence it is the 
large-x behavior of f(x) that is of greatest concern. The asymptotically 
correct form of f(x) for x >> 1 was suggested by Fisher and Langer18: 

fFL(X) = C~x -2+~ (1 + CRX-~ + C3x-1/" + . . .) (24) 

where p - (1 - a ) / v  and where C2 must be greater than zero. Throughout this 
paper, we use the notation of Bray. 2~ However this form breaks down badly 
for x < 1. Bray has recently computed 2~ an approximation to the correlation 
function for all x, based on a truncation of the Fisher-Langer limiting form 
(TFL). This calculated correlation function fTFL(X) as tabulated in Ref. 20 
duplicates the OZ correlation function to within 0.1% for x << 1, and with the 
exponents v = 0.638, a = 0.086, and ~/= 0.041 and parameters C1 = 0.909, 
C2 = 3.593, and C3 = -4 .493 it agrees with the fFL(X) to within 0.04% for 
x >20.  

To calculate the integrals I(to*) and J(to*) from this correlation func- 
tion, we have obtained gTFL(X) by differentiating an analytic approximation 
to the tabulated fTFL(X) in the range 0.2 < x  < 20. The definite integrals are 
evaluated from gTFL(X) by Gaussian quadrature. Unfortunately, since 
gTFL(X) passes through zero and becomes negative at x = 10.3, the factor 
[XgTFL(X)] 2 appearing in the integrals also reaches zero at this point. This 
results in a minimum in I(to*) and an inflection in J(to*) at to*~  10 3, as 
shown in Fig. 4. Thus, these calculated integrals do not describe the data 
better than those using the OZ correlation function. In fact, the fit is worse! 
In general, any correlation function that approaches the Fisher-Langer 
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form for large x will produce a root in gTFL(X) for some intermediate value of 
x, because gTFL(X) calculated via Eq. (11) from fFL(X) is negative for large x 
when C2 > 0. This function is given by 

-pC2x-P - ( C d v  )x-1/~ 
gFL(X) = 2(1 + CzX -p + C3x-I/~) (25) 

This root in g(x) is responsible for lower values of I(~o*) and J(oJ*), resulting 
in a poorer fit than with goz(X) and the agreement with the experimental 
data is poor in the intermediate region 10 <oJ* < 10 3. However, the asymp- 
totic behavior of the Kawasaki-Mistura equations using the Fisher-Langer 
form [Eq. (24)] for ~o*>>10 3 is identical to the general prediction of 
Kawasaki, namely 

O~ A OC g--3~ ~ ~.-~--g0(.O 0 and AU OC e-~162 ~ ~ e ~ 1 7 6  (26) 

The approximate relation is reasonable since a is very small. These predic- 
tions are qualitatively consistent with acoustic experiments in Xe, 11 4He,Z 
and 3He as well as Brillouin scattering experiments in Xe. 13 However, the 
failure of the Fisher-Langer form to give even the same qualitative form for 
the dispersion and attenuation as observed in the intermediate frequency 
range is not understood. Certainly in the Fisher-Langer asymptotic form 
[Eq. (24)] C2 must be positive for thermodynamic reasons. 36 t 

We_now introduce an empirical form for f(x), which we denote by 
fa (X), namely 

fA (X) = (1 +x2)-1[1 - C'2x -p exp (C2/x)]  -1 (27) 

This form was taken because it gives a smooth behavior for the derivative 
ga (X), from which the integrals l(oJ*) and J(oJ*) are computed, 

g a ( X )  = 1 1 , p "q- Ct2X - 1  
-~Czx- P (28) 

1 +x 2 [exp (-C'2/x)] - C'2x-" 

This form reduces to the OZ form [Eq. (23) for small x. For large x, the form 
is similar to the Fisher-Langer form with only the dominant term, if we 
identify C2 with C~. However, our best fit gives C~ = -0.46 and hence our 
empirical form should not be identified with the Fisher-Langer expression. 

In Fig. 5, we compare the various forms for xg(x) used to fit experimen- 
tal results. First, we show the OZ form [Eq. (23)]; second, the truncated 
Fisher-Langer (TFL) form as derived from Bray's correlation function; 
third, the form as obtained by Tartaglia and Thoen from their fit to the xenon 
data (Xe), and finally, that obtained from a fit using Eq. (28) in the present 
tThe constant C2 and its sign are found to be closely related to the amplitude of the specific heat 
singularity, which has to be positive. The signs of the higher order terms C3, etc., are not as 
definite, however. 
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Fig. 5. A comparison of the function xg(x) from Eq. (11) obtained from 
various models. ( ) Ornstein-Zernike [Eq. (23)]. ( - - - )  Truncated 
Fisher-Langer (TFL) derived from Table 5 of Ref. 20. ( - . - )  Fisher- 
Langer but with C2 = -0.63, as constructed by Tartaglia and Thoen (Xe) 
in their Fig. 1. (- -~). Function constructed in this paper (3He) with C2 < 0, 

= 0.0 to fit the He data. 

work (3He). The fit of theory using Eq. (28) is shown in Fig. 6. Perhaps it is 
not coincidental that the same function g(x) gives excellent agreement for 
both dispersion and attenuation. It is clear that in order to give a good fit, 
xg(x) has to be larger than the OZ form for intermediate values 5 < x < 100. 

Analysis of the acoustic and optical data in xenon has been carried OUt 16 

in terms of the Fisher-Langer form. In that analysis, a different sign 
convention than in other work 18'2~ has been chosen for the constants C2 
and (173 and this has apparently led to confusion, particularly in references to 
earlier work.~ The Fisher-Langer asymptotic form, containing only the two 
correction terms with C2 and C3, was smoothly joined to the OZ form. This 
composite function was used to fit the Xe data over a wide range of x. 16 The 
coefficients C2 and C3 must then be looked upon as empirical parameters 
and cannot be given theoretical significance. Hence, the form taken by 
Tartaglia and Thoen to fit their data is in reality empirical and not related to 
Fisher-Langer, especially because they found C2 to be negative. 

A value of v = 0.60 was used in the analysis of the xenon data, which 
seems to be too low, since the hyperscaling value is v = ( 2 - a ) / 3 =  
0.625 + 0.005, taking o~ = 0.125, 38 and the three-dimensional Ising model 
series expansions 39 give v = 0.638 + 0.002. This choice of v = 0.60 accounts 
to some extent for the drop of the experimental reduced attenuation for 

tRef. 16 quotes Fisher and Aharony 21 as reporting C2 ~ - 2  and C3 ~ 3 (in our notation!), which 
are the incorrect signs. 
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~o*> 10 in Fig. 8 of Ref. 11. However, the choice of u = 0.63 subsequently 
used in analysis by Sarid and Cannell (Fig. 6 of Ref. 37) does not seem to 
alter drastically the shape of the data profile. In 3He, as well as in 4He, there 
appears to be no maximum in the reduced attenuation data plot. 

Very recently Sarid and Cannel137 presented a new analysis of acoustic 
and optical data in terms of the Kawasaki and the Mistura theory. In their 
comparison, they used the form for xg (x) used by Tartaglia and Thoen under 
the label "Fisher-Langer," and our remarks made above also apply to their 
paper. One of the principal results of Ref. 37 is that when taking the best 
values available from optical and thermodynamic sources--that is, not using 
adjustable parameters--to calculate the attenuation and dispersion, 8 there 
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is a disagreement by a factor of about two between experiment and theory. 
In 3He and 4He the values of Ko and A obtained elsewhere might not be as 
reliable as in Xe, yet the K0 values obtained from a fit are consistent with 
those of other fluids. Hence, our experiments at this time cannot prove nor 
disprove the conclusions in Ref. 37. 

5. CONCLUSION 

We have presented data of the acoustic attenuation and dispersion in 
3He at megahertz frequencies and we have analysed the results along the 
critical isochore in terms of the Kawasaki theory as extended by Mistura. For 
this analysis we used the available measurements of thermodynamic quan- 
tities but were hampered by lack of accurate information on the singular part 
Aoe -v+~ of the thermal conductivity. In fitting the theory to our experi- 
ments, the free parameters were taken to be Ao and K0, the amplitude of the 
inverse correlation length. The exponent u was taken to be 0.63, the 
hyperscaling value. 

We have elaborated considerably on the form of the fluctuation correla- 
tion function and its logarithmic derivative g(k/K), the latter entering 
prominently in the Kawasaki formulation. We discussed the fit of the theory 
using the classical Ornstein-Zernike (OZ) function, that by Fisher and 
Langer (FL), and the truncated Fisher-Langer function (TFL) as proposed 
by Bray. In the last two functions, we were especially concerned with the 
"universal" constant C2 (in Bray's notation), which has to be positive for 
very direct physical reasons. 

Our results can be summarized as follows: 
1. In the low-frequency regime, characterized by o9" =O)/O)D < 10, 

where OJD is a characteristic thermal diffusion rate, theory for both attenua- 
tion and dispersion can be fit very well to the 3He data using the OZ 
correlation function. The same parameter values for Ko and A0 fit both 
experiments, and these values are consistent with expectations. The same 
analysis has been carried out for 4He with similar conclusions, as discussed in 
the appendix. Comparison with light scattering experiments show good 
consistency in Ko with Tominaga's data in 4He, but only fair agreement with 
those of Ikushima's group for both 3He and 4He. 

2. The analysis for 3He has been extended into the intermediate 
frequency regime o)*<103 by using the TFL function of Bray. It was 
discovered, however, that a satisfactory fit with the positive C2 was not 
possible. 

3. An excellent fit for 3He over the whole frequency range was, 
however, achieved for both attenuation and dispersion when an empirical 
form for xg(x) was used, the leading term of which corresponded to C2 
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negative--an unphysical assumption. Hence, the Fisher-Langer form with 
C2 > 0, combined with the Mistura theory, is not in agreement with the data. 
A similar empirical function xg (x) was obtained for xenon by Tartaglia and 
Thoen, who, however, had claimed agreement with the Fisher-Langer form. 
Although no such analysis has been made for 4He, the great similarity of the 
reduced attenuation and dispersion data to those of 3He strongly indicates 
that a fit will also be equivalent to having a negative Ce in the Fisher-Langer 
form. 

Thus the question is brought up as to why the experimental data in fluids 
give worse agreement with the Kawasaki-Mistura theory using an improved 
decay correlation function by Fisher-Langer than using the classical 
Ornstein-Zernike form. The empirical function xg(x) that is required to fit 
the data in the high-frequency region is substantially different from the 
presumably correct Fisher-Langer form for-values of the variable k/K > 1. 
We conclude that the mode-coupling theory in its present form is unable to 
account for the acoustic data in the high-frequency region. We hope that the 
existing experiments in fluids will stimulate research to clarify this problem. 

We fnally mention that no analysis of the data has been made at 
densities other than the critical one, because of the uncertainty in the 
thermal conductivity data. Such measurements are planned in the near 
future, after which we intend to return to complete the analysis of the 
acoustic data. 

APPENDIX.  REANALYSIS OF THE 4He ACOUSTIC D A T A  
NEAR THE LIQUID-GAS CRITICAL POINT 

In Ref. 2, the acoustic dispersion and attenuation on the critical 
isochore near the 4He critical point was analyzed using the modification 9 of 
the Kawasaki-Mistura 1'~5 theory, but without taking into account the 
nonsingular term Aback in the thermal conductivity [see Eq. (20)]. The 
singular part Asing = A0e-~+~ was implicitly assumed to be much larger than 
Aback for all temperatures, while in fact we estimate that this is true only for 
e < 5 x 10 -3. Hence the background term is likely to be important in 4He, 
especially relatively far from Tc. Here we reanalyze the previously published 
data. Only the OZ correlation function, Eqs. (22) and (23), will be used, 
however. 

The reduced attenuation and dispersion are calculated as in 3He, using 
Eqs. (15) and (16). The thermodynamic velocity U(0) is found from Ref. 3, 
as shown in Eqs. (2a) and (2b) and in Table I of Ref. 2. The quantity A (T) is 
assumed to be constant close to Tc, because 

U2(O)Cv = ( Tc/p2)(OP/OT)~, ~ const (A1) 
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This gives 

A (T) = (kBTcpc/27r2)(OP/OT)v 2 

Using the thermodynamic parameters 4~ 

Tc = 5.189 K, Pc = 0.0696 g/cm 3 

(OP/OT)o=oc = 1.727 x 10 s j/m3-deg 

we find 

(A2) 

A (T) = 8.5 x 10 -33 m/see 2 

For the reduced frequency o9", we use 

oCe = 1.54 x 10-3e-~' j/m3-deg 

with , /=  1.18, derived from a combination of data of Cv, (OP/OT) o, pc, and kr  
via Eq. (18). As in the 3He analysis, we set 

A = Aback Jr- Aoe-V+~ (A3) 

However, there are no thermal conductivity data in the critical region of 4 H e  

to estimate Aback from. Hence, in the absence of better information, we 
e s t i m a t e  Aback from the relation 

Aback(Pc, Tc)= A(p = 0, To) +6A (A4) 

where A(O =0, To) is found to be 1.05x 10 -2 W/deg-m from the low- 
pressure data of Ubbink 41 and Kerrisk and Keller, 33 and 6A is estimated to 

TABLE IV 

The Parameters Obtained from a Least Squares Fit of Acoustic Dispersion and 
Attenuation in 4He Near the Liquid-Gas Critical Point 

Dispersion data Attenuation data 

(-0 max 
used  in Ko • 10 -9, A 0 • 10 3, K 0 x 10 -9, Ao • 10 3, 

fit u m -1 W/m-deg m -1 W/m-deg 

1.5 0,72 9.7 4.0 9.2 4,4 
4 0.66 6.7 2.2 6.4 1,9 

10 0,63 ~ 5.5 1.65 5.4 1,33 
15 0,62 5.2 1.5 5.1 1.2 

aHere z, was fixed at 0.63. 
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be 2.5 x 10 -3 W/deg-m based on the density dependence of the background 
thermal conductivity of 3He,  which increases about 25% from p = 0  to 
P = Po Thus 

Ab,r To) = 1.3 • 10 -2 W/deg-m (A5) 

There is a systematic discrepancy between the OZ model and this 
experiment for ~o* > 5. This causes, as in 3He, a systematic dependence of 
the free parameters upon the upper limit o~*ax of the data used in the fit. 
Three free parameters (v, K0, and Ao) were used for a fit of the dispersion 
data for a variety of values O~*ax and their values are listed in Table IIIA. The 
variation of the exponent v with different values of OJ*ax indicates that it is 
not possible to find the "best" value of v by fitting to the OZ correlation 
function. However, we do n o t  find within the range of acceptable fitting the 
value of v = 0.54 reported in Ref. 6. To reduce the number of free parame- 
ters, we fix v at the scaling value of v = 0.63. Then, with O~*ax = 10, we obtain 

Ko = (5.5+ 1.0) x 10 9 m -1 

Ao = (1.65 + 0.3) x 10 -3 W/deg-m 

The estimated errors do not take into account possible uncertainties in 
v, Aback, or in any of the other input numbers. 

For the attenuation data, where a smaller range of frequencies was 
covered, we have assumed the same values of v found from the dispersion fit 
for a given O)*max. The results for the remaining free parameters Ko and Ao are 
given in Table IV. Generally, they are in close agreement with those from 
the dispersion fit, which indicates an encouraging consistency between the 

TABLE V 

Comparison of the Parameters from Acoustic Experiments with Those from Light Scattering 
Data in 4He 

KoXl0 -9, Ao• 
--1 v m W/m-deg Method Ref. 

0.63" 5.5 1.65 Acoustic This work 
dispersion 

0.62 + 0.1 4.4 + 1.2 - -  Scattering 5 
intensity 

0.59 + 0.02 1.4 • 0.4 - -  Scattering 4 
intensity 

0.54 • 0.05 2.8 • 0.6 - -  Scattering 6 
linewidth 

0.67 • 0.02 2.9 • 0.2 - -  Scattering 42 
intensity 

"Used as input; when v is used as a free parameter, we obtain the values shown in Table IV. 
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Fig. 7. The reduced dispersion and attenuation, as calculated from Eqs. (15) and (16), in 
He. The solid lines represent the integrals I(to ) and J(~o ), found by assuming the OZ 

correlation function. The parameters used in each graph are u = 0.66, Ko = 6.74 x 109 m -1, 
and Ao = 2.23 x 10 -3 W/m-deg.  The low-frequency dispersion data o fBarmatz  3 are also 
shown. These graphs may be compared to Figs. 6 and 7 of Ref. 2; the closer agreement in the 
present fit is evident far from To, where the background term in A is significant. 

two types of experiments. Figure 6 shows a representative fit with the same 
parameters, for both dispersion and attenuation. The quality of the fits is not 
markedly different for the various choices of to*ax in Table IIIA. These fits 
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should be compared with Figs. 6 and 7 ,of Ref. 2. See Fig. 7. Note that the 
low-frequency dispersion data of Barmatz 3 are now in substantially better 
agreement with ours. Hence the scaling fit covers the impressive range from 
14 kHz to 5 Mt-/z! 

Our values of the resulting fit parameters are compared in Table V with 
those from light scattering experiments, 4'5'6'4~ and we note the good agree- 
ment for Ko with the result by Tominaga 5 and the consistency with K0 found 
in other f luids.  34 
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