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Starting from the equation of Gor'kov and Eliashberg in a form introduced by 
Eilenberger, we derive a set of linearized equations for the deviation from the 
equilibrium value of the quasiparticle distribution function as well as of the 
order parameter. These equations resemble the Boltzmann equation and the 
Ginzburg-Landau equation, respectively, and they form a set of coupled 
equations. Two different modes can be distinguished, depending on whether the 
order parameter changes in magnitude or in phase. The equations are solved 
for the case of a stationary quasiparticle injection into a superconductor and 
the change in the electrochemical potential of the quasiparticles is calculated. 
Furthermore, we treat the problem of a current flowing perpendicular to a 
superconducting-normal interface in which a normal current is converted into 
a supercurrent, and we calculate the extra resistance of the interface. 

1. INTRODUCTION 

From the very beginning, the BCS theory t has been successful in the 
explanation of dynamic processes such as electromagnetic absorption, 
attenuation of ultrasound, and, in particular, nuclear spin relaxation. These 
(and many related) processes are characterized by the fact that they can bc 
explained entirely in terms of quasiparticles and that changes in the order 
parameter do not need to be taken into account. 

Later, many phenomena were found where changes in the order param- 
eter play a prominent role. Vortex motion, for instance, is a well-known 
example of such a case. Many investigations, both experimental and theoreti- 
cal, have been devoted to this subject.* In this connection, the question 
arises of how quasiparticles recombine to Cooper pairs; this problem has 
been dealt with. *'s Also, the relaxation of the pair density is a related problem, 

*We cite here only two of the m o r e  recent  publicat ions,  2'3 in which fur ther  references m a y  be 
found. 
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which has been investigated theoretically 6 and experimentally. 7 The same 
is true as regards nonequilibrium stationary states that are obtained by 
application of intense electromagnetic radiation. 8'9 Finally, we mention 
the observation 1~ 2 of finite voltage differences in a superconductor. This, 
in particular, has stimulated the present work. 

The model on which the following calculations are based is a super- 
conductor where the electrons interact, mediated by phonons, and where 
impurity scattering is large. We will assume that the phonons are in an 
equilibrium state of definite temperature, and that the deviations of the 
electronic system from equilibrium are so small that a linearized theory is 
applicable. This may be so in many cases of practical interest ; it also allows 
the classification of various modes. When dealing with specific situations, we 
restrict the discussion to the vicinity of the transition temperature. There, we 
may easily single out the modes that involve the order parameter since the 
characteristic times become infinite at a second-order phase transition. 

In Sections 2-4 we present the theory in a form most convenient for the 
present purpose (and also, very likely, to many others). Essentially, the theory 
is based on the work of Eilenberger 13 and Eliashberg. 14 In Sections 5 and 6 
we treat the stationary processes in which injected quasiparticles and a 
normal current are converted into a supercurrent. In Section 7 we solve 
some simple time-dependent problems and discuss the physical interpreta- 
tion of the various quantities and results of the theory. 

2. THE EILENBERGER EQUATIONS 

The approximate momentum independence of the electronic self- 
energies allows us to simplify considerably the Gor'kov equations, which 
we consider in the modification introduced by Eliashberg. ~s It was noted 
first by Eilenberger ~3 (and independently by Larkin and Ovchinnikov ~6) 
that these equations can be presented in terms of a contracted matrix 
Green's function* 

A '  i f  (co'  r', _~) Gp(~O,o~ ;r) = de G o~, ;r  + ~ , r  - e x p ( - i p r ' ) d 3 r  ' (1) 

and that this Green's function is normalized 

{Gp(r)~p(r)}~,~,, = (l/T) 8o,,~,,. ~ (2) 
which we have written in a form using the short-hand notation 

{AB}o,~ = T E  A(~o, ~,")B(~", o;) (3) 
o}" 

*We follow the notation of Refi 16. Discrete Matsubara  frequencies will be denoted by r a/, etc. 
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The resulting equations can be simplified further in the dirty limit 
Tcz i << 1, which we consider exclusively in the following. Following Usadel, 17 
we introduce the angular average 

~(co, ~ ' ;  r) = co'; r) (4) 

and obtain the fundamental equation 

{[toe 3 + it) + i,Eph + (1/2zs)~3(~3,8]},o,o, 

= D{[V - ieA'~ 3, GEV - ieA'~3, (~]]},oo,, (5) 

Here D = vZzff3 is the diffusion coefficient, z s is the spin flip time, A is the 
vector potential, and ~, are the Pauli matrices. The perturbation is denoted 
by 0,  which, for instance, in the case of an electric potential, is given by 
eqS. ]'. Furthermore, the electron-phonon interaction contributes the self- 
energy 

~ph(fD, (.0' ; r) = ire2 T ~ B(~)(~(~o + ~, co' + ~ ;  r) (6) 

where gb 

B(co) = j (d~)p,/4zOD(p - p'; oJ) (7) 

is the angular average of the phonon Green's function normalized such that 
B(0) = - 1 .  The dimensionless interaction constant 2 is also known to 
measure the mass enhancement. 

In a state of equilibrium, the solution of Eqs. (5) and (6) is of the form 

(~(e)((D) --'~ 0~(O-))'~ 3 a t- fl((D)'~O; s ) = p(r-O)? 3 + tr(co)'~ 0 (8)  

where 

~0 = [exp ( -  iO~3)J~ (9) 

and 0 = 0(r) has been chosen such that fl is real and positive. We will have 
0 -- 0 in most of the cases we consider later. Due to the normalization, we 
have ~ 2 +  f12_ 1. In a homogeneous superconductor (0 = 0) without 
paramagnetic impurities, ~t and fl are of the form 

~(co) = a~(~2 + ~ ) - ~ / 2 ;  fl(co) = ~(~2 + ,~2)-~/2 (I0) 

where (3 = co + ip and A = i~. 

3. THE LINEARIZED B O L T Z M A N N  EQUATION 

In the presence of a perturbation of frequency ~o o, there is a linear 
response 
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in the Green's function as well as in the self-energy. In a straightforward 
way, one obtains from Eqs. (2), (5), and (6) a set of linear, inhomogeneous 
equations for these responses. 

Since these equations are given in the Matsubara representation, one 
must exercise particular care in changing over to the real frequency form. 
Letting o9 0 --- - i f~  + 0, o9 = - i E -  if2/2, we denote the real frequency 
quantities by fide and 6 ,~.  According to Eliashberg, 14 these quantities 
can be written as the sum of a retarded, an advanced, and an anomalous 
part as in the following example :* 

E - f~/2 6d~ tanh E + ~/2 - -  + 6 d ~ '  (11) a(~ e = 6(~  tanh 2T 2T 

Then, the anomalous part of Eq. (6) assumes the following form : 

f dE' R . 6g~ I= in). ~ i [ B  ( - z E  + iE') - BA( - iE  + iE')] 

x coth 2-T tanh 6(~) 

+ a .  4 r cosh  2 [6~.~ + 6 ~ ]  (12) 

where terms of the order f~2 have been omitted, since it will be assumed 
that the changes evolve sufficiently slowly in time. Furthermore, corrections 
of the order f~/T to the first term of Eq. (12) have been neglected. We empha- 
size that in the stationary (but nonequilibrium) case f~ - ,  0, ~E~ depends 
only on 6 ~  "~. This means that there is a closed set of equations involving 
only anomalous quantities. 

In many cases, the linearized equations have such a symmetry that it 
is advantageous to distinguish two modes : 

(T) O GQ T,'~0+r~/2 ; (~GE = aei + bE~o+,/2 
(13) 

(L) 0 ~ ~3,%; 6Ge = aE~3 + b~o 

Since in the complex plane the change in the order parameter is perpendicular 
and parallel to its equilibrium value, we will refer to the modes (T) and (L) 
as the transverse and longitudinal modes, respectively. A further important 
property is that a~ xl is an even and a~ Lt is an odd function of energy. 

*In principle, a term (6G~ + 6G~) should be added to the right-hand side of this equation. 
However, there is no use to add such a term in the case of contracted Green's  functions, where 
allowance already has to be made for corrections that are necessary to compensate the inter- 
change in the order of frequency and momen t um integrations. Note that, in the present defini- 
tion, the external frequency enters in the symmetric form. 
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The normalization provides a definite relation between aE and b E. As 
far as the anomalous parts are concerned, this relation assumes the forms 

(X) b~' = -iJ~2(E)a~'/Jfi(E) 
(14) 

(L) b~E a' = + i~2(E)a~a'/~r 
The quantities .J~ and ~s are various combinations of ~ and ft. For  instance, 
~/i (g) = 1 R y[~E+n/2 - ~-n/2] .  In the following, however, we will assume that 
f2 is sufficiently small that it may be neglected in these combinations. Then 
,A; i and ~s are the real and imaginary parts of~ and fl as given in the following 
relations : 

.... ~I(E) + i . ~ I ( E ) - - ~  -- --(~xA) * 
(15) 

.:U2(E) + i~2(E) = fl~ = (fl:~)* 

Note that ~:i are even and Mj are odd functions of the energy variable E, 
and that .A:~ is the normalized density of states in a superconductor. For 
illustration, let us consider the homogeneous case and the case where 
i/~ s -- O. Then Eq. (I0) holds, and for energies less than the Debye energy, we 
have with sufficient accuracy 

(b~(A~ = --i(1 + 2)E + ( - ) l / 2 r E ;  AE = (1 + 2)A (16) 

The inelastic collision time zE is approximately independent of E in the range 
]E] < T, which, i r a  << T, is the range in which we are most interested. Then 
the functions ./v~ and ~s take the form shown graphically in Fig. 1. 

Considering the definitions (1) and (11), we recognize that - �88 GE)~ 
is the change in the quasiparticle density of one spin direction and per unit 
energy range. Since, at ~) = 0, the contribution �89 R - a A] [ - �89 tanh (E/2 T)] 
has to be considered as being due to the change �89 - a A] in the 
density of states, we conclude that the anomalous part of (6(~t)~, is pro- 
portional to a change fife in the quasiparticle distribution function. Since 

Fig. 1. JV~(E), the normalized density of 
states in a superconductor (solid line), 
.Ar2(E) (dashed line), and ~2(E) (dotted 
line) as defined by Eqs. (15) for Az~ = 5. 
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N(O)Aq is the unper turbed  density of  states, we have 

fife = -a~ea)/4Ar~(E) (17) 

We remark  that  this change is measured relative to the Fermi level of the 
equil ibrium state. 

F r o m  the anomalous  part  of Eq. (5), one can construct  a Bol tzmann 
equat ion for the quasiparticle distribution fifE, which, though it differs in 
detail in the transverse and in the longitudinal  modes,  is of the same general 
structure. Due  to its importance,  we present it here explicitly, replacing - if~ 
by O/&, in the following form :* 

dl/'~(E) aYE - K ( b f )  - P~ - Q~ = h e (18) 

Here the contr ibut ion of the per turbat ion �88 ~j]}~a~ has been denoted 
by PE" The quant i ty  h~ is essentially the commuta to r  of the last term of 
Eq. (12) propor t ional  to (&~R + 3~A) with d(el. It will be discussed in the 
next section. The  collision integral is of the following form : 

f ~(E - E') 
K ( b f )  = - 27r d E ' c o s h  ( E / 2 T )  cosh (E ' /2T)  sinh [(E - E ' ) /2T]  

E' 
,19, 

where 

#(E) = - #( - E) = ( i2/4n)[BR(--  iE) - BA( - iE)] (20) 

is the effective phonon  density of states.t  The further quantities depend on 
the mode,  as follows. 

(T)  Transverse  Mode .  Here 

Xg~T'(E, e ' )  = ~](E),/ff~(E') + ~2(E)dt'2(E') (21) 

and 

Q~V, = _ 2[A[,A/I(E) 6 f  E 

{V e aA} (22) + div 1) ~'{r~(E, E) 6re + 4Tcosh  2 ( E /2T )  

(L) Longi tudinal  Mode .  In this case 

~/(L)(E, E') = J V ~ ( E ) ~ ( E ' )  - .~2(E)~2(E') (23) 

*Actually, the term ,~t6fE carries a factor (1 + 2) originating from renormalization effects. Since 
it is not of particular importance, we have dropped this factor. 

tln the Debye model, we have It = A[EIE, such that the inelastic collision time TE = 
[28rt~(3)T3A]- 1. 
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and 

Q~LI = div D ~J/JtL)(E, E) VofE (24) 

There are also contributions to QE quadratically in 6A, which are important 
if the electromagnetic field amplitude is sufficiently large or if it is applied to a 
state with a large static supercurrent velocity. In the latter case. furthermore. 
there is a possibility of a coupling between transverse and longitudinal 
modes by a contribution to QtT~.tL~, which is of the form 

-T- div 2D [V0 + 2eA],A2~ 2 6f(L~,(T~ 

Concerning the properties of the coll.,_'sion integral, we note that it is a sym- 
metric operator with respect to the quantity [cosh 2 (E/2T)] 6fE and that it 
conserves the parity. Furthermore, y dE K(6f) = 0. In the case A = 0, K(6f) 
becomes equal to the collision integral of the linearized electron-phonon 
Boltzmann equation of a normal metal in which the phonon distribution is 
fixed to its equilibrium value. 

In the longitudinal mode, the stationary Boltzmann equation (18) is 
rather of a type one expects; the collision integral K(LI(,~f) has already been 
discussed by Bardeen et al.18 The most important feature of the Boltzmann 
equation of the transverse mode is that there is the term 21AJ, t2(E)6fE which 
acts as a local source or sink of quasiparticles. However, the total number 
of quasiparticles is still conserved, as we will show later. 

4. THE LINEARIZED, TIME-DEPENDENT GINZBURG-LANDAU 
EQUATION 

We derive here an equation of motion for the change 6A in the order 
parameter, which represents, as we shall see, the regular parts of 6(~. This 
equation and the Boltzmann equation (18) form a coupled system in the 
general, nonstationary case (fl # 0). 

Considering the regular quantities, we define, for instance, 

60~"((~ ~ ~[fiG~-z,, if co < 0  (25) 

and obtain the following relation : 

6~,("(02) = ig2 T ~ B(o) - e)') 6(~(r~(o) ') 
o"  

i~2 f dE' 'E' - f~ + + [6~. + 6~,,] 
4~/n/B(o) t )4Tcosh 2 (E'/2T) 

f dE' +ire2 ~i~iB(~o + iE') 66~ ~) (26) 
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Due to the smooth dependence of 6~. (" on the frequency (the range of varia- 
tion being given by the Debye energy), we may evaluate certain frequency 
sums in the same way as in the BCS theory. In Eq. (26), for instance, we 
substitute in the first line 

T ~ B(o - o') ~ T ~ ( - 1 )  
~' Io,,l<oc 

Furthermore, the integrands in the second and third lines contain factors 
which become small at larger energies E', so that we are allowed to replace 
B(o9 + iE') there by ( -  l) without any restriction. 

Thus it is consistent both to put 

(6'Z"~)12 = - i (1  + 2) 6A (27) 

and also to neglect the diagonal elements of 6~ "), if we are not interested in 
normalization effects proportional to the factor (1 + 2). Hence Eq. (5) 
allows us to express 6G Irl as a function of 3A. Furthermore, this expression 
depends on ~ only quadratically, which means that we are allowed to 
neglect this dependence. In the next step, 60 al thus obtained will be inserted 
in the self-consistency relation (26); and from the off-diagonal component 
one obtains the following equation :* 

7r - 1  6 
8-~[c~l + 2ie@A] = 3(A, A*, A)N(O) 6A* FGL (28) 

where F~L is the Ginzburg Landau free energy functional, and where the 
operation 6(A, A*, A) means linearization with respect to A, A*, and A. 
Furthermore, 

2e~0 = (8T/glAI) ~ dE' fiR 6fE, (29) 

The real and the imaginary parts of ~b are connected with the transverse and 
longitudinal modes, respectively. It can be shown that ~ is transformed by a 
gauge transformation in the same way as the electric potential q~. 

Equation (28) is reminiscent of a time-dependent Ginzburg-Landau 
equation, which has been proposed previously by Schmid) 9 There the 
quantity ~ was introduced phenomenologically, whereas here it is directly 
connected to the change in the quasiparticle distribution. 

We proceed to calculate hE, which couples Eq, (18) to Eq. (28). The result 
is 

4Tcosh 2 (E/2T) iei~ 6A(~) 
(30) 

~ 2 ( E )  elO ~/~(L) 
hELl = 4Tcosh 2 (E/2T) 

*Here we neglect second-order perturbations, as considered, e.g., in the next section. 
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Also, we calculate the current density in the linear approximation. As far 
as a general expression appropriate to the dirty limit is concerned, we refer 
to Ref. 16. The terms arising from retarded and advanced quantities yield 
the supercurrent density, in which the dependence on Y~ can be neglected, 
whereas the anomalous parts form the normal current density. Explicitly, 
one finds 

6j~ = 6(A, A*, AIj~L (31) 

where JGL is the supercurrent density of Ginzburg and Landau ; and 

f F '1 : E ) _ _  , L + - ( 3 2 1  
.) [ ~ t c o s n  (E/2T) e 

Again, we have omitted terms that arise when a static supercurrent is 
present. As far as the charge density is concerned, we obtain 

@= 2eN(O){fdE~,~ ;(E)6fE-e~b} (33) 

Note that the Boltzmann equation and the time-dependent Ginzburg- 
Landau equation together imply the continuity equation @ + div 6j = 0. 

5. SHIFT OF THE CHEMICAL POTENTIAL 
BY QUASIPARTICLE INJECTION 

The methods developed in the preceding sections are applied here to a 
type of experiment performed first by Clarke 11 and discussed by Tinkham 
and Clarke. 2~ A quasiparticle current I N is injected via a tunnel junction 
from a normal metal (N) into a superconductor (S), and creates there a non- 
equilibrium quasipartiele distribution. If the area of the junction is sufficiently 
large, and if the thickness of the superconductor in the region adjacent to it is 
small enough, we can consider this distribution to be spatially uniform, and 
neglect any normal current flow in the superconductor. Furthermore, we are 
interested in a stationary situation, which means that the Boltzmann equa- 
tion (18) is decoupled from the Ginzburg-Landau equation (28). The converse 
of this statement is not true. It follows from the Ginzburg-Landau equation 
that the quasiparticle distribution causes a supercurrent to flow such that 
charge neutrality is maintained. 

The change in the quasiparticle distribution is detected by a probe (P) 
consisting of a normal metal coupled by a second tunnel junction to the 
superconductor. In particular, the voltage V e is measured that is required to 
reduce the current to the probe le to zero. 

The difference in the electrochemical potentials/2 N - /~ s  = e Vu between 
normal metal and superconductor shows up in the tunneling Hamiltonian as 
an extra time dependence. We start from the following transformation for 
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the field operators of normal metal and superconductor : 

= ~j(0 exp ( - i#jt) 

where H is the full Hamiltonian of the decoupled system. We recognize that 
the most convenient operators ~(t) can be used if allowance is made for an 
extra time-dependent factor. As usual, we neglect the momentum dependence 
of the transfer matrix element, for which we write TsN and TNs for short. Then, 
in the system of notations used, for instance, in connection with Eq. (5), the 
tunneling Hamiltonian corresponds to the perturbation 

~I r = fflsN + fflNs = TSNexp(-- ieVN'~3t  ) + TNsexp( ieVN~3t  ) (34) 

To first o rder , /4 r  does not lead to a change in the distribution function 
of the superconductor. Hence we retain the second-order contribution, which 
arises effectively from the perturbation 

= - irrNN(O)fftSNdNFtNS (35) 

Since GN(~o) = z3 sgn o,  we have in the Matsubara representation 

CJ(o.~, o9') = - inl TNsI 2 N N(O) 

x �89 + ~3)sgn (~o - o.)  - (i - ~3)sgn (o - co.,)] (36) 

where oJ - ~o' = 03. + o. , .  When performing the analytical continuation, we 
have to put co. = - ieV N + 0 and ~o., = i eV N + O. From this we find that the 
inhomogeneous term PE of the Boltzmann equation assumes the form 

1 2 E + e V  N tanh (37) 
p~rl= ~nNN(O)ITNs] ./t';(E) tanh 2T 2T J 

in the transverse mode, and 

1 
p~L, = 2 n N  N(O) I TNS[Z 4,~ (E) 

E E + e V  N tanh E (38) 
x 2 t a n h f ~  - tanh 2T 2-T ] 

in the longitudinal mode. Note that we have normalized I TNsl2 such that it 
refers to the unit volume of the superconductor. Hence I N = 2N(0)~"~ dE Pe, 
where ~ is the volume of the superconductor in which quasiparticles are 
injected. 



Linearized Kinetic Equations and Relaxation Processes of a Superconductor Near T~ 217 

When calculating the current flowing from the superconductor to the 
probe, we encounter the quantities G>(t, t ' ) =  -i(~(t)(k+(t '))  and G < = 
i(~+(t')~(t)). After Fourier transformation, the corrections to the equili- 
brium value of G "~ can be related to the various parts of 6(~ E as follows : 

?SG~ = 2~v,_,~x'a--(a'~,tl -+ f ( T  E)[6G~ - 60a~]~ (39) 

From this we obtain in linear approximation 

Ip = I G'sP' f dE~ + 6fE (40) 

Here the probe has been assumed to be in equilibrium, and G ~se~ is the normal- 
state conductance of the junction between superconductor and probe. We 
remark that only the transverse mode contributes to the current.* 

A stationary solution of the Boltzmann equation (18) which is in the 
transverse mode and spatially uniform (and where the phase 0 = 0) is 
obtained as follows. Integrating this equation with respect to the energy, we 
find that 

1 
2A 2N(0y/7.1N (41) 

From this we conclude that, at a given current, 6fE becomes arbitrarily 
large as A goes to zero. Hence the proper form of P~ will be irrelevant in this 
limit. An inspection of the Boltzmann equation shows that 

1 ~4~(E) 
6JE = 4Tcosh 2 (E/2T).+~(E) + 2AzEA~2(E) r/ (42) 

In deriving this relation, we have neglected the contribution Jv~(E)Jt/2(E' ) to 
.#(E,  E'), and also we have assumed that the collision rate 

2rt/~(E - E') cosh (E/2T) . . . . . . .  
1 = dE, sin~a [_ ~ -- 7EV)/2T] co~sh ( E ' / ~  ~4't(r" ) (43) 
/'E 

is not changed appreciably if the factor A~(E')[~.t,~(E') + 2Are.A'~(E')]-1 is 
inserted in the integrand. Introducing the integrals 

J, = (1/~l) f dE.~tq(E)afL-; d 2 = (1/q) f dE~t2(E)aft. (44) 

where dfis given by Eq. (42), we define a relaxation time 

r n = J1/2kJ2 (45) 

*Furthermore, one can show that the zero-current voltage P;, at I e = 0 should not change 
noticeably if the probe becomes superconducting. 
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If A << T, we have J1 = 1. Then we obtain from Eq. (40) and Eq. (41) 

eV  e = r~IN/2N(O)~ (46) 

This relation agrees with Refs. I I and 20. A further meaning of r R will be 
discussed in Section 7. 

In a homogeneous superconductor,  where 1/r s = 0 and where ~ j  take 
the form shown in Fig. 1, we find 

J2 = (n/8TzE)[1 + (1~2ARE)2] -1/2 (47) 

provided that A << T and that r E is independent of E in the range of interest. 
The largest contribution to J2 comes from the energy range from above A to 
several A's. This is even more the case if paramagnetic impurities are added. 
Under this circumstance, JV 1 can be replaced by 1, and JV 2 by the expression 

AF 1 1 
JV~(E) = E2 + F2; F = -- + - -  (48) 

rs 2rE 

Strictly, this form is valid only in the gapless case. However, since the center 
energy range is of no importance, it also applies to the present situation. If 

T >> A(FrE) 1/2 (49) 

we can put cosh z (E/2T)  = 1 in Eq. (42), and obtain J2,  from which we 
deduce the following relaxation time : 

r .  = ~A/2r! 1 + 2 - ~ A  (50) 

Note that this result includes Eq. (47). 
In the case of inelastic phonon scattering, Tinkham 2~ has obtained the 

result r R = 0.57[A(O)/A(T)]r E, whereas here we have r R = 0.73[A(O)/A(T)]r e. 
The two expressions are rather close, but the ratio rR/r E they predict does 
not agree so well with measured values of r~ 11 and independent measure- 
ments of rE .21 However, one should keep in mind that rE tends to decrease 
in an impure metal. 22 

We emphasize that the result of this paper is derived rigorously from 
the microscopic theory, and there has been no need to make assumptions 
on the interpretation of the relevant quantities. On the other hand, Tinkham's  
identification of states with k > k v and k < k v as particle and hole states, 
respectively, is correct only in the normal metal. According to Gor 'kov,  2a 
the particle and the hole states have positive and negative energies, respec- 

,2 tively, to which the probabilities u 2 and v k are assigned. 
We mention that another difference in the quasiparticle concept of both 

theories should have no influence on the final result. Here the number of 
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quasiparticles coincides with that of the electrons, whereas in Ref. 20 their 
number  is variable and vanishes at T -- 0. These two concepts can easily be 
related by defining in the latter case a particle and a hole distribution of 
positive energy which are connected with the present distribution function as 
follows : 

Jp(E) = f E ;  fh(E) = 1 - f -E :  E > 0 (51) 

Evidently, 

2N(O) dE ~A~ i dJ~ = 2N(O) dE ~A/i 6(fp - fh) 

is Tinkham's  branch imbalance Q. 
Consider now the case A 2 << F/T E. Then r R = 2T/~zA 2 is independent 

of F and z E, and this result holds if ZR >> ZE" Furthermore, the quantity 
defined by Eq. (29) is, in the transverse mode, equal to the electric potential ~b, 
This follows from the form of J2, and also from the condition of approximate  
charge neutrality, which means that 6p of Eq. (33) is zero. Therefore we con- 
clude that the time-dependent Ginzburg-Landau  equation of Ref. 19 applies 
to the case under consideration.* 

6. R E S I S T I V I T Y  O F  A S U P E R C O N D U C T I N G  N O R M A L  
I N T E R F A C E  

An extra resistance arises when a current passes perpendicularly an 
interface where a normal metal and a superconductor are in metallic con- 
tact. lo,12 Since the current may be assumed to be steady, all time derivatives 
vanish in the Boltzmann equation. The electromagnetic potentials, being 
proportional to ~ and A, also disappear. 

However, the presence of an electric potential becomes manifest as a 
boundary condition for the distribution 6fE in the normal metal. There we 
have - K(Sf)  = D V25fE. This homogeneous equation has a solution of the 
form JfE = [ 4Tcosh2 (E/2T)]-Itl ,  V2~/= 0. Evidently, the charge density 
is zero if q = e~b. Therefore we require that in the normal metal 

1 
6fE = 4T cosh 2 (E/2T) e~b ; Verb = 0 (52) 

If  there is a proximity effect, this boundary condition holds in a region far off 
the interface. In the following, we assume that the superconductor and the 
normal metal occupy the half-spaces x > 0 and x < 0, respectively, and that 

*This result reduces the range of applicability of the model considered in Ref. 23, where the case 
A << F << T has been studied without taking into account inelastic phonon scattering. 
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the current is flowing in the x direction. Then in the normal metal 4~ = 
- E o X  + 4~o. 

Since by Eq. (52), 6fE is an even function, the response of the supercon- 
ductor is in the transverse mode. Hence 

d ~rl d 
_K~TI(bf) = Q~I= _2AsV2(E)af e + D~xJ I (E,E)~xbfe (53) 

where we have used Eq. (22) for ~Er~(r), which holds since there is no super- 
current (0 = A = 0) in the unperturbed state. This equation is similar in 
structure to one discussed in the preceding section and the second term of 
Q~rj plays here the role ofP~ r~ there. Therefore, close to the transition tempera- 
ture, the energy dependence of 6fe is the same as the one given by Eq. (42). 
From this, we deduce the following differential equation for the quantity r/: 

D d f ,~ ~/l~r~(E, E) d ~4~ 2Ad2q dx a J z ~  (E~2T) d~ ~ + 2Ar~sV2 q (54) 

In the above expression, Xz(E) has, for energies sufficiently large as 
compared to A, the same asymptotic behavior as it has in the case of electron 
scattering at paramagnetic impurities, as we will show below. Furthermore, 
it will be assumed that Y2(E) can be replaced by an expression of the form 
(48) in the whole energy range. Even if there is locally an energy gap, this 
assumption can be justified by the fact that the center energy range contributes 
less to the integral J2. Then we may substitute 1/~R for 2AJ2, where ~s is 
given by Eq. (50). As far as the integral on the right-hand side of Eq. (54) is 
concerned, we realize that, if inequality (49) is satisfied, the region A(FzE) 1/2 < 
E < T contributes most to this integral. There, .:q = 1, $2 = 0, and we 
obtain for Eq. (54) the following form : 

(l/rR)r/ = Dr/" (55) 

where r/" = dZr//dx 2. 
In equilibrium, the spatial dependence of the order parameter can be 

found from the Ginzburg-Landau equation. Close to the transition tempera- 
ture, where the coherence length {aL is large, we may assume that A vanishes 
continuously at the interface. Hence, 

~A(T) tanh(x/21/2~oO if x > 0 
A(x) (56) /o otherwise 

Now, from Eqs. (2) and (5), it follows that 

~ / ~ - l X c ~ = l  , , ~2 /~2 ~ D ( ~ / ~ ) ,  + = 1 (57) 
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where a = e(~o; x), etc., and  where (neglecting renormalizat ion) ,  ~ = ~o + 
(1/2rE) sgn o). Consider  the case Jcol >> A, such that  ~ = sgn co. Then fl is given 
by 

1/2 j dx'  exp [-(21(o]/O)l/2[x - x'[]A(x') (216~1D) 

A DA" 
+ (58) 

-J~7~l 2 ~  2 

We perform the analytical  cont inuat ion o 9 - ~ - i E  +-0 and, considering 
Eq. (48), we realize that  the identification F = 1/2z E - DA"/2A can be made.  

Fo r  convenience,  the dimensionless  variable t = X/21 /2~L  is introduced. 
Thus  Eq. (55) assumes the form 

where A 
7~'(3)/~ 4. 

I 1 + B 2 cosh 2 t ] 1/2 

/~ = A( t anh  2t) sinh 2t  + A2C2(1 + B 2cosh 2t) q (59) 

= [ns/14((3)]~/2(Tje )-  1/2; B = (2/1.76rc)[A(O)/A(T)]A ; and C = 

At x = 0, the dis t r ibut ion 6fE and its derivat ive are continuous.  Hence  
(ao/E o = - q(0)/q'(0). On  the other  hand,  we have to require t/--+ 0 as x --+ ao. 
This fixes the rat io dPo/E o = w~, which is the thickness of  a slab of  no rma l  
metal  having a resistance equal  to the extra resistance R~ of  the interface. 
Therefore  

ws = Re/PN = --t/(0)/t/'(0) (60) 

where PN is the specific resistivity of  the normal  metal.  
Approx ima te  solut ions of  Eq. (59) may  be found in var ious  limiting 

cases. We have also integrated this equat ion numerically.  In a rather  large 
t empera tu re  range, say 0.005 < (Tr - T)/T~ < 0.2, we found that  w s can be 
represented as follows: 

ws = L~GL(0)[(T ~ - T)/T~3 - ~  (61) 

where L and p depend on A as follows : 

A 0.05 0.25 1.0 3.0 
p 0.38 0.38 0.37 0.46 
L 25 7.0 3.0 1.5 

Roughly,  the values A = 0.25 (T~ = 3 . 8 K ;  ~e = 3 • 10-~~ sec) and A = 
1.0(T~ = 7.2 K;  z E = 10 -11 sec) might  be appropr ia t e  to tin and lead, 
respectively. We recognize that  for A < 1 the value of the exponent  p is 
approx ima te ly  constant.  
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On the other hand, ifA is sufficiently large, or if(T~ - T ) / T  c is very small, 
Eq. (59) assumes the form* 

# = C-  l(tanh 2 t)t/ (62) 

This equation can be solved exactly in terms of hypergeometric functions ; 
in particular q(0)/t~(0) is given by a combination of F functions. It turns out 
that 

w s = 1.21~GL(T) (63) 

Hence, we have the exponent p = 0.5 in this limit. 
As far as the experimental results are concerned, we found in analyzing 

the data x2 that p varies in the range 0.2-0.5. In the most recent results, p = 0.22 
and 0.56 for pure lead and for lead with 3.5 per cent bismuth, respectively. 

There are several reasons that may explain this lack of agreement. 
First, the experimental results depend critically on the preparation of the 
junction, since there is a tendency for the formation of an oxide layer. 
Second, the theoretical results have been derived under rather restrictive 
assumptions. These are: dirty limit, neglect of proximity effect, inequality 
(49). Further, the values for the exponent p are comparatively small, such 
that even small side effects may produce a noticeable change in its relative 
magnitude. It should be noted, however, that the exponents of the present 
theory agree better with the experimental results than the exponent p = 5/6 
that Pippard et al. 12 obtained from a phenomenological theory. 

We will discuss shortly the experiments done by Yu and Mercereau, 1~ 
who measured the electric potential 4~ in the superconductor a distance X 
off the interface. Using e~b = t/, we may calculate ~b on the basis of Eq. (59). 
Again, we find in a rather broad temperature range that ~b oc [(T~ - T)/Tr -K. 
For instance, for A = 1, we find ~: = 0.6 and 1.1 for X/~GL(T = 0) = 5 and 20, 
respectively. Though the experiment demonstrates convincingly the existence 
of an electric field in a superconductor, the measured quantity depends on 
several parameters, such that a reasonable quantitative interpretation is 
difficult. 

The equation (28) involving the order parameter is, in the transverse 
mode, equivalent to the equation of continuity and hence it allows us to 
determine the supercurrent, which increases as the quasiparticle current 
decreases. At this point we wish to emphasize the peculiar fact that the 
supercurrent is stationary in spite of the presence of an electric field. In a 
phenomenological way, one may say that the electrochemical potential of 
the Cooper pair is constant though the electric potential varies in space. 

*Observing that q is equal to e4~ (if A << T), we can derive this form also from the equations given 
in Ref. 19. 
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7. DISCUSSION AND CONCLUSION 

Rather to elucidate the meaning of the various quantities introduced 
in the preceding sections than for reasons of practical application, we 
investigate the time-dependent relaxation of a perturbance in a homo- 
geneous superconductor. Anticipating some results of the following dis- 
cussion, we consider the change in the distribution function as due to changes 
in the electrochemical potential ~#E and in the temperature ~ T~ of the quasi- 
particles, which depend on energy, space, and time. In particular 

6/~E --- [ 4Tcosh2 (E/2T)] ~/'~) 
(64) 

•T E ----- [ 4 T 2 E  - '  cosh  2 (E/2T)]  ~f~L) 

.Considering the relation (32) for the normal current, we recognize that 
- ~ A  + (1/e)V/~E is the electrochemical field driving the quasiparticle of a 
given energy level, as it should be. As far as the quantity 6 of Eq. (29) is 
concerned, we note that e6 = 6~L. provided that 6/1 is independent of E (and 
A <(T). Quite generally, the real part of e6 has the meaning of an average 
electrochemical potential of the levels in the range ]E[ < A. For an illustra- 
tion, consider the distribution of Eq. (42), where 8/~E, being constant in the 
range ]El > A, drops to very small values for energies near the center. Thus 
~, = ~/2A~ E is very small. The reason for this behavior is that in the center 
energy range, quasiparticles are converted rapidly into Cooper pairs, i.e., 
into a state where 6/~ = 0, and vice versa. 

On the other hand, when 6 T E = 6T is constant, we obtain, from Eq. (29), 
2ieq = - ( 8 / ~ ) 6 T .  Then from the Ginzburg-Landau equation (28) i t  
follows that the magnitude of A changes by an amount that one expects 
from a static change cST in temperature. 

(T) Consider Eqs. (28) and (29). In a transverse mode that is homo- 
geneous we obtain first 

= -i(8T/Tr) j dE'JV2(E' ) 6fe, (65) 6,4 

and then we substitute this relation by means of Eq. (30) in the Boltzmann 
equation (18). Thus we obtain 

~AJ(E) 6f~ = K(T)(6f) -- 2AJV2(E ) 6fE + 2~+2(E) f dE' JV'2(E' ) 6fE, (66) 
7~ d 

Since J" dE ~ ( E )  = hA, it follows from Eq. (66) that f dE ~ ( E )  6rE = O. 
Another property of this equation is that there exists a stationary solution 
where 6f is of the type (64) with 6/a E = 61t. Then it follows from Eq. (65) that 
the order parameter rotates uniformly in the complex plane. Putting A + 
6A = Ae-~0, we find indeed 0 = 2 6/a. 
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Consider now the decay of a distribution f f  given initially by Eq. (42). 
It differs from the stationary solution discussed above in that a fraction of 
quasiparticles of about A/T is missing from the center region IEI < A. 
Hence quasipart!cles will be scattered in from the outer region at a rate of the 
order (A/T) �9 1/z E. As a consequence, the stationary distribution found above 
is reached in a time roughly given by r E. 

Such reasoning applies only to a homogeneous superconductor that is 
strictly closed. In a real situation, however, the superconductor is most 
probably part of an open system. For  illustration, consider the system of 
Section 5. In this case, the electrochemical potential of the Cooper pairs is 
kept at zero reference level. This means that 6A = 0, and that the last term of 
Eq. (66) vanishes. Then an initial disturbance of the form (42) will decay with 
the characteristic time given by Eq. (50), which is r~  ~ = (4/n)T'ce/A in the 
situation (1/r~ = 0) considered here. Such a behavior follows from the 
arguments used in Section 5 in calculating the distribution fife and the 
relaxation time. 

(L) In the longitudinal and homogeneous mode, Eq. (28) assumes the 
form 

7((3) A z 
+ j de'  2tE'l - 4 n2TzfA (67) 

Since the decay time is of the order "re(T/A), the time derivative can be 
neglected. Proceeding in the same way as above, we obtain the following 
Boltzmann equation :* 

4~r2T 2 1 
~4'](E) ffe = K<L'(ff) 7~(3)A 2 4Tcosh 2 (E/2T) 

• ~2(E) f de' , ~2 (E ' )  f f e '  (68) 

Due to the large factor Te/A 2, the time derivative of the last term dominates 
the other one. Assuming that ffe oc ~2(E)/JV2(E) cosh 2 (E/2T), we recognize 
that in the limit 1/At e << 1, only the scattering out term of K (L~ is important. 
Then the decay time is given byt  

n 3 T 
r~ I = - -  - - r  e (69) 

7~(3) A 

Though the processes are fairly different, the relaxation times of the trans- 
verse and of the longitudinal modes are remarkably close. Characteristic to 

�9 Note that there is no stationary mode of Eq. (68) with 6TE = fiT, since the phonon temperature 
is kept fixed. 

tThis  relaxation time was derived first in Ref. 6, where a different method was used. Note that in 
Ref. 6 there is a misprint such that a factor 8/7~(3) is missing in the final result. 
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both is the divergence oc 1/A for T--* T~. At the phase transition, quite 
generally, a divergence should occur for any mode in which the order 
parameter is involved essentially. 

The transverse mode can be excited by electron injection in a tunneling 
experiment or by driving a current in the direction of a spatial change of the 
order parameter. Essentially, these are processes that tend to change the 
particle density. The longitudinal mode is generally associated with a 
change in the quasiparticle energy. Therefore it is excited by most perturba- 
tions. A superposition of a dc and an ac current, for instance, has been 
proposed in Ref. 6; this method has been used by Peters and Meissner v 
successfully in measuring T~ LI. Irradiation of the sample by electromagnetic 
waves provides other means of excitation. In the case of stationary irradia- 
tion, the distribution function obeys the equation 

0 = K(L~(Sf) + Wo 
4N(0)v 

x t a n h  ~ - t a n h  J / IL ) (E ,  E - v) 4- (v ~ - v) (70) 

where the strength of the electromagnetic field of frequency v is such that the 
power W o would be dissipated in a corresponding normal metal. Such an 
equation, and in particular its generalization, which includes all nonlinear 
contributions, has been derived and investigated by Eliashberg 14'25 and 
Eliashberg and co-workers. 8.26 Several interesting experiments 9 have been 
done in this direction, without, however, comparing the results with the 
theory just mentioned. Apparently without knowledge of the previous 
theoretical work, some authors 2v have treated the same subject on a semi- 
microscopic basis. 

The earliest investigation on the conversion of quasiparticles in Cooper 
pairs was that of Ginsberg and Schrieffer. 4'5 They termed a process that 
changes quasiparticles into pairs a recombination process, and it has been 
thought that it is identical to a transition of a quasiparticle from a state 
above the gap to one below it. Now, in a normal metal, this last process 
corresponds to the recombination of a particle with a hole. Clearly, in just 
half of the electron-phonon collisions the electrons cross the Fermi surface, 
and hence the recombination time thus defined is equal to 2r E at the transition 
temperature, which is certainly not the recombination time of quasiparticles 
to Cooper pairs.* 

*Since the word recombination has been used in such a definite way in the past, we avoid this 
term as much as possible. We do not exclude the possibility that for temperatures T < A, the 
times calculated will agree within an order of magnitude with experiment. On the other hand, 
it will be difficult to separate thermafization and order parameter relaxation processes sufficient- 
ly at these low temperatures. 
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At this point, one should caution against identifying too strictly the 
quasiparticles as defined here with "normal" electrons. The number of 
quasiparticles and the number of Cooper pairs, which one expects to be 
proportional to IA2I, are not always correlated. In the transverse mode, the 
latter quantity is constant, although the number of quasiparticles may change. 
The situation is reversed in the longitudinal mode. On the other hand, in the 
transverse mode a quasiparticle current may vanish and emerge at the same 
place as a supercurrent. 

In conclusion, it can be said that the formalism developed here provides 
the most convenient tool for the investigation of linear nonstationary 
processes in superconductors in which inelastic collisions play an important 
role. 
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