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A general method of investigating the solutions of spin dynamics equations of 
�9 3 �9 �9 �9 superflutd phases of He tn strong magnetic fields ts proposed. The effect of 

longitudinal spin oscillations upon the frequency of precession is taken into 
account. The motion of a spin near singular points at which the longitudinal 
oscillation frequency becomes zero is considered. The formulas derived are 
applied to A and B phases in the open geometry and to the B phase in the 
plane-parallel geometry. 

1. I N T R O D U C T I O N  

The spin dynamics of 3He superfluid phases are well described over a 
wide range of magnetic fields and temperatures by the theory of Leggett, 1'2 
and the interpretation of experiments on the spin dynamics of 3He has 
been reduced to searching for relevant solutions of the Leggett equations. 
However, at present there is no general investigation of possible solutions 
of the system of Leggett equations. To obtain information from this system 
is an independent problem for each particular case. It also should be noted 
that the spin dynamics of 3He superfluid phases are studied by the NMR 
method, which is particularly effective when the motion of magnetization is 
characterized by one or several periods, and the so-called "quasiperiodic" 
solutions are of particular interest. 

In this work we study the solutions of the Leggett equations in the 
region of strong magnetic fields, i.e., when the spin-orbital energy is small 
compared to the Zeeman energy. In this case the motion of magnetization 
is quasiperiodic and the Van der Pol method known in classical mechanics 
enables us to obtain the general form of solutions of the Leggett equations 
asymptotic in the given smallness. Such an approach has already been used 3 
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to account for some features of the pulse NMR experiments in 3He A and B 
phases. But the generalization proposed here seems to be simpler. It also 
permits investigation of more complicated experimental situations, and 
subtle features of the phenomena,  in particular, the effect of longitudinal 
oscillations on the shift of the magnetization precession frequency. 

2. SOLUTION OF THE EQUATION 

According to the Leggett  theory, the equations describing time 
dependence of the total spin S for the considered amount  of helium and 
vector d in the spin space characterizing the structure of the order 
parameter  (for details see Ref. 1) can be obtained using the Hamiltonian 

= (gZS2/2X)- g S H +  U(d) (1) 

Here  g is the gyromagnetic ratio for 3He nuclei, H is the external magnetic 
field, X is the paramagnetic susceptibility, and 

is the energy of the spin-orbital interaction, arising as a result of the 
interaction of magnetic dipole moments  of He 3 nuclei. The ratio of this 
energy to the Zeeman energy can be characterized by the parameter  
~'~2 2 2 = wjl/o)i., where wll is the frequency of longitudinal magnetization oscil- 
lations and wz. = - g l H [  is the Larmor  frequency. We shall consider the 
region of temperature  and magnetic field such that 112<< 1. This is a rather 
wide region, since 112-+0 at T ~  Tc and 1 1 2  1 / H  2. Not very large fields 
are already strong in this sense; thus, at H = 600 Oe 112< 1/400 in the 
whole region of the A phase and 11~ < 1/50 for the region of the B phase. 
However ,  one cannot use too strong a magnetic field (>> 1 kOe) without 
going beyond the range of applicability of the Leggett  theory. 

Let  us transform the Hamiltonian (1) to dimensionless variables S ' =  
- g S / x H  and t ' =  toLt; then it may be rewritten in the form 

g '  =~15'2 - -  S'z + U'(d) (1') 

The z axis is oriented in the opposite direction to the field H. Below we use 
dimensionless variables only and the primes will be omitted everywhere. 

The Hamiltonian obtained has the form of that of a charged top placed 
into a magnetic field and in the field U(d), with S having the sense of the 
angular momentum vector of the top measured in the frame of reference 
rotating with the Larmor  frequency around the z axis. In the chosen units S 
coincides also with the angular velocity of the rotation of the top around its 
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own axis. In the case of superfluid He  3 the system of vectors d is rotating as 
a solid " top"  with the angular velocity S. In the absence of a field U, the 
vector S would perform a regular precession with the Larmor  frequency 
around the z axis and would thus remain constant relative to the system of 
reference rotating around the z axis with the Larmor  frequency. The 
presence of U leads to a slow variation of S due to the smallness of l) 2. As 
has been shown in Ref. 3, (see also Appendix A), for a slow variation in S 
relative to the rotating axes, the average orientation of S relative to the top 
is an adiabatic invariant, i.e., it changes more slowly than the vector S itself. 
We have employed this fact, writing the kinetic energy in the Hamiltonian 

1 - 1 ~  S (1), following Leggett, in the form gs2/2X instead of 5gX~k a~ k. In the 
experiments the system of vectors usually has enough time to be oriented 
at the initial moment  so that the direction of S would correspond to 
maximum susceptibility. As a result, this orientation remains during the 
large time intervals we are interested in (usually t - 1/f~2). 

The conservation of the orientation of S relative to the " top"  is a 
restriction which reduces the number of variables involved in the problem. 
It is convenient to choose S - I S  I and Sz as canonical momenta  and con- 
jugated angles 3' and a as coordinates, The angle 3" is the angle of rotation 
around the direction of S, and the angle a is the angle of rotation around 
the z axis. The value of d(t) at the moment  of time t is related to the value 
at t = 0 by the rotation matr ix/~ : 

d (0  = R(~,/3, 3") d(0) (3) 

The Eulerian angles a,/3, 3" are defined according to 

/~(a,/3, 3") = / ~  (ot)/~, (/3)/~z (3") (4) 

It is assumed that at t = 0, Sllz; then the angle/3 is an azimuthal angle of the 
vector S, i.e., cos/3 = Sz/S, and the angle ot is the polar angle of the same 
vector. In what follows we derive differential equations for S and Sz, and 
the chosen initial condition is not essential. Only the orientation of S 
relative to the system of vectors d is of importance. After substitution of (3) 
into the expression for energy U(d) it turns out to be dependent  on a, % 
and S J  S. 

The canonical equations for the Hamiltonian (1') have the following 
form: 

s =  -arUa3", q=s+av/os 
(5) 

Sz  = - 0 u / a a ,  ~ = -l+au/aSz 

Since U - f ~  2, it is seen from the equations that there are two "slow" 
variables S and Sz and two "fast"  variables a and 3/ in the problem. To 
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obtain the first term in the asymptotic expansion of solutions of system (5) 
in f12 by the Van der Pol method, system (5) should be averaged over 
periods of fast motions; this procedure differs for two cases: (1) the 
" resonance"  case, when IS - 11<< 1; we shall consider the region IS - 1 1 - ~ ;  
(2) the "nonresonance"  case, when I S -  11-  1. 

Let  us first consider the resonance case. From system (5) it is evident 
that from two fast variables a and 3 /one  slow variable t~ + y - &  can be 
formed. Performing a canonical transformation with the generating 
function F = oL(P+S)+ TS, we pass to new coordinates $, a and to the 
corresponding momenta  S - 1  and P =  S z - S .  In these variables the 
Hamiltonian has the form 

~ =  �89 1 ) 2 - P +  U(a,  &, P / S )  (6) 

Now this Hamiltonian is averaged over the period of the fast variable a ; as 
a result we have 

~ ' =  �89 - 1 ) 2 - e +  V(q~, P / S )  (7) 

where V-= 0,  the bar denotes averaging. Two pairs of motion equations 
correspond to the averaged Hamiltonian: 

= - 3 V/a~, & = S - 1 (8) 

P = 0 & = - 1 + 0 WOP (9) 

In the right-hand sides of the equation for ~ the term 0V/aS is omitted, 
since, in accordance with the character 'of the approximation, S is known to 
an accuracy of f~2. This means that for times - l / l )  2 the error in S already 
will be as much as 0 2, i.e., of the same order  as O V/OS. In other  words, 
within the approximation used in this case V depends on P, and and not on 
P/S.  According to the first equation of system (9), P is the integral of 
motion. For given P, system (8) has stationary solutions S = 1, ~b = ~bs, 
where ~bs are the roots of the equation 

0 V(~,, P)/ar = 0 (10) 

For deviations of $ and S from the stationary values, system (8) describes 
harmonic oscillations with frequency 

Stationary solutions with a2V/a&=< 0 are unstable. Provided 4~ and S 
have stationary values, then according to the second equation of system 
(9), S is precessing with the frequency 

o~. = - 1 + o v(~,, e)/oe ( 1 2 )  
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Such conditions can be easily realized experimentally, since, the time 
for the spin to relax to the stationary value is less by a factor of the order  of 
magnitude f~2 than that of the., spin relaxation to the equilibrium value. 4 

Provided 4~ and S oscillate near their stationary values, then in the 
right-hand side of the equation for 02 there are, due to the dependence of V 
on 4>, terms varying with the frequency of longitudinal oscillations. In this 
case for the total separation of motions with different frequencies it is 
necessary to pass to action-angle variables (see, for instance, Ref 9). Since 
a is the cyclic coordinate, then P should not be substituted. As the other 
momentum action one should choose 

J =  ~-~ ~ ( S - 1 ) & b =  ~ - ~  {2[~+ P -  V(4~, P)]}a/2dqb (13) 

In order  to find the frequencies characterizing the motion, one should, 
in accordance with the standard procedure,  express the energy ~r through 
and 7 9, and differentiate ~ over J ;  this yields oJii, and, correspondingly, 
differentiation of ~ over P yields oJ• The procedure can be carried out 
explicitly for small oscillations, when 

v(4,, P)~ v(4,~, P)+~ 
32V. 
2-~, z (4 - 4s)  2 (14) 

z 0q> 
In this case 

and correspondingly, 

[ 32 V'~1/2 
= 4 \ ~ )  + v(4s, e ) - e  (is) 

oll = (O 2 V/O~b2) 1/2 (16) 

w• = - 1 + (0 V/OP)4, + J  dOOll/OP (17) 

A comparison of (17) with (12) shows that because of vibrations there 
arises a correction to the precession frequency which is proportional to J .  
This correction, like the second term of (12), is of the order  of f~2. It also is 
small due to the smallness of the vibrations. For this correction to be 
measurable, vibration should exist at least for times larger than 1/f~ 2. 
According to estimates, 1~ the longitudinal vibrations decay over a time of 
the order  of (1/f~a)wr. So one must either use the region where rot << 1, or 
support the vibrations by an rf field. 

3. A P P L I C A T I O N  TO A A N D  B P H A S E S  

The motion of spins in a strong magnetic field thus may be described 
once the averaged dipole energy is known. This energy for each particular 
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case is found directly with the help of (2) and (3) and by the averaging 
procedure.  The form of the averaged energy depends both on the structure 
of the phase and on the initial conditions; more exactly, it depends on how 
the axis around which it rotates is oriented relative to the " top ."  As an 
example, we present here the formulas for V, toll, and to• in the A and B 
phases for the case when at t = 0 the system is oriented by the external field 
only and is in equilibrium. This case for • = 0 has been already consi- 
dered 3'5"6 in connection with interpretation of pulse NMR experiments in 
superf luid 3He.7"8 In the A phase 

~ �9 + p \  2 1 p 2 
(18) 

and for the stable stationary solution ~b = 0, S = 1 in accordance with (16) 
and (17) 

WAll = �89 (P + 2) (19) 

wa• + 1 = - ~O~ (4 + 3P)  +JC~A/2 (20) 

In the B phase 

2 1 ~ [ 1  + P +  P COS ~b] 2 (2+7) (21) 
~bs = 0 will be a stable stationary point at - 2 ~< P ~< - 45- with characteristic 
frequencies: 

oJ,,,= I ~ , [ 8 ( P +  2 ) p + 5  ]a/z (22) 

16 2 / 5 13 8 1/2 
om• ] (23) 

and for - 45- ~< P ~< 0, accordingly, cos C~s = - (P + �89 + 2) with frequencies 

tOBII = ~'~B(I "k 4P)  1/2 (24) 

w~• + 1 = 2Jl~B/[5(1 + 4P/5) a/z] (25) 

For ~r = 0 these formulas coincide with the corresponding formulas of Ref. 
3 taking into account that the definition of P here differs in sign from that 
employed there. In some formulas of Ref. 3 the terms - - l )  4 are retained, 
which exceeds the accuracy. 

The case of more complicated initial conditions is considered in 
Appendix B. 



So lu t ion  o i  Spin  Dynamics Equations 515  

4. S I N G U L A R  P O I N T S  

As may be seen from the previous section, the frequency of small 
longitudinal oscillations at some values of P becomes zero. In the neigh- 
borhood of such points the dependence of toll and to• on jr  and P cannot be 
described any more by formulas (19), (20), (22), and (23) and further 
investigation is required for determining this dependence.  Here  we 
consider only cases which are realized in A and B phases under the same 
initial conditions as in Section 3. 

(a) In the A phase there is only one singular point P = - 2 .  At this 
point the dependence of the potential VA on ~b vanishes. Since in this case 
all derivatives of VA with respect to ~b become zero, we are not able to use 
the expansion of VA in powers of ~b - ~bs. Fortunately,  for the potential VA 
determined by formula (18) the problem of determining toll and to. may be 
solved at any values of jr  and P. The action is defined by an integral of the 
type 

jr  = (1/4~ ' )~  (a + b cos 4,) 1/2 d~b (26) 

which is expressed through the complete elliptic integrals, this expression is 
different for a > b and a < b. The difference is caused by a change in the 
character of the motion; this can be understood most easily when using the 
phase trajectories, i.e., the trajectories described by a point in coordinates 
~b, S -  1 with motion of the system (see Fig. 1). 

In the case under consideration a = 2 ( ~ ' + P ) + � 8 8  2 and b = 
1 2 ~ A ( P  + 2) 2. At  a = b the phase trajectory is a separatrix (solid line in Fig. 
1). For  a > b  the phase trajectories (dot-dash lines) pass outside the 
separatrix, and ~b runs continuously through all the values from -~- to +~-, 
and the motion is of a rotational type. In this case 

jr = jrAE(r)/r (27) 

where r = [2b/(a +b)]  1/2 and jrA = (f~A/2Zr)(P+2). Here,  E(r) is the 
complete elliptic integral of the second kind. The above formula deter- 
mines implicitly the dependence of energy ~' on j r  and P. Differentiating 
(27) with respect to jr  and P, taking account of the definitions of a and b, 
we get 

> Zr~A P + 2  
oJLIA 2 rK(r) (28) 

> - 1 (29) to.A + 1 = - - - -  (3P+4)-~ r2 K (  ) 

The system of equations (27)-(29) determines parametrically the depen- 
dence of > and > on j r  and P for jr  > jrA. The straight line j r  = jrA is to [IA to •  
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Fig. 1. Potential energy (bottom) and phase tra- 
jectories (top) in the vicinity of singular point 
P = - 2 .  

the line of  singularities o)IIA and (.Oj_ A in the plane ~r, p.  In o rder  to elucidate 
the character  of  singularities one  should  expand  the equat ions  (27)-(29)  in 
the vicinity of  the singular line in the small value z = ( 1 - r 2 ) / 4  (the 
coefficient ) is chosen  for convenience) .  The  principal terms of  the expan-  
sion are of  the fo rm 

o~/r 1 = Z In 4e/z (30) 

> ~ A ( P +  2) (31) 
WlIA In ( 4 / z )  

r + 1 = -- P +  In ( 4 / z ) J  (32) 
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From the above it is clear that for o ~ " ~ r  > and the term in tO.A 6OlIA 
proport ional  to J tend zero as 1 / ln (~ /~A--1 ) .  When the mot ion takes 
place far f rom the separatrix (fir >>JA, r<< 1) 

> 
o~ nA ~ 4 J  (33) 

6O~A + 1 ~ - �88 + 1) (34) 

For  a < b, & oscillates in the range less than ~-; the phase trajectories 
are closed and lie inside the separatrix (dashed line in Fig. 1). In this case 
instead of system (27)-(29) we have (u = 1/r) 

• / 2 J A  = (u 2 -  1 )g  (u )+ E(u ) (35) 

< = �88 + 2) /K(u )  (36) 6o IIA 

6o ~_a + 1 = - I o ~ [ P  + 2(P + 2)E(u) /K(u)I  (37) 

This system defines o)tl and w• at J in the range 0~<~ ~< 2~A. I t  should be 
noted that since this range overlaps with the region described by formulas 
(27)-(29), two values of 6oll and 6o• correspond to each value of J in the 
range ~ A < f l  < 2 JA at given P. For or  0 the system (35)-(37) leads to 
formulas coinciding with formulas (19) and (20) for small vibrations. In the 
vicinity of the singularity ~ = 2,r the expansion similar to (30)-(32) has 
the form 

1 --p/2~.r~A -----  Z In 4e/z  (38) 

< "n'~').A(P + 2) 
O) IIA = (39) 

2 In (4 / z )  

_.~_.. [ 4 ( P +  2)1 
OJ~A + 1 = -- P-~ In (4 /z ) J  (40) 

The main terms of the expansion in the small value z are retained. Without  
violating the accuracy of the above formulas, one may add terms of higher 
order  with coefficients chosen so that for ~ ~ 0 correct values of the 
frequencies < < 6OlIA and 6o• are obtained. Thus interpolation formulas 
describing relevant  frequencies in the whole range 0 ~<,r ~< 2~A can be 
obtained. G o o d  formulas are obtained, provided that in (38), In (4e/z) is 
substituted by In [4e (1 + z) /z] ,  and, accordingly, in (39) and (40), In (4/z)  
by (d/dz){z In [4e(1 + z)/z]}. 

(b) In the B phase at f l  = 0 there are two singular points, P = - 2 and 
P=-45-.  The  point P = - 2  has the same character as in the A phase. 
Expanding VB in the vicinity of this point in ~" -= P + 2, we get 

l i b  = - -  }[l~((1 + cos ~b ) (41) 
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For this potential the action has, to an accuracy of the coefficient and with 
the definitions of a and b, the same form as in A phase: 

~r = (1/27r)~ ( a '+  b' cos ~b) 1/2 &b, (42) 

where a ' =  2 g + 2 ~ ( 1  +~l)zB) and b ' =  4 2 ~[la(. Proceeding in the same way as 
before,  we obtain for a ' >  b' 

J =JBE(r)/r (43) 

Now r = [2b'/(a'+ b')] l/2 and JB = (4IIB/~r)(~() 1/2. Correspondingly, 

> rrll~ (2 .\1/2 
Wll. = r--~-~ \ ~ )  (44) 

2 > 4lIB [ , ,  2, E ( r ) ]  
W.B + 1 =-~--r2 [ i t  --r  )-- ~-r-)J (45) 

For a'<b' and u = 1/r 
J = 2J~B[(u z -  1)K(u)+E(u)] (46) 

< r l'~a 
OJll B =2K(u)(2() 1/2 (47) 

o)~B + 1 = 4fl~ E(u)  (48) 
5 K(u) 

The difference in the dependences of o)IIB and o)• on ( as compared to 
those in the A phase is connected with the different dependences of JB and 
,,CA on ~'. While oCB - ~/'(, J A - -  ~'. The character of the singularity near the 
separatrix is the same as in the A phase and we shall not present the 
corresponding formulas here. For comparison with the nonresonance case 
it would be useful to have a formula for or >>JB: 

2- 
o~11 B ~ (49) 

w• + 1 ~ - 2 ~ 2 / 5  (50) 

(c) At the point P = - 3  the coefficient of expansion of the potential 
VB in small deviations from the stationary value 4)= 0 changes sign. For 
P < - 5, 4) = 0 is the minimum of VB; for P > - 3, 4> = 0 becomes a maxi- 
mum, and in the vicinity of this value two minima arise. For an analytical 
study of this transition VB should be expanded in ~b to terms following the 
quadratic ones near P = -3 .  Having retained the terms that are principal 
with respect to ~b and K -=--P + 35-, we get 

VB(~b, K)= A[ V0(K)- o~K~b2-t- q~ 4] (51) 
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where the value A = 3f~2/160 is chosen so that the coefficient of ~b 4 is equal 
to unity, V0(K) = (16K/3) 2, o~ = 32/3.  In the case #r = 0 the derivatives of toll 
and to_L with respect to P have a singularity at K = 0, analogously to the 
second-order phase transition in the Landau theory. This case has been 
considered in detail in Ref. 3. 

If J # 0, then substituting (51) into (13), we get 

= (1/~)(A/2),/2~ [(~ _ ~ 2)(~ ~)11/2 d~, (52) 

where ~b 2 and ~b~ are the roots of the equation 

(62) 2 -  aK4, 2 -  s + V0(K) = 0 (53) 

with ~: = (~ + P ) / A .  The singularity in the dependence of toll and to• on #r 
and P arises, as in the two previous cases, when the phase trajectory 
coincides with the separatrix. 

The situation ~b22 =0 ,  4) 2 = a K  corresponds to motion along the 
separatrix, as may be seen from Fig. 2. In this case the integral in (52) can 
be easily evaluated and yields the equation of the line in the J ,  K plane 
where the frequencies toll and to• have a singularity: 

(2A)1/2 (aK)3/2 =_ J0(K) (54) 
#r 3~ 

The value of ~r correponds to the area of one loop of the figure-eight in 
Fig. 2. The singularity on the line (54) arises when approaching the separa- 
trix from inside, i.e., from the value ~:<V0(x). On approaching the 
separatrix from the region r  V0(K), i.e., from the phase trajectories 
involving both loops of the figure-eight, the singularity arises on the line 
~r = 2J0(K). No possible motions correspond to values of J lying within the 
range ~%(K)<# r < 2~0(K) at fixed K. A region of forbidden values of ~ thus 
arises for P > - s ,  similar to the separation region at the first order  phase 
transition. The analytical dependence of toll and to• on ~r and K in the 
neighborhood of the point P = -45- can be investigated, as has been done 
above for the point P = - 2 .  The integral in formula (52) is expressed 
through complete elliptic integrals K and E. For ~b 2 > 0 when the phase 
trajectories pass inside one of the loops of the separatrix 

J o  [ 2 _ . ~  K ( q ) ] l  - q2 (55) = (2 - q2)l/2LE(q)- 2 

where q2= ((b2_~b2.)/~b2. Differentiating (55) with respect to J and K, 
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Fig. 2. Potential energy and phase trajectories-~n the vicinity of singular 
point P = - ~. 

al lowing for  the fact tha t  4b 2 +&2  = a r  and  462462 z = V o ( x ) -  ~, we get  

rr [ 2Aax'} 1/2 
w ;  =--K--~ \2_-C---~} (56) 

< [dVo az__.__~K E ( q ) ]  (57) 
oJ_L + 1  =AI_ dx 2 - q  2 K ( q ) J  
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For q ~ 0 formulas (56) and (57) produce the same values of roll and w• as 
do (24) and (25), and when approaching the separatrix y ~ q,2 = 1 - q 2 ~  0: 

- J / J o  = ~ In 16e (58) 1 
14 Y 

ro~ = 2~ (2AaK)X/Z (59) 
In (16/y) 

A[dVo 2~tEK .] 
ro~ + 1 =  Ld-~K In (16/y)J  (60) 

For & 22 < 0 

2o~0 [ 1 - r 2 3 
J = (2r 2_ 1)1/2 [27~_lK(r)+E(r)J (61) 

where r 2= &~/(&~-&2z), and, 
[ ]1/2 

rol~ = ~-~-~ [2(2r 2_ 1)] (62) 

[-~K ~ (r2-l)K(r)+E(r)] 
o > + X = A  --aZK (2-~-~-Z 1)-~-~r ) .] (63) 

On approaching the separatrix r2~1 these formulas transform into 
(y --- 1 - r 2) 

J 3 16e 
2•o l = ~ y  I n - -  (64) 

Y 

ro~ = ~r(2AaK) 1/2 
In (16/y)  (65) 

+ l = d  dr~ 2 2K ] 
I_ dK ln(i-~-y)J (66) 

As follows from formulas (58).(60) and (64)-(66), on approaching the 
separatrix from both inside and outside, toll and the singular part of ro• 
become zero logarithmically. In the limit of high energies (~:- V0)/(aK)2 >> 
1, we get from the system (61}-(63) 

[ ' J r  ]4/3 (30~ 1/3 
rol~ = LK(I-/,,/2)J \ 4  j (67) 

[dVo (E(1/x/2) 1"~( 3~r~ ,~2/31 
ro; + 1=  AL--d-~-K - - a , ~ . .  2 ] \ q ~ K - - ~ / ~  ~ j (68) 

5 In particular, roll and w~ will have such values at P -  -4 .  
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The existence of singular points considered above also helps in under- 
standing qualitatively the reason for the formation of the domain walls in 
the pulsed NMR experiments. 12'~3 In these experiments the tipping of 
magnetization at the angle larger than some critical value leads, after 
relaxation, to formation of the domain walls. This method of domain-wall 
formation can be understood by considering the longitudinal vibrations 
excited when the tipping ac field is turned on and off. 

For  the sake of clarity let us consider the A phase. The potential 
VA(&, P)  has two minima in the interval (-Tr, ~'). The vibration of 4, can take 
place at either minimum. Since the tipping is usually slow, the adiabatic 
invariant J ,  corresponding to vibrations, is conserving, unless it is near the 
critical value JA(P)  [cf.(27)]. JA  decreases as the tipping angle increases, so 
at some angle ~A(P) = J .  At  angles larger than this value the angle ~b can no 
longer be localized at one minimum, but grows monotonously. After 
relaxation takes place, magnetization can relax, due to spatial inhomo- 
geneities, to different minima of VA(qb, P )  in different spatial regions, thus 
forming the domain walls. So, the critical tipping angle is defined by the 
intensity of the longitudinal vibrations excited at the turning on and off of the 
ac field. All of the above considerations are valid for the B phase as well, 
when the tipping angle is less than 104 ~ . 

It should be noted that the relaxation time for the longitudinal oscil- 
lations is of the same order as the time of tipping of magnetization. Thus, 
the consideration above gives only the lower boundary for the critical 
angle. To describe quantitatively the formation of the domain walls, one 
should also consider the oscillations of magnetization with spatial depen- 
dence, which has not yet been done. 

5. N O N R E S O N A N C E  C A S E  

Let  us now consider the case of (S - 1 ) -  1. To realize these conditions, 
we could, for instance, change the dc H abruptly by a factor of the order  of 
IHI. The relaxation of the magnetization to the equilibrium value takes 
place 4'1~ for times of the order of 1/f~ 4. During this period the system will 
be far from resonance. As may be seen from (8), the variable ~b will also be 
"fast ,"  and and the Hamiltonian (7) should be averaged over it. Designat- 
ing 17"(~b, P/S )=-  W ( P / S ) ,  we get 

~ =  �89 1 ) 2 - P +  W ( P / S )  (69) 

and the equations of motion 

S = O  ~ = S - 1  

P = 0 & = - 1 + 0 W/OP (70) 
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The longitudinal oscillations of the magnetizat ion are now beyond the 
limits of accuracy of the approximation and only the precession frequency 
shift can be determined.  

Averaging (18), we obtain 

WA = - -~f~[1  + (P/S)] 2 (71) 

(,0• 1 = - ( f ~ 2 / 4 S )  cos/3 (72) 

and, accordingly, averaging of (21) yields 

WB = ~I~2B[ (P/ S) + �89 2] (73) 

0J.B + 1 = ~(f~/S)  cos/3 (74) 

As it should be, (72) coincides with (34), and (74) with (50) for ( P +  2) << 1. 

A P P E N D I X  A 

Let  us prove  the s ta tement  used in Section 2 that if the angular 
velocity of a rigid body rotat ion to changes slowly, i.e., A ~ (1/w2)ldto/dtl << 
1, then the average for the rotation period of the orientation of to relative 
to the body is the adiabatic invariant. Suppose v is the unit vector in the 
direction of to, Pk is its projection upon the fixed basis, u~ is the project ion 
upon the basis connected with the body, and g i k  is the matrix of trans- 
formation f rom the rotating coordinate system to the fixed one; then 

1"I = Rikl.'k (A1) 

and 

du'i dRik duk 
dt = dt vk +Rik---~- (A2) 

It can be easily seen that (dRik/dt)vk = --to x v = 0. Then (A2) is averaged 
over  the period of the rigid body rotation. Since/,-1-v, then the average of 
the second term on the r ight-hand side of Eq. (A2) is of higher than first 
order  in A. Usually it is A 2, but in some cases, for instance, in describing 
longitudinal oscillations in the resonance case (see Section 2), the cor- 
rection is of the order  of A 3/2. Thus du~/dt<< A. Q.E.D.  

A P P E N D I X  B 

As another  example of applying the formula derived in Section 2, we 
consider the case when in the B phase the vector n at t = 0 is not parallel to 
the external magnetic field. Experimental ly,  this can be achieved by placing 
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he l ium-B into the  space  be tween  p lane-para l le l  plates  and choosing the  
dis tance be tween  the  plates  and  the  field intensi ty such that  n is eve rywhe re  
h o m o g e n e o u s l y  or iented.  1~ I t  turns out  that  there  is a region of fields and 
dis tances  be tween  pla tes  when  the surface  energy,  though  it o r ien ta tes  n, is 
still small  c o m p a r e d  to the  dipole  energy  and m a y  be neglec ted  in calculat-  
ing the f requencies  character iz ing the  mo t ion  of the  spin. In this case 

whe re  

V = (2/15)1~2[u (1 + u ) + D ]  (B1) 

and  cos ~b = - 1 

1 - ~  sin 2 X +~  sin 2 X cos/3 = 0 (B7) 

divide the  region of var ia t ion  of the  var iables  [cos/3] ~< 1 and sin 2 X ~< 1 into 
th ree  par ts .  T h e  solut ion (B5) exists and is s table  in region 1 in Fig. 3. In 
region 2 the  solut ion cos ~b = 1 is stable,  and  in region 3, cos ~b = - 1. Bo th  
these  values  c o r r e s p o n d . t o  Ou/O0 becoming  zero.  In region 1 using (B1) 
and  (B5), we  get 

2 1 2 5 �9 2 
O)l](1 ) = ~ B [ 1  --x(sm X)(1 -- cos/3)1 

x[l+4cos/3+�88 ] (B8) 

o• + 1 = -�89 2 ,g)[1 - (45- sin X)2(1 - cos/3)] (B9) 

1 ~  5 �9 2 
u = s t z - z s m  t ' ) (1 + cos /3)  cos ~b + (1 - ~  sinZx) cos/3 - 1 (B2) 

D = �88 2 X)(1 - cos/3)[2(2 + u ) -  (35/32)(s in  2 g)(1  - cos/3)] (B3) 

X is the  angle be tween  I t  and n at t = 0 ,  and  /3 and ~b have  the same  
mean ing  as in the  text  [see fo rmulas  (3) and  (6)]. As  has been  a l ready 
noted ,  in the r e sonance  case we m a y  put  S = 1 in the a r g u m e n t  and  ins tead 
of the  var iable  P use direct ly cos/3. T h e  s ta t ionary  values of  ~b according  to 
(10) and  (B1) are  found  f rom the equa t ion  

( l + 2 u  + OD] OU " Oc~ (B4) 

W h e n  the t e rm  in pa ren theses  is set  equal  to zero 

1 - 2  cos/3 2 ( 2 - 5  sin2 X) 
(B5) cos ~b - 1 + cos/3 8 - 5 sin 2 X 

This  solut ion exists for  ]cos ~b I ~< 1. T h e  lines in the p lane  sin 2 X, cos/3 on 
which cos ~b = 1 

1 +~ sin 2 X + [4 - (25 /4 )  sin z X] cos/3 = 0 (B6) 
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~i~ ~ 

s 

0 
- t  0 

Fig. 3. R e g i o n s  of d i f fe ren t  ana ly t i ca l  d e p e n d e n c e s  of toll and  to• for the  B 
p h a s e  in the  p l a n e - p a r a l l e l  geome t ry .  

In region 2, 

2 _ ( ~ / 1 5 ) ( 2 _  ~ sin2 a,)(1 + cos/3) 0911(2 ) = 

5 �9 2 x [ l + 4  cos fl + z s l n  X-(25/4)sin2xcos[3] (B10) 

09• 1 = (4 f~ /15) [ (1  + 4  c o s / 3 ) -  ~-6(sin z X)(7 + 4 0  cos fl) 
5 5  

+ ~(~ s inz X)z(1 + 7 cos fl)] (B 1 1) 

and in region 3 

z _!c~el,~ ~sin2g)(l+cos/3)[�88 (B12) O-)[1(3) - -  5~B~,-~ - - 4  

~o• = zOB(sml z �9 2 g)[1-~(sm5 �9 z X ) ( 1 -  cos/3)] (B13) 

At  the boundaries  of the regions determined by Eqs. (B6) and (B7) the 
corresponding frequencies of longitudinal oscillations o911 become zero, and 
the precession frequency shifts 09• + 1 for the neighboring regions coincide. 

The  boundaries  be tween the regions and the straight line cos/3 = - 1  are 
singular lines in the sense of Section 4. The singularities arising on these lines 
can be studied in the same way as was done in Section 4. However ,  this has 
not been  carried out because of the cumbersome nature of the calculations. 

For  X = 0 the formulas obtained transform to formulas (22)-(25) with 
J = 0, and for cos/3 = 1 into the formulas for the already investigated case 
of continuous N M R  in the plane-paral lel  geometry.  
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