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Abstract. Most research on inductive learning has been concerned with qualitative learning that induces 
conceptual, logic-style descriptions from the given facts. In contrast, quantitative learning deals with 
discovering numerical laws characterizing empirical data. This research attempts to integrate both types 
of learning by combining newly developed heuristics for formulating equations with the previously 
developed concept learning method embodied in the inductive learning program AQ11. The resulting 
system, ABACUS, formulates equations that bind subsets of observed data, and derives explicit, logic- 
style descriptions stating the applicability conditions for these equations, In addition, several new 
techniques for quantitative Icarning are introduced. Units analysis reduces the search space of equations 
by examining the compatibility of variables" units. Proportionali O' graph search addresses the problem of 
identifying relevant variables that should enter equations. Suspension search focusses the search space 
through heuristic evaluation. The capabilities of ABACUS are demonstrated by several examples from 
physics and chemistry. 

1. Introduction 

Research  on inductive learning investigates the principles that  govern  the process  
of  construct ing knowledge  f rom observed  data.  Significant progress  has been  
achieved in deve loping  me thods  for inducing symbolic ,  logic-style descript ions that  
character ize  classes of  examples  or observat ions .  Reviews of some such me thods  
can be found in Diet ter ich and Michalski (1981) and Mitchell (1982). With the 
rapid expans ion  of exper t  systems applicat ions,  however ,  it is becoming  clear that  
there  is a need  for  utilizing in t hem not only quali tat ive knowledge ,  as has been  the 
main thrust  so far,  but  also quant i ta t ive numerical  knowledge  (Kowal ik ,  1986). 
This suggests that  research in machine learning should deve lop  me thods  for 
quantitative discovery, capable of automatically constructing numerical descriptions 
of the given p h e n o m e n a .  Such numerical  knowledge  would be a par t  of a deep  
mode l  of  the knowledge  of an exper t  system. 
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There are also other reasons for research on quantitative discovery. For 
example, in many fields of science (especially in the life sciences), researchers 
gather empirical data as a prerequisite for building models and developing 
principles which explain the phenomena under study. Their tool box for analyzing 
the data has traditionally contained various statistical techniques, including 
regression analysis, numerical taxonomy, dimensional analysis, and the like. These 
methods manipulate numbers, equations, and similar structures without explicitly 
involving symbolic knowledge that represents domain constraints, control heuristics, 
underlying assumptions, etc. All this knowledge, if it ever enters the process, 
comes from the head of a data analyst. A given statistical procedure can only cope 
with specially prepared and interpreted numbers. Therefore, it seems very 
desirable to develop AI methods for data analysis which can reduce the amount of 
expert analysis currently required. 

Some pioneering work in this direction has been done by Langley, Bradshaw, 
and Simon (1983a) with their BACON systems. Even earlier work has been done 
by Hajek and Havranek (1978) on the GUHA method of data analysis and by 
Zagoruiko (1976) and by Zagoruiko, Elkina, and Lbov (1985) on systems SPAR 
(1968) and PINCH (1978) for quantitative prediction of a variable and the 
simultaneous selection of the most informative attributes from the set of initial 
attributes. 

This paper provides a comprehensive review of the issues in quantitative 
empirical learning and presents a methodology of such learning implemented in the 
program ABACUS. The ABACUS system is able to discover multiple mathe- 
matical equations for numeric data and derives explicit, logic-style descriptions 
stating preconditions for the application of the equations. Several new techniques 
particularly suited to quantitative learning are introduced in this work. Units 
analysis enables one to greatly reduce the size of the search space by examining the 
compatibility of variables' units. Two new search algorithms, proportionality graph 
search and suspension search, address some of the unique search problems 
associated with quantitative learning. Section 2 outlines the issues which arise in 
quantitative discovery. Section 3 discusses related work in the field, and Section 4 
introduces the new approach taken in the ABACUS system. Sections 5 and 6 
discuss the way in which ABACUS discovers equations and formulates precondi- 
tions for these equations. Several examples illustrating the performance of 
ABACUS are presented in Section 7. Finally, Section 8 overviews the ABACUS 
methodology and suggests directions for future research. 

2. Goals for quantitative discovery 

At the heart of quantitative discovery is the desire to induce mathematical 
descriptions that characterize the behavior of numerical observations. Independent 
of the technique used, there are a number of issues which any work in this area 
must address. Established disciplines, such as regression analysis, discuss ways for 
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the data analyst to personally address many of these issues. Artificial intelligence 
techniques must attempt to automate this phase of the analysis. We therefore 
outline the following criteria for evaluating research on quantitative discovery, 

1. Coping with irrelevant variables. In many discovery tasks, it is difficult to 
know which available variables are relevant to describing the observed 
events and which are not. A discovery program should be able to decide for 
itself what is relevant. 

2. ('oping with incorrect attd irrelevant observations. In empirical data, it is 
often the case that some of the data is not representative of the process 
being observed. There are two common situations which give rise to this. 
First, some observations may simply be erroneous. Second, the process may 
not be defined outside a given range of values, such as the pressure being too 
high or the substance being in the wrong state. 

3. Discovering multiple equations underlying a collection of data and stating the 
comtitions under which the equations apply. It may often be the case that 
more than one equation is required to adequately describe a given set of 
observations. In these situations, the obserw~tions should be clustered 
around the various equations to form subsets of the original events. 
Conditions should be placed on each equation to describe when it is 
applicable. 

4. Handling different types of variables. Often the observable variables in a 
given situation are both numeric and symbolic. When a discipline is young, 
for cxamplc, it may not be known that a given symbolic value has a one-to- 
one correspondence with an as yet undiscovered physical constant. A 
quantitative discovery system should take into account the symbolic 
information awfilable. 

5. Imprecision and errors in the dam. The inaccuracy of experimental 
observations has always been a problem in science, and the discovery system 
should not be crippled because of it. 

6. hltegrating with other learning systems. While quantitative knowledge is 
quitc valuable, it is only a part of the total knowledge awfilable. These might 
include knowledge of qualitative dependencies among variables, including 
causal dependencies. A quantitative discovery system should be able to 
interact with discovery programs for acquiring different types of knowledge. 

7. Robust and efficient. Discovery is inherently prone to combinatorial explosion. 
This, combined with the difficulties introduced by the criteria defined above, 
makes efficiency considerations particularly important for quantitative 
discovery. We want to be able to discover complicated equations and yet 
accomplish this in a reasonable amount of time. 
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3. Related work 

Numerical data analysis and equation formation has traditionally used such 
standard techniques as regression analysis, numerical taxonomy, and dimensional 
analysis (e.g., Chatterjee & Price, 1977; Daniel & Wood, 1971; Huntley, 1952; 
Langhaar, 1951). These methods are very useful when the domain is well 
understood and when the observations correspond closely to the process being 
analyzed. For many situations, however, these methods are either difficult to use, 
requiring a great deal of human analysis, or they are simply inadequate. First, we 
are interested in discovering multiple equations in data when no single equation 
exists. Stepwise regression analysis is based on the implicit assumption that there is 
one best equation (Daniel & Wood, 1971). It will attempt to fit a single equation to 
the set of observed data, no matter how complicated the resulting equation. This 
leads to our second concern, comprehensibility. It is important that the results of a 
learning program be easy to understand. This is especially important in situations 
where a set of data may be described by two or more succinct equations or 
approximated by one complicated one. Third, regression analysis assumes that the 
data are a representative sample of the process being observed. Techniques are 
described in the standard texts to remove, by hand, nontypical data points, called 
outliers (Daniel & Wood, 1971; Chatterjee & Price, 1977). We are interested in 
the automatic removal of these data points, Fourth, we are interested in minimizing 
the amount of analysis required by the user. For the standard techniques, numbers 
and equations must be specially prepared and interpreted by the data analyst. 
Finally, we are interested in the smooth integration of quantitative and qualitative 
knowledge. Regression analysis uses indicator variables which take on values of 0 
or 1 to represent different qualitative categories. We would like to see qualitative 
variables explicitly included in the discovery program's hypotheses. 

The equation formation part of our research is related to the BACON project at 
CMU (Langley, 1979, 1981; Langley et al., 1981, 1983a; Langley, Zytkow, Simon, 
& Bradshaw, 1986), the COPER system (Kokar, 1981, 1986), and the HOTEP 
system (El-Shafei, 1986). The precondition formation part is related to the research 
on inductive learning done at the University of Illinois (Michalski and Larson, 
1978; Michalski, 1983). 

The BACON project began in I978 with the construction of BACON. 1; the most 
recent system is BACON.6. The basic approach taken in the early versions was to 
formulate empirical laws through the repeated application of hypothesis generation 
rules. Thus the ideal gas law (PV/NT = 8.32) would be formed in a layered fashion 
by creating the term PV, using this and the directly observed attribute T to form a 
more general term PV/T, and finally using this to formulate PV/NT which 
summarizes all of the given data. A variety of additions were subsequently made to 
this basic methodology. BACON.4 was able to postulate intrinsic properties for 
symbolic entities and could detect when common divisors existed for a variable's 
values. BACON.5 included a simple method for learning by symmetry. BACON.6 
(Langley et al., 1983b, 1986) deviated from the methodology of the previous 
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systems. The major difference was that forms of the law must be provided by the 
user, allowing the system to formulate more complex laws including trigonometric 
and algebraic functions. 

While BACON compares well with the above criteria for quantitative discovery, 
several weaknesses can be pointed out. One limitation is that it cannot derive 
multiple equations to describe different subsets of the data. The issues of data 
clustering and the formulation of preconditions are not addressed. The data are 
assumed to be correct and relevant to a single process and the user must state which 
variables are dependent and which are independent. The equation formation 
techniques used in BACON.6 appear to be quite powerful, enabling the system to 
derive rather complicated laws in a straightforward manner. However, much of this 
power is achieved by requiring the user to provide a form of the answer. 

A different approach to quantitative discovery is taken by Kokar (1981, 1986) 
and EI-Shafei (1986). Central to this approach is the application of dimensional 
analysis (Langhaar, 1951 ; Huntley, 1952). Considering units of measurements, this 
analysis creates the set of all possible dimensionless products of variables provided 
in the data. These products are then used to form equations explaining the data. 
Traditional dimensional analysis requires that the relevant variables are known 
prior to application of the procedure, thus requiring extensive domain knowledge. 
Kokar solves the irrelevant variables problem by first trying to determine the 
completeness of the set of variables characterizing the given physical process. This 
step precedes the equation formation step and is able to discard irrelevant variables 
as well as detect when a needed relevant variable is missing. El-Shafei effectively 
ignores the need for determining variable relevancy prior to dimensional analysis 
by using regression analysis to form the desired equation from the set of 
dimensionless terms. He assumes that terms involving irrelevant variables will 
automatically drop out during the regression analysis. This may be an oversimpli- 
fication of the problem since great care is given to variable selection using classic 
regression analysis techniques (Daniel & Wood, 1971; Chatterjee & Price, 1977). 

These systems are quite robust in that they will find an equation to fit the data, no 
matter how complex that equation may be. Therein lies one of the problems with 
these techniques. Because only a single equation is always fit to the data, these 
systems cannot detect cases where the data could be better described by two or 
more equations. In addition, these systems fail to take into account the symbolic 
information available as well as having problems with situations requiring 
dimensional constants. In the following sections, we describe an approach to 
quantitative discovery which contains aspects of BACON, dimensional analysis, 
and symbolic approaches to inductive learning. 

4. The ABACUS approach to quantitative discovery 

There are many strategies to derive an equation or set of equations summarizing 
the behavior of some physical process. In choosing a particular strategy, one must 
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weigh the gains from the use of that strategy against the losses. The approach taken 
in ABACUS has been to satisfy as many criteria from our list for quantitative 
discovery as possible, and to reduce the user supplied information to a minimum. 
ABACUS can handle irrelevant variables, symbolic variables of different types, 
and a certain degree of noise. Its great advantage is that it is able to discover 
multiple equations and ignore irrelevant observations. The only information 
required from the user besides the actual observations is a list of the attributes, 
their type (numeric or symbolic), and optionally their units (e.g., meters/second). 
The program is never told which variables to treat as dependent and which to treat 
as independent. In achieving these abilities, some sacrifices have bad to be made in 
robustness and efficiency. The experimental results described in Section 7 indicate 
that the system is both general and powerful. 

The ABACUS method of quantitative discovery consists of two steps. First, the 
equation discovery module analyzes the original empirical data and attempts to 
derive equations summarizing the observed behavior. If more than one equation is 
required to describe the observations, the data are divided into disjoint subsets, 
and equations are determined for each subset. The second step passes the resulting 
subsets to the precondition generation module. This module derives a logic-style 
description for each subset. Such a description is used as a precondition for each 
equation. The result is a series of if-then rules in which the 'if part' states the 
precondition for applying the rule specified in the 'then part'. 

The equation learning module searches for the best equation to describe the 
given empirical data. I If the discovered equation holds for all events, the learning 
task is completed, and no preconditions need to be generated. If the equation 
describes only a subset of the events, however, then the subset described is 
removed from the list of events and associated with the equation describing it. 
Sometimes several classes of events can be described by one expression that 
evaluates to different values. When this occurs, a number of classes are formed, 
one for each value of the expression. Remaining events are passed to the equation 
learning procedure again in order to determine a separate equation for them. This 
iterative process repeats until all events are accounted for. When no equation can 
be determined for some events, they are placed in a 'miscellaneous' class. 

Once the data have been divided into classes, the precondition generation 
algorithm is used to create discriminant descriptions for these classes. The resulting 
logical expressions can be used to predict which equation should apply to a newly 
observed event. The following example is used to illustrate the general algorithm 
used in ABACUS. 

Suppose the system is given the data depicted in Figure l(a). Observed values for 
x and y are read in and the equation discovery module is invoked. As there are only 

Therc are many ways to dctcrmine the best equation. Here wc refer to the equation describing the 
largest ,~ubset of the data (i.e., the most general). It is also important to consider syntaclic and domain- 
dependent  criteria, such as the equation's simplicity or its relation to known physical phenomena,  but 
the current work has not yet addressed thesc methods. 
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(b)   ulo A IF Ix = 0.10 .. S.00] 
T H E N  x 2 :  y 

Rule B IF Ix = 5.10 .. 30.00] 
T H E N  x + y : 30.00 

Figure 1. ABACUS analysis of graph example. 

two variables, the space of possible equations is small. The best equation found, 
which describes 70% of the data is, is.v 2 = y (a discussion of the equation formation 
technique is in Section 5). Events covered by the equation are put in a class 
associated with this equation. The equation discovery module is invoked again to 
analyze the remaining events. This time, x + y = 30 is found to hold for all events 
and a class set is created for these events. Because all observations are accounted 
for, the equation discovery step is completed and the precondition module is called. 
This module searches for properties of the data which distinguish between the two 
classes. The results are presented in Figure l(b). They state that when x is below 5, 
the equation is y = x 2, and when x is between 5 and 30, the equation x + v = 30 
holds. 

5. Discovering equations 

The technique used in ABACUS depicts quantitative discovery as a search through 
the space of equations that could possibly describe the behavior of the observed 
data. This search process mathematically combines variables representing terms to 
form new terms. For example, x and y might be combined to form x + y. Search in 
this domain is different than in many other domains because new nodes are formed 
by the combination of existing nodes rather than by node expansion. In addition, 
we have not been able to derive a good heuristic evaluation function which can 
accurately indicate the possibility that a given node lies on a promising path. Before 
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describing the search algorithms used in ABACUS,  we first discuss how nodes in 
the search tree are formed, how search through a potentially exponential search 
space is constrained, and how the goal node is recognized once it is found. 

5.1 Variable dependencies and proportionality graphs 

At the heart of quantitative discovery is the concept that one variable's values may 
be dependent  in some way upon the values of another variable. The early BACON 
systems looked for monotonic relationships in the data to create new hypotheses 
(Langley, 1981; Langley et al, 1983a). Michalski (1983) defines the M-descriptor 
stating that, if two variables exhibit a monotonic relationship, one should investigate 
the properties of their product. In the strict sense, variable x monotonically increases 
with y if the values of x always rise when the values of y rise while holding all other 
variables constant. There are two problems with such a strict definition. First, for a 
given set of data, it is not always possible to observe changing values of x and y 
while holding all other variables constant. Second, we must allow for inaccuracies 
and errors in experimental data. As a result, we are interested in the degree with 
which x is proportional to y rather than detecting if x exhibits a monotonic 
relationship to y for all of the data. With this in mind, we say that x is qualitatively 
proportional to y if, for a given percentage of the events (user specifiable), the 
values of x rise when the values of y rise while certain specified variables are held 
constant. Similarly, x and y are inversely qualitatively proportional if x decreases as 
y rises for a majority of the events under the same conditions. There are then four 
assertions possible as the result of a qualitative proportionality measurement: 

Prop + (x, y) 

Prop- (x, y) 

Prop ̀? (x, y) 
Norel (x, y) 

- -  x and y are qualitatively proportional to a user-specifiable 
degree 

- -  x and y are inversely qualitatively proportional to a user- 
specifiable degree 

- -  insufficient data to determine if x and y are related 
- -  x and y are not related 

To make a qualitative proportionality assertion about variables x and y, 
ABACUS looks for general trends in the data. Since it is not always possible to 
hold all other variables constant, an exclusion set is defined to be the set of 
attributes which do not need to be beJd constant and is constructed by the program 
and the user. The user must recognize which variables simply cannot or should not 
be held constant. Similarly, when measuring the proportionality between variables x 
and y, the program recognizes that, if x is a program generated variable composed 
of user defined variables v and w, then v and w should be removed from the set of 
variables which must be held constant. Since they are necessarily dependent upon 
x, it would be impossible to hold v and w constant while changing x. The trend 
detection algorithm determines whether y rises or decreases as x rises when all user 
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• defined variables not in the exclusion set are held constant. It never tries to hold 
program generated variables constant. If no groups can be found where all of these 
variables remain constant, then Prop '~ must be asserted. For each of the groups 
found, a measurement is made of the monotonic relationship between x and y from 
which an average is obtained and used as the degree of proportionality between x 
and y. This measure is then used to assert Prop + , Prop- ,  or Norel. The 
proportionality criterion has a margin of tolerance, allowing a moderate degree of 
noise and a limited amount of conflicting proportionalities. Conflicting propor- 
tionafities occur when some of the data indicates Prop + (x, y) and some indicates 
Prop (x, y). In Figure l(a), there were 16 points given for the curve (Prop + (x, y) ) 
and 7 given for the line (Prop- (x, y)) ,  causing the program to initially assert 
Prop + (x, y). We have deve|oped an algorithm that can handle the conflicting 
proportionalities problem in a more general manner, based on determining 
breakpoints in the monotonic relationship between variables. For the data in Figure 
l(a), it would first determine the breakpoint A, and then process points to the left 
and right of A independently. 

From these proportionality assertions we may construct an undirected graph, 
called a proportionality graph, where the nodes represent variables, and edges 
indicate the presence of a qualitative proportionality relation between their 

~incident vertices (Figure 2). For our purposes, edges shall only be constructed for 
Prop + and Prop- relationships, and Prop "~ will effectively be treated as Norel. In 
Figure 2, a is proportional (+ or - )  to b, but not proportional to c. 

As explained in Section 5.5, we are interested in nodes which form cycles in such 
a graph. In this context, the term cycle refers to any biconnected components 
(Aho, Hopcroft, & Ullman, 1974) which may exist. A biconnected component 
refers only to the maximal cycles in the graph or, in other words, only those cycles 
which are not a subset of some other cycle. In Figure 2, the single maximal cycle (or 
biconnected component) consists of the set of nodes {a b e f}. 

Figure 2. Proportionality graph. 
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5.2 Equation formation -- a search for constancy 

The existence of qualitative proportionalities between variables suggests the 
possibility of causal or other relationships between them. For example, if we knew 
that the value o fx  always goes down when the value o fy  goes up, then the relation 
xy = constant might be binding these variables. This may be generalized to a rule: 

If Prop- (x, y) then create a variable equal to xv 

Such a variable is more likely to take on a constant value than x or y independently. 
Expanding on this concept, the following heuristics are formulated: 

If Prop + (x, y) then 
Generate a variable equal to a quotient relation between x and y (5.1) 
Generate variables equal to difference relations between x and y 

If Prop- (x, y) then 
Generate a variable equal to a product relation between x and y (5.2) 
Generate variable equal to sum relations between x and y 

With these heuristics in mind, search in quantitative discovery involves the" 
continual combination of variables which are qualitatively proportional to form 
new variables in the hope of finding a variable which takes on a constant value. 
Notice that application of the above heuristics tends to create variables with the 
same or higher degrees of constancy than the original variables. 

The variables created from product and quotient relations are what one would 
expect. A variety of sum and difference relations may be formed, however, 
including x + y, x 2 + yZ and x" + y". Those actually generated will depend upon 
the units involved as well as other domain-independent constraints discussed 
below. Using these rules, the system can generate many new variables when 
qualitative relationships are detected among the current variables. In addition, 
ABACUS provides a facility for the user to predefine arbitrary functions or 
transformations on input variables which operate before the equation discovery 
module is called. For example, the user may instruct the program to replace all 
values of x with log(x) or to create a new input variable whose values are 
determined from a supplied function of existing variables. 

5.3 Domain-independent constraints 

Several domain-independent constraints are used to limit the large search space 
associated with quantitative learning. These constraints involve eliminating 
mathematically redundant expressions and physically impossible relationships. The 
constraints are divided into three categories: 
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• units compatibility rule 
• redundancy detection 
• tautology detection 

Below we discuss each of these in turn. 

,5.3.1 U~lits compatibility rule 
When the system decides to create new variables by firing the rules presented in the 
previous section, the additive relation rules will attempt to create a variety of new 
variables. Were all of these variables created every time one of the rules fired, 
the number of variables would explode and the search space would become 
unmanageably large. However, a simple physical constraint drastically limits the 
possible choices. For two entities to be added or subtracted they must be of the 
same type, that is, they should have the same physical units. One may divide meters 
by seconds, but one may not subtract seconds from meters. Therefore, any action 
that violates this u,its compatibility rule is blocked. This is similar in intent to the 
dimensional cohesiveness requirement of dimensional analysis (Langhaar, 1951; 
Huntley, 1952). All equations generated by ABACUS are guaranteed to bc 
dimensionally cohesivc if units are specified for each variable. 

When attempting to generate sum relations between two variables x and 3', if the 
units of x and y are equal, then terms such as x + y and x 2 + 3, 2 will be created. If, 
on the other hand, the units of x and y are not the same, but differ only in 
exponent such that the units ofx"  is compatible with the units of y " ,  then the term 
x" + y'" ( w h e r e ,  :k m) would be created and terms like x + v would be blocked.: 
Finally, if the units are not equal and cannot be made compatible by 
exponentiation, then no sum relations will be created, effectively blocking all 
instantiations of the sum generation rule. in practice, this is the usual case. It 
should be pointed out that these constraints only test the identity of units and 
provide no semantic interpretation to guide the search. In the future we would like 
to use here also constraints stemming from the physical properties of entities 
involved, such as trying to add the velocity of two unrelated entities. 

5.3.2 Formula redundancy 
~A common side effect of combining existing variables to form new ones is the 
possibility that, for any new variable, a mathematically equivalent yet syntactically 
different expression defining a variable may have already been created. This is 
especially likely since variables created at one level in the search may be combined 
with existing variables from any other level. For example, say variable x represents 
the relation: 

-~ A furthcr constraint requircs that the exponents  n and m be less than 4. This is a heuristic limitation, 
but seems reasonable given that higher powers are rate in the natural sciences. 



378 B.C. FALKENHAINER AND R.S. MICHALSKI 

(ab) 
X - -  

(cd) 

where the parentheses show that x was created by dividing a variable ab by another 
cd. Further, suppose during the course of the search the variable b/(cd) had been 
created. At some point, the system will then try to create a new variable y: 

a b y - -  

As we can see, x and y represent the same variable, so creating y is redundant. 
From a purely syntactic examination, however, x and y are not equal. The solution 
to this problem is to use a canonical form for expressions so that equivalent 
formulas will always be syntactically equal. The form we use expresses all equations 
as a sum-of-products (Falkenhainer, 1985b). Thus ~ ( a -  b) would be expressed as 
,~ hx A canonical sum-of-products representation has also been used in the 
Y Y • 

BACON systems to detect redundancy (Langley, 1981). 

5.3.3 Numerical tautologies 
Another problem with combining mathematical formulas is the possibility that a 
mathematical cancellation may result, causing the program to effectively take a 
step backward. Suppose, for example, the program discovers Prop- (a/b, bc). 
Creating a new variable -~bc would result in b canceling out. Were such 

riD( operations allowed to go unchecked, the system may soon discover that 
always equals 1 for any data given, 

ABACUS allows no action which would result in a mathematical cancellation. 
Using the canonical form for formulas mentioned in the previous section, a check 
for tautologies is reducible to a set of simple logical conditions. If the tautology 
condition for a given operation holds, the proposed action is blocked. 

5.4 Recognizing the goal 

Because a valid equation may describe only a subset of the events, recognizing when 
a good equation has been found and when to terminate search is not as easy as it 
would be otherwise. There are three types of goal nodes recognized by the system. 
The first type corresponds to a term that describes all events, i.e., one which 
evaluates to the same value for every event (within a percentage range of 
uncertainty modifiable by the user). Such a goal is easily recognized and search 
terminates when one is discovered. 

The second type of goal node is based on the notion of a nominal (symbolic) 
subgroup of events and also causes immediate cessation of the search process. A 
nominal subgroup is defined to be a set of events that are equal on all nominal 
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(a) 
Table l. Sample goal node recognition. 

object x y x/y 

ircle 2 2 1 
irclc 4 , 3 1.3 
ircle 6 4 1.5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 

box ~ 1 2 

box 4 '~ "~ 
box 5 2,5 2 

box 0 3 2 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

triangle 3 2 1.5 
triangle 5 3 1.6 

100% Constancy in a Nominal Subgroup 

object x y x/y 
(b) 

circle 2 2 1 

circle 4 "~ 2 
circle 6 3 2 
box 2 2 1 
box 4 2 2 
box 5 2.5 2 
box 6 3 2 

ttianglc 3 ~ 1,5 
triangle 5 2.5 2 

67% Constancy for Entire Event Space 

attributes. If a term is found which evaluates to a single value for a nominal 
subgroup, search terminates on the assumption that an equation of significance has 
been found. For example, in Table l(a), x/y has the same value for all events in the 
nominal subgroup corresponding to the object 'box'. 

The third type of goal node does not halt the search algorithm. As each new 
variable is created, its degree of constancy is measured, and the variable having the 
largest degree of constancy is stored. The degree of constancy is defined to be the 
percentage of the data for which the function evaluates to a single value within a 
percentage range of uncertainty modifiable by the user. In Table l(b), x/y has a 
67% constancy because six out of the nine events are equal to 2. If two variables 
have the same constancy value, only the first discovered is remembered as it is more 
"likely to be of a simpler, and thus more desirable, form. A more thorough approach 
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would examine the equations according to various syntactic criteria and keep those 
that are both general and appealing. If search exceeds the allowed limit, the term 
having the highest degree of constancy is returned. If its constancy is greater than a 
user modifiable threshold, the resulting equation is reported. Otherwise, the" 
program states that no formula could be found. 

5.5 Search 

ABACUS discovers equations by searching through the space of possible terms 
which relate the user supplied variables. These terms are formed by applying the 
variable generation rules to the current set of proportionality assertions. Even with 
domain-independent constraints, a search space generated in this manner can 
become quite large. In an effort to counter this problem, ABACUS uses a 
combination of two search algorithms which have been designed with quantitative 
learning in mind. The first algorithm, proportionality graph search, uses the 
graphical nature of the proportionality assertions to guide the search path and 
discriminate against irrelevant variables. The second algorithm, suspension search, 
enables the program to reduce the number of terms being examined by removing 
those that do not look promising until all other possibilities have been exhausted. 

In this section we will examine only the search process itself, ignoring operations 
done once a final term has been selected. For illustration, two examples will be 
used. The first example deals with discovering the ideal gas law: 

PV - 8.32 
tl T 

where P is the pressure of the gas, V is the volume, T is the temperature in degrees 
Kelvin, and n is the number of moles. The ideal gas law equation belongs to the 
class of relations consisting solely of multiplication and division, and whose 
variables are all of degree one. It is a law which has been discovered in a variety of 
ways by the BACON programs (Langley, 1981; Langley et al., 1986). 

The other example is the nonvector form of the conservation of momentum law: 

gnlV 1 -~- m 2 v  2 ---- l n l t V l  ' A r m 2 ' v 2  r 

This relation represents those equations which include addition and subtraction. It 
states that, when two particles collide while traveling along the same line, their 
total momentum is the same before and after the collision. To complicate the 
example, the masses m~ and m2 will be allowed to change after impact producing 
m~' and m2'. When the masses do not change, reducing the number of variables to 
6, ABACUS discovers the equation in much less time. 
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5.5.1 Proportionality graph search 
Experience has shown that, in terms of difficulty, the types of equations ABACUS 
is able to discover may be divided into two categories, Equations composed solely 
of multiplication and division tend to be easiest to discover, while those including 
other operators, such as addition and subtraction, tend to be more difficult 
(Falkenhainer, 1984, 1985b). Proportionality graph search is designed to handle 
equations falling in the first category. They correspond to a large percentage of the 
physical laws found in elementary physics and chemistry texts. Proportionality 
graph search is based on the observation that these equations will form a cycle in 
the corresponding proportionality graph, barring the presence of an exorbitant 
number of Prop "~ assertions. As an example, Equation 5.3 below represents a 
general equation of this type. 

l l p W  2 
- constant (5.3) 

xyz  

Holding the four variables u, v, w, and x in Equation 5.3 constant and varying y will 
necessarily cause z to vary as well, in a direction which is completely predictable 
given the direction of change of y. This is true for Equation 5.3 no matter which 
four variables are held constant and which two are allowed to vary. In the absence 
of Prop ? assertions, each variable is therefore qualitatively proportional (+ or - )  to 
the other five, For the given problem, that may have more than six variables, the 
gubgraph for vertices (u, v, w, x, y, z) must therefore be strongly connected and 
these nodes will thus form a cycle. This introduces another observation about the 
proportionality graph for such an equation. Irrelevant variables are more likely to 
be excluded from the above cycle and may often be incident on only one edge. 

The proportionality graph search technique directs its search to the interrelations 
of variables forming a cycle and avoids variables that are not contained in a cycle. 
The algorithm consists of the repeated application of the following steps: 

1. Form a proportionality graph for the current set of variables, both those 
provided by the user and those generated by the program. Exclude all edges 
which occurred in previously generated graphs. 

2. Extract the cycles (biconnected components) and represent each cycle by 
the set of nodes it contains. 

3. Search each cycle in a depth-first manner for a depth given by the cardinality 
of the set. 

This process repeats until a suitable relation is found up to a maximum of K times. -~ 
For each graph, the cycle sets are sorted in decreasing order under the assump- 

The default search depth, K, is 4 since powers greater than 4 are seldom seen in the natural sciences. 
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(b) Cycle Sets: 
{ (P V) {P N) (P T) (V N) (V T) (N T) } 

{ ( v v ) }  
{ {N M)} 

Figure3. Proportionality graph for ideal gas law (PV/NT = 8.32). 

tion that the largest cycles will prove to be the most promising. A cycle (e.g., 
{V, N, P, T}) is searched in a depth-first manner by first removing two nodes 
that are proportional and combining them according to the equation formatioh 
heuristics to form new terms (e.g., ~-). The remaining nodes (e.g., {P, T}) are 
then tested one at a time against these terms to form new terms. For the set {P, T} 

V V and the current node n, P would be tested against n to possibly create new 
V terms such as -~. If backtracking occurred, then T would be tested against n. 

This process repeats until either a solution has been found or until all combinations 
have been exhausted. Because nodes are removed from the cycle set as search 
progresses, powers of variables are not possible after the first round of search. 

As an example of the heuristic power of this search technique, a sample 
proportionality graph is shown in Figure 3(a) for the ideal gas law, where a total of 
six attributes were initially provided by the user. As can be seen, the irrelevant 
variable mass, M, is independent of pressure, volume, and temperature, but is 
proportional to the number of moles of gas present. A similar situation exists for 
the variable Y. The three cycles of the graph are given in Figure 3(b), where 
solitary edges are simply treated as 'cycles' having only one edge. Figure 4 shows 
the search tree resulting from the above strategy applied to this example. The 
nodes shown were the only ones examined by ABACUS. For the ideal gas law, the 
program generated the minimum number of nodes possible to arrive at the correct 
solution. 

While the proportionality graph search is quite adept at locating relations like the 
ideal gas law, this example happens to be ideally suited to such a search technique. 
Other types of relations, even those composed solely of multiplication and division 
but with higher powers, are not so well suited to proportionality graph search. Fo~ 
each iteration of the search algorithm, a new proportionality graph is constructed. 
The difficulty begins with the second graph constructed, and becomes increasingly 
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(5) 

Figure 4. Proportionality graph search path for ideal gas law example. 

worse with successive graphs. After completion of the first search pass, a large 
number of terms may exist in the system, many of which differ only slightly. 
Consequently, the second proportionality graph constructed has a much larger 
number of nodes than the first and, due to the similarity of the nodes, the graph 
tends to be highly interconnected. Therefore, the extracted cycles are quite large, 
sometimes encompassing the entire graph. As the depth of each cycle search is 
given by the number of nodes in the cycle and backtracking must be allowed, a 
great deal of time is wasted exploring very deep levels of the search tree. 

5.5.2 Adding suspension search 
To avoid the problems caused by repeated applications of proportionality graph 
search, ABACUS uses only one iteration of the algorithm. If no law is found, then 
the program employs a technique called suspension search. This algorithm is able 
to remove nodes from consideration, yet allows their return should they be needed. 
It combines the benefits of a beam approach with the allowances for faulty 
heuristics provided by backtracking. Suspension search begins as a normal breadth- 
first search. At each level, however, the values for each node are examined. As the 
ultimate goal is to find a variable whose values are constant or nearly constant, 
nodes possessing some degree of constancy are more likely to lie on a terminating 
path than nodes which lack any degree of constancy. To this end, when each level is 
created, all nodes on that level are divided into active nodes and suspended nodes. 
Suspended nodes are those whose constancy is less than a low threshold which is 
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roughly 5% of the events. 
Search then proceeds on to the next level, where only the active nodes of 

previous levels are visible to the search algorithm. The next level is created by 
testing the proportionality all new active nodes of the current level have among 
themselves and with all active nodes of earlier levels (as well as with old active 
nodes of the current level, as will be seen shortly). If no relation has been found by 
the time the depth limit (user specifiable) is reached, the best relation found so far 
is returned if its level of constancy is high enough according to a user supplied 
parameter. If not, search backtracks to the previous level where its suspended 
nodes are now activated and related to each other, its old set of active nodes, and 
those active nodes of earlier levels. Search then returns to the next level with a new 
set of active nodes. If still no relation is found, backtracking will go back farther 
and the process will repeat as before. An environment of each level is maintained 
to enable the program to remember what nodes were previously active and 
suspended when search returns, The suspension search algorithm is presented in 
Table 2. When invoked initially, nodes created during proportionality graph search 
join the user defined variables in level 1 to form the initial set of active and 
suspended nodes. 

Because suspended nodes are ignored, fewer nodes are involved in the search at 
any one time. Therefore, search may be allowed to explore deeper than it could 
otherwise. A second search depth limit is defined, called thefilter depth, which cites 
a limit shallower than that of the absolute depth limit. Search may proceed beyond 
the filter limit depth, but only active nodes are allowed for levels beyond this limit. 
Suspended nodes created at these levels are permanently discarded. 

A partial suspension search tree is given in Figure 5 for the example involving the 
discovery of the law of conservation of momentum. The dashed horizontal line 
represents the filter limit depth which has been set to 3. A number of nodes may be 
eliminated as a result of this technique, considerably reducing the search cost. 

Table 2. Suspension search algorithm. 

FUNCTION Suspension (active_ancestor_nodes, active_nodes, suspended_nodes, environment) 

• If the search depth limit has been reached 
then return true if the best constancy found is greater than a threshold else return false 

• If ncw active or suspended nodes can be created from the current list of active nodes 

then return true if one of these has a constancy of 100% 
or rcturn true if a call to Suspension using the new nodes returns true 

• If the filter depth has been reached 
then save the environment and return false 

• if new active or suspended nodes and be created from the current list of suspended nodes 

then return true if one of these has a constancy of 100% 
otherwise save the environment 

and return true if a call to Suspension using the new nodes returns true 
• Save the environment and return false 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  filler depth 

Q--) - Active Nodes 

Q ~  - Suspended Nodes 

Figure 5. Partial suspension ,search tree for conservation of rnomcntum. 

Combining the proportionality graph search algorithm with the suspension 
search algorithm favors quick discovery of laws which are composed solely of 
multiplication and division while still being adept at discovering more complicated 
equations in a reasonable amount of time. As cycles in the first pass can never be 
larger than the number of given attributes, the depth-first search of the first phase is 
not deep for most problems, thus creating variables which would normally be 
created for more complicated examples anyway. 

5.5.3 Analysis 
Search algorithms representing all the possible combinations of proportionality 
graph search, breadth-first search, and suspension search have been constructed 
and directly tested in the ABACUS system. Empirical evidence has shown that, 
among these, the most powerful strategy is the combination of algorithms 
presented above (Faikenhainer, 1985b). Search strategies not including the 
proportionality graph search algorithm tended to be slower for examples such as 
the ideal gas law while the algorithm by itself was slower on most other examples. 
Suspension search proved to be equivalent to breadth-first search on small 
examples and superior on large examples. 

The method shown is quite flexible. Where it falls short is in robustness. The only 
equations that can be discovered are those composed of variables raised to some 
integer power and combined through the use of multiplication, division, addition, 
and subtraction. While this is usually sufficient for introductory treatments of the 
physical sciences, we would like to strengthen this aspect of the current 
implementation in future research. 
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6. Formulation of qualitative preconditions 

When multiple equations are discovered for a given set of data, ABACUS 
generates a logical precondition for each equation which describes when the 
formula is applicable. Deriving preconditions for disjoint sets of events is an 
example of the general covering problem described by Michalski (1969) and 
Michalski and Larson (1978): Given a list of observed events divided into classes, 
form a general description of each class in terms of the given concepts such that it 
covers every event in the class and distinguishes this class from the events in other 
classes. These results are called discriminant descriptions and can be used to predict 
the class membership of any new event. For example, suppose we are presented 
with examples of two classes as in Figure 6(a). An algorithm known as A q would 
generate the descriptions in Figure 6(b) (Michalski, 1969, 1983; Becker, 1985). The 
description for class A specifies that objects in this group consist solely of clear 
circles or any kind of triangle. Similarly, class B contains either striped circles or 
any squares or pentagons. These sets of conditions uniquely determine whether an 
object belongs to class A or class B. 

6.1 The A q algorithm 

The data representation language used in our implementation of A q is a variable 
valued logic known as VLt (Michalski & Larson, 1978), an example of which is 
shown in Figure 6(b). Each term in square brackets specifying the value or values of 
an individual variable is called a selector (e.g., [Object = circle[). A conjunction of 

(a) ClassA 

Q / QQA 
ClassB 

(b) Class A Cover: 

Class B Cover: 

Figure 6. A simple classification problem. 

[Object = circle] [Filler = clear] V 
[Object ~ triangle] 

[Object = circle] [Filler = striped] V 
[Object ~--- square V pentagon] 
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Table 3. Cover algorithm. 

FUNCTION Cover (positive_events, negative_events: events): cover, 

While there are still uncovered positive events. 

• choose a seed event from the uncovered positive events 
• generate a star from the seed against the negative events, using the lexical evaluation function 

(LEF) to limit the size of the star. 
• use the LEF to choose the best complex from the star and add it disjunctively to the cover. 
• modify the list of uncovered positive events to reflect the addition of the new complex. 

Return the cover. 

selectors, represented by writing them together on a single line, is called a complex 
and forms a partial description of a given class set. The entire description of the 
class is given by a disjunction of such complexes and is called its cover. Thus, VL1 
class descriptions are represented in disjunctive normal form (DNF). 

The generalization operator in A q is ExtendAgainst (Michalski, 1983). To 
extend selector A against selector B, where A and B represent different selectors 
for the same attribute, generalize the list of possible values for A without including 
any values B currently possesses. The result of each selector operation is one or 
more generalized single selector complexes. Variables may have nominal, linear, or 
structured domains and the operation is defined differently for each. 

The A q method consists primarily of two high-level algorithms. The first is 
Cover, which takes each class set in turn and generates a discriminant cover for the 
set (Table 3). When a cover is being generated for a class, its events are designated 
the positive examples and the events from all the other classes are collectively 
called the negative examples. Cover first selects a single positive event, the seed, 
and passes this to the Star algorithm along with the list of negative events. The Star 
algorithm returns a list of complexes which represent maximally general descriptions 
of the seed that do not cover any of the negative events. The Cover algorithm then 
selects the best complex according to a user specified lexicographic evaluation 
function (LEF),  adds this disjunctively to the current cover, and removes from the 
list of positive events those which are described by the new complex. If any events 
remain uncovered, a new seed is chosen and the process repeats. A modified 
version of A q (called Aq/RU) is used in the current ABACUS implementation; this 
borrows from Becker's (1985) ExceL system for dealing with exceptions. For a 
more detailed discussion of these algorithms see Michalski (1983), Becker (1985), 
and Falkenhainer (1985b). 

6.2 A '~ in A B A C U S  

The covers generated by A q have two possible uses in the ABACUS system. First, 
the combination of logical conditions with mathematical equations gives the results 
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7"able 4. Analysis of  Coulomb's  law. 

Fre/qlq2 = C~ 

If [substance = watcr] 
If [substance = air] 
If [substance - silicon] 
If [substance - gcrmanium] 

Thcn  Cj - 8897.352 
Then C1 = 111.280 
Then  C I = 1312.363 
Then  Cl = 1779,015 

predictive power. Suppose one were able to only obtain values for n - 1 variables 
of an n variable equation. By knowing which equation should apply prior to 
evaluating it, one could determine the nth attribute from the other n - 1 attributes. 
Second, the logical conditions often provide additional conceptual meaning for the 
user. For example, Coulomb's law relating the force of attraction of two charged 
particles separated by a distance r may be stated as 

FP - 4~rc 
qlq2 

where • is defined to be the permitivity of the surrounding medium. Table 4 shows 
the results obtained by ABACUS when given measurements for the force (F), the 
distance (r), the charge of particle one (q j), the charge of particle two (q2), and the 
name of the surrounding medium) From the results it can be seen that all of the 
data obey the same relationship form where the constant in each case is dependent 
on the surrounding medium. For this example the domain constraints provide an 
indication that there is some property associated with each substance which affects 
the electrical attraction of two charged particles. BACON is able to discover a 
similar form of Coulomb's law by associating an intrinsic property corresponding to 
permitivity with each nominal variable. 

7. Experiments 

Some example experiments will now be discussed to show what types of problems 
ABACUS is able to solve. These experiments investigate: 

• gravitational attraction and Stoke's law for viscous fluids 
• the law of conservation of kinetic energy 
• analysis of chemical compound data 

The first two are experiments designed to illustrate the capabilities of the program. 

4 The current implementation of A B A C U S  actually outputs an equation for cach class, as in the 
example shown in Figure 1, The summarized results given here represent what would be displayed by a 
postproeessor we have designed for the program. 
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The data used for these were generated by hand with a knowledge of the correct 
answer.The final chemistry example represents an experiment run on data 
provided by members of the University of Illinois Chemistry Department.  

7.1 Galilean experiment on free-falling bodies 

When Galileo was studying the motion of projectiles, he concluded that the flight 
of all projectiles could be viewed as two completely separate motions, one in a 
horizontal direction which is unaffected by the pull of the earth, and the other up 
and down, controlled by the earth's attraction. His dilemma then was how to 
describe this vertical component of motion which is so firmly tied to the downward 
pull of the earth. By dropping various objects through different fluids, he noticed 
that objects of different weights fell at more nearly the same rate when fluids of 
lower density were used. From this he deduced that in a vacuum all objects fall at 
the same rate. Stoke later expanded on this by formulating a law which related the 
retarding force of a liquid to its viscosity. We presented ABACUS with a set of data 
to simulate these experiments. The balls dropped came in three sizes, for which 
there was a rubber ball and a clay ball in each size. The six balls were dropped from 
rest through three different media, namely glycerol, castor oil, and a vacuum, once 
each for two different size containers. The experiment was conducted in Death 
Valley and in Denver,  and the temperature was maintained at 20°C at both 
locations. The measured attributes consist of the height of the container, the mass 
of the ball, its radius, the duration of the fall, and the velocity with which it strikes 
the bottom of the container (Figure 7). In addition, the substance through which 
the ball fell has been noted along with the location of the experiment. Samples of 
the measurements taken are given in Figure 7. s Each ball was dropped once 
through each medium for both containers at each location for a total of 72 
observations. 

ABACUS was run twice on the resulting data. First, the default _+2% margin of 
error was used, resulting in the following obscrvation: 

Rule A IF 
T H E N  

Rule B IF 
T H E N  

Rule C IF 
T H E N  

[substance = Vacuum[ 
v = 9.8175 x t 
[substance = Glycerol[ 
v × r = (I.9556 × m 
[substance = CastorOil] 
t, x r = 0.7336 × m 

5 Of course, the correct measurements  were calculated by hand for this experiment.  The mass of each 
ball was derived from the chosen radius and the standard densities for rubber and clay, Likewise, the 
s tandard viscosity for each substance was used. Gravitational acceleration was chosen to be 9.845 m/s-" in 
Death Valley and 9.79 m/s ~ in Denver  to reflect the fact that the force of gravity decreases at higher 
allitudes. 
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Event  .: 
1 

velocity: 18.084 m/s 
radius: 0.05 m 
mass: 0.94 kg 
time: 0.055 s 
height: 1.0 m 
substance: Glycerol 

location: DeathValley 

Figure 7. Falling bodies experiment. 

0 
l Vf 

It appears that each equation found is dependent  upon the medium through which 
the balls fall. ABACUS was then run a second time using a margin of error of 
+0 .2% and the following results were reported: 

Rule A IF 
THEN 

Rule B IF 
THEN 

Rule C IF 
THEN 

Rule D IF 
THEN 

Rule E IF 
THEN 

Rule F IF 
THEN 

[location = DeathValley][substance = Vacuum] 
v = 9.8453 x t 
[location = Denver][substance = Vacuum] 
v = 9.7898 x t 
[location = DeathValley][substance = Glycerol] 
v x r = 0.9583 x m 
[location = Denver][substance = Glycerol] 
v x  r = 0.9530 x m 

[location -- DeathValley][substance = CastorOil] 
v x r = 0.7356 x m 
[location = Denver][substance = CastorOil] 
v x r = 0.7315 x m 

This time each equation is dependent  upon both the medium through which the 
balls fall and the location of the experiment.  For the classes corresponding to rules 
A and B, it would also appear  that the behavior is independent of the 
characteristics of the balls used. Interpreting these findings, we know that an object 
undergoes a constant acceleration due to earth 's  gravity and that an object under 
constant acceleration will change speed proportional to the length of time it 
undergoes this acceleration. This may be stated as Av = aAt and corresponds to 
the cases of the balls falling in a vacuum. The constants for these cases simply 
represent the earth 's  gravitational acceleration at the two different locations. 
When we take the resistance of the medium into account, however,  as we must do 
for glycerol and castor oil, the retarding force of the medium becomes involved and 
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is stated by Stoke's law as: 

Fr = -6 rn l r v  

where ~ is the viscosity coefficient of the fluid, r is the radius of the ball, and v is 
the velocity at some point in time. Because of this added force, the object will reach 
a constant terminal velocity given by 

m g  vr r  g 
V T ~ -  - -  or  

61r~lr m 6~rr] 

where g is the gravitational acceleration. This resembles the equation reported by 
ABACUS (v x r = Constant x m) for the glycerol and castor oil eases. In these 
cases, the constant contained values for ~1 and g, explaining why the values 
reported for rules C - F  in the second example were dependent on both the type of 
liquid 0q) and the location (g). If the nominal location and substance variables had 
been replaced by the numeric variables g and ~1, respectively, those variables 
would have shown up explicitly in the equations. This would reduce rules C - F  to a 
single rule with the constant equaling &r. Knowing when to explicitly represent 
conceptual constants such as rr would be an interesting topic for future research. 

This experiment points out a number of properties of ABACUS. First, two 
different equation forms were discovered, each having only the velocity attribute in 
common. This demonstrates the program's ability to discover multiple equations 
for different groups of events, even when variables pertinent to one are irrelevant 
to another. Second, the necessity and power of the logical preconditions can be 
seen here. Finally, it points out the problems encountered when working with real 
numbers, noise, and uncertainties. The results obtained for the +0.2% case were 
more interesting and correct than for the +2% experiment. However, common 
sense and the presence of noisy data would generally rule out using +0.2%. 

7.2 Conservation o f  kinetic energy 

The law of conservation of energy states that energy can neither be created nor 
destroyed, Therefore, when two bodies collide, the total energy of the system 
before the time of collision will be the same as the total energy after the collision. 
For inelastic collisions, some of this energy is converted to heat during the collision 
and so, at a macroscopic level, an apparent energy loss is observed. For perfectly 
elastic collisions, however, the sum of the balls' individual energies, namely their 
kinetic energies, will remain constant before and after their collisions: 

1/2m 1 vl 2 + 1/2mzv22 = l/2ml Vl '2 + 1/2m2 v2 '2 (7.1) 

Converting these concepts into an experiment for ABACUS to examine, data were 
constructed for a series of observations of various objects colliding. The data 
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consisted of seven attributes and 12 events, where the seven attributes consisted of 
the masses of the two balls, their four corresponding velocities (magnitudes), and a 
nominal variable which described the observed collision as either elastic or 
inelastic. (' For this dataset, ABACUS produced the following results: 

Rule A IF 
THEN 

Rule B IF 
THEN 

[collision-type = elastic] 
r/'/l(l,,12 --  VI '2)  = 1112(V2 '2 -- V2 2) 

[colliston-type = inelastic] 
No formula was found 

An equation equivalent to 7.1 was found to hold for those events corresponding to 
an elastic collision. No equation could be found for the remaining "inelastic" 
events. ABACUS was not only able to discover the desired equation, but was also 
able to specify that the equation only held for elastic collisions. As we will discuss 
later, ABACUS found this law relatively difficult to discover because it contains 
subtraction. 

7.3 Analysis of chemical compounds 

Figure 8 shows the structure of a typical bimetallic coordination compound. The 
distance between the central metal atoms in such compounds is important to 
chemists, but it is difficult and expensive to measure. At present, there is no known 

Figure 8. Bimetallic coordination compound in eclipsed conlormation. 

" Wc recognize that indicating the collision type with a symbolic variable simplifies the data clustering 
task. The example is still very interesting as it stands, but we would like to develop more powerful 
clustering techniques, as discussed in the section on future research. 
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way to predict this distance given the values of other attributes, providing a unique 
challenge for testing the usefulness of ABACUS and thus revealing its strengths 
and weaknesses. 

The compounds are symmetric about the central covalent bond, each side 
consisting of a primary metal atom and up to five ligand molecules joined by ionic 
bond to the primary atom. Data for the experiment consisted of the values of 13 
attributes for 30 different observed compounds as garnered from various chemical 
research articles. 7 The full collection of data is reproduced in Table 5, where the 
compound formula has been added for thoroughness. 'Metal' is the name of the 
two central metal atoms, 'Ox' is the oxidation state of the metals, 'Rad' is the 
radius of one metal atom in angstroms, and 'eM' represents the number of 
electrons per metal. The formal bond order of the covalent bond is given by 'BO', 
'MMdist' gives the distance between the metals in angstroms, 'Q' is the total 
charge of the molecule in units of electron charge, and the conformation (indicating 
the molecule's alignment) is shown by 'Conf. In Figure 8, the molecule is in the 
eclipsed conformation because the ligand molecules of each side line up when 
viewed from on end. Finally, 'LI '  through 'L5' are the names of the ligand 
molecules. 

The experiment began by running ABACUS using all default parameter values. 
The response was that no relation could be found. A further examination of the" 
output revealed that no nodes were created, thus indicating that either there were 
no relations in the data or that all proportionality tests returned Prop ? and thus no 
examples could be obtained. The latter situation would occur if the large number o f  
nominal variables was interfering with the numerical relation-finding process. As a 
result, the program was instructed to ignore all nominal variables when trying to 
hold variables constant for the proportionality test. This time, nodes were created 
but still no relation was found to hold for the 40% default constancy criterion. Since 
actual measured data might contain a reasonable amount of noise, the decision was 

Table 6. Initial results with margin 

Rule A IF 

THEN 

IF Rule B 

Rule C 

of error at 8%. 

THEN 

IF 

THEN 

[L2 = CH2SiR3 v NEt2 v NMe2] 

[L1 - OCR3][L4 = None] 

MMdist = 0.2502 eM 

[LI - OSiR3 v PEt3 l 

IL2 = Br] 
[L2 - CI v OCR3][Metal  = Re v W] 

MMdist = 0.1954 eM 

[L2 = CO v Me v NR3 v PEt3] 

[Ox =lIl 
MMdist = 0.1735 eM 

7 Data were collected by J.M. Hanckel and Theodore L. Brown of the University of Illinois 

Chemistry Department .  
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Table 7. Results using Iog(BondOrder). 

Rule A IF [OX = II1]]L4 = Br v CI v Me v PEt3 v Nonc] 
T H E N  MMdist  log(BO) = 0.1180 eM 

Rule B IF [L4 = Me v NR3 v PEt3] 
[O - -4.00001 

T H E N  MMdist log(BO) = 0.1031 cM 

made to loosen the default margin of  error of 2% to 5% and then again to 8%. Results 
now began to be reported.  A 40% constancy criterion coupled with a 2% margin of  
er ror  was simply too strict. The  results of this run are shown in Table 6. What  is 
most  promising about  these results is that the same equat ion was found to hold for 
all of  the data,  with only the constant  differing. This suggests the discovery of  some 
type of physical p h e n o m e n o n  more  strongly than if different equat ions were 
uncovered.  

Af ter  conduct ing numerous  experiments  in this manner ,  the most  promising 
results were shown to the members  of  the chemistry depar tment  for their opinion. 
While the results looked promising,  the conclusion was that these relations did not 
coincide conceptual ly  with any known physical p h e n o m e n o n  and the margin of 
error  used was far too  high for these data. However ,  the chemists suggested trying 
the logari thm of the bond order  as this type of  term appears  often in empirical bond  
o r d e r - b o n d  length correlations. Continuing with the experimentation, the program 
~vas instructed to replace Bond Order  by log(Bond Order) ,  a variety of  parameter  
settings were tried, and the conclusions of Table 7 were obtained.  As before,  these 
results looked promising,  but the margin of error  was still too high. 

Af ter  fur ther  analysis of the data by hand, it was reasoned that perhaps there was 
too much redundancy  in the original data. For  example,  each metal a tom has a 
unique radius associated with it. Therefore ,  our  chemistry expert  suggested that we 
reduce the number  of  attributes to 9, consisting of  the radius, the metal to metal 
distance, the bond order ,  the five ligand names,  and a new electrons-per-metal  

Table 8. Results using reduccd dataset with margin of error at 2%. 

Rulc A IF [LI = COllRad = 1.29 ,.. 1.35] 
[L1 - CO][Rad = 1.4] 

T H E N  MMdist  - 2.2606 Rad 

Rule B IF [eM* = 18.0] 
T H E N  MMdist  - 2.1491 Rad 

Rule C IF [L2 = Br v OSiR3 v PEt3] 
[L4 - Cl][Rad = 1.37] 
[Rad = 1.411 

T H E N  MMdist - 1.6279 Rad 

Rule D IF [L2 = Me v NR3] 
[Rad = 1.4}[L4 = CI v None} 

T H E N  MMdist  - 1.5528 Rad 
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value (eM*) calculated by adding the bond order to the old value. Since a 
somewhat new dataset was being used, the margin of error was returned to its 
default value of 2% and no variables were to be ignored. On the first run, the 
equations of Table 8 were obtained. Our chemistry expert, Professor Ted Brown 
from the University of Illinois Department of Chemistry, has judged these 
equations to be quite interesting as they hold with only a 2% margin of error. He 
still considers them inconclusive, however, because they need physical explanation. 
He suggested further analysis to try and uncover an underlying commonality 
between the compounds of each class which could explain these findings. 
Nevertheless, this experiment demonstrates that ABACUS is quite useful in 
analyzing real world data and searching for unknown laws. 

8. Discussion of methodology 

The experiments presented in Section 7 have shown that ABACUS can potentially 
be a valuable tool for discovering laws in a variety of domains. This section 
discusses the current implementation of ABACUS, its limitations, and outlines 
some problems for future research. 

8.1 Analysis of experimental results 

ABACUS runs on a Sun Microsystems workstation running FranzLisp under a 
UNIX environment. A variety of examples have been presented, representing 
different complexities of equations and preconditions. Table 9 shows a comparison 
of how complex all of our examples turned out to be. Equations composed solely of 
multiplication and division have been shown to be quite simple discovery tasks. 
This is exhibited by the small number of nodes required for all of the examples 
except the ones for conservation of momentum and kinetic energy. The Coulomb 
example was more difficult than the ideal gas law because it contained a squared 

Table 9. Relevant statistics of the quantitative learning experiments. 

Number of Number of Total Equation Precondition Total 
Example Events Classes Nodes Discovery Time Generation Time Time 

Ideal Gas 15 l 3 3 0 3 
Momentum 22 3 62 56 12 68 
Coulomb 36 5 32 47 27 74 
Stoke's Law 72 6 5 18 31 49 
Kinetic Energy 12 2 987 850 5 855 
Chemistry 31) 4 5 3 28 31 

NOTE: All times are given in CPU seconds. 
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ferm, forcing the proportionality graph search algorithm to exhaustively search the 
initial, highly interconnected graph. Equations which contain addition or subtrac- 
tion are significantly more difficult using the methods presented here, but are still 
"quite manageable. From the times, given in CPU seconds, it can be seen that the 
program was relatively efficient for every example. 

Performance is lessened somewhat by large numbers of events. This can be seen 
by comparing the time required to generate five nodes for the large set of Stoke's 
law data against the time required to generate five nodes for the smaller chemistry 
example. Other factors, such as the number of proportionality tests performed, 
should be considered when comparing these times. 

8.2 Limitations 

There are a number of problems yet unsolved. Equations that the current 
ABACUS can discover are limited to those involving multiplication, division, 
addition, and subtraction operators. The equations are of the form 

f (x)  = Constant 

where f (x)  is composed solely of user defined variables and operations between 
them. General polynomials with coefficients cannot be discovered, preventing the 
~liscovery of a variety of physical laws. In addition, terms such as sin and log cannot 
exist unless the user explicitly tells the program to create them. 

There are classes of equation forms that cannot be discovered by the methods 
used in ABACUS. For example, data corresponding to certain parabolas and 
oscillations often appear to be void of qualitative proportionalities due to the 
problem of conflicting proportionalities. In addition, the user is not required to 
supply carefully prepared data in which some attributes are held constant while 
others are allowed to change. This causes many Prop ~ assertions, making the 
problem more difficult than it would be otherwise. 

8.3 Future research 

Of major importance is recognizing a desirable term once it is created. When a 
term is invariant across all events, the task is easy. When only a percentage of 
~events are covered, when should the search algorithm stop? The problem lies in the 
basic ignorance of the program. What is needed is some form of conceptual 
knowledge which would enable it to distinguish between conceptually good terms 
and conceptually useless terms. This became quite evident during testing of the 
program when occasionally an unexpected answer would be returned which in fact 
covered more events than the desired equation, but which was mathematically far 
more complicated. We need to develop a method for the program to consider 
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syntactically desirable equations even when they may not be the most general. 
In this work, we investigated what could be accomplished when only minimal 

information is provided by the user. Previous quantitative discovery systems have 
required that the user specify which variables are dependent and which ar~ 
independent. They have also required that all permutations of variable values be 
given so that Prop ? assertions will never exist (Langley, 1981). The later condition 
means that the user must generate a great many more events than needed by 
ABACUS. In regression analysis, the form of the equation is predefined. In our 
experiments, however, it soon became evident that the value of ABACUS as a 
researcher's assistant tool would be enhanced if we allowed additional knowledge 
to be optional and didn't prevent the user from supplying available knowledge. A. 
simple but useful addition would provide an option for a user to include or exclude 
specified variables from the equation discovery or precondition generation 
processes. 

The most challenging task we undertook was the discovery of multiple laws for 
a collection of data. This single decision prevented the use of curve-fitting 
techniques, eliminating the possibility of discovering a more general class of 
equations and making many very interesting relationships more difficult to 
discover. The search strategy employed and the trend detection algorithm used 
were forced to be quite loose. As a result, the potential search space was increaseci, 
irrelevant variables became harder to locate, and conflicting proportionalities 
became an issue. A possible solution may be to cluster the events prior to invoking 
the equation discovery module in some manner such that, in each set of events, the 
events all hold the same set of proportionality assertions. Given this, the more 
precise approaches such as regression analysis could be taken once again. The 
method would be based on some form of clustering algorithm, much like the 
conceptual clustering of Miehalski (1980) and Stepp (1984), and might be quite 
simple, merely forming clustered groups so that all events support the same 
proportionality assertion. As mentioned earlier, the problem of conflicting 
proportionalities, such as shown in Figure 1, can be solved for most cases by 
determining the points where the proportionality between variables changes sign. 
This may introduce a new problem, that of merging two or more equations into 
one, as in the case of parabolic or sinusoidal functions. 

9. Summary 

The methodology of equation discovery and precondition generation used ifi 
ABACUS has been presented, analyzed, and illustrated through examples. 
ABACUS has proved useful for a number of problems in chemistry and physics and 
the results show that it has been efficient for each learning task. 

ABACUS measures well against the criteria we proposed for a quantitative 
discovery system. It handles irrelevant variables, and is capable of formulating 
multiple equations for characterizing the data and determining qualitative or logical 
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• preconditions for each equation. The techniques of variable combination through 
search, as used in the early BACON programs, have been considerably improved 
upon by analyzing the specific search characteristics of the domain. The current 
version of ABACUS falls short on two points. It is relatively limited in the kinds of 
equations which can be discovered, and it occasionally suffers from the 
computational cost of search. 

The work presented here is unique in several ways. First, no prior work has 
addressed the real-world issue of discovering multiple equations to describe 
different aspects of a physical situation. Even for cases where it appears that a 
single physical phenomenon is being observed, as in the falling bodies example, 
different physical situations may exist requiring different equation forms to 
describe them. Previous programs have been unable to discover different equations 
for different subsets of the given events. Second, the explicit generation of logic- 
style preconditions for the discovered equations is novel. When different physical 
situations exist for what appears to be the same phenomenon, preconditions 
determine when each equation applies. Finally, new search techniques for equation 
discovery have been created. In conclusion, the ABACUS system seems to be a 
useful new tool in the analysis of experimental data. 
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