
Nonlinear Dynamics 10: 19-30, 1996. 
© 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

A Numerical Method for Determining Nonlinear 
Normal Modes 

JOSEPH C. SLATER 
Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, U.S.A. 

(Received: 15 April 1994; accepted: 17 April 1995) 

Abstract. This paper examines a new approach for determining the nonlinear normal modes of undamped non- 
gyroscopic multiple degree-of-freedom systems. Unlike algebraic solutions that generally assume a solution in 
the form of a polynomial expansion, this method makes only the assumption of repetitive motion in numerically 
determining the mode shapes. The advantage of this approach is that the accuracy obtained in the mode shape 
identification is a function only of the accuracy of the numerical integration used and not of the number of terms 
in the power series expansion. The drawbacks are that invariance of the modal manifolds cannot be proven and 
mode bifurcations can be easily overlooked. 
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Introduction 

This work presents a new way of considering and determining nonlinear normal modes for dis- 
crete nonlinear system models. This concept has been approached by numerous authors since 
the original defining work of Rosenberg in 1966 [7]. The thesis of Vakakis [12] demonstrates 
the perturbation methodology of Manevich and Mikhlin [4] as well as the method of multiple 
scales [5] for finding nonlinear normal modes. An invariant manifold method for identifying 
nonlinear normal modes and their corresponding modal equations has been demonstrated by 
Shaw and Pierre [9]. Nonlinear normal modes have been determined numerically by Vakakis 
[12] by "observing the simulated oscillation in the configuration plane of the system" for 
various modal amplitudes. This paper demonstrates that the accuracy of perturbation methods 
breaks down for higher amplitudes. 

Rosenberg [7] defined normal modes as "Vibrations-in-unison of an admissible, autonomous 
system." Shaw and Pierre [9] have shown that this definition is too restrictive in that it does 
not account for motion in which the phase of the motion varies as a function of location in 
the structure. Shaw and Pierre [10, 11] and Shaw [8] further extended their method to two 
distinct methods for finding nonlinear normal modes of distributed parameter models. These 
two methods are compared in Boivin et  al. [1]. 

King and Vakakis [3] have developed an energy based method for finding nonlinear normal 
modes of undamped systems, and Nayfeh and Nayfeh [6] have demonstrated the application 
of the Method of Multiple Scales for finding nonlinear normal modes. Vakakis and Cetinkaya 
[13] have demonstrated the existence of nonlinear mode localization in perfectly symmetric, 
weakly coupled structures. Caughey et  al. [2] investigated bifurcations of normal modes for 
different forms of stiffness nonlinearities and Vakakis and Rand [14, 15] used Poincar6 maps 
to examine bifurcation at low energies and chaotic motion at high energies. 

In what follows, the nonlinear normal mode definitions of Rosenberg [7] are applied to a 
set of weakly nonlinear equations representing a simple nonlinear system. This restricts the 
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Fig. 1. Algorithm flow chart. 

method to modes involving repetitive motions, i.e. undamped non-gyroscopic systems. By 
expressing the deviation of the motion from the definitions, a cost representing distance from 
a nonlinear modal manifold is found. Optimization tools are then used to minimize this cost, 
and thus numerically determine the shape of the nonlinear manifold. 

Numerical Determination of the Nonlinear Normal Modes 

Determination of the nonlinear normal mode shapes can be broken down into five steps, many 
of which are repeatedly performed in the identification process (see Figure 1). The first step 
of this approach is the determination of the linear modes of the linearized system. As in 
perturbation theory, it is assumed here that the nonlinear normal modes exist near the linear 
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modes of the linearized system. However, this constraint must only be met at the starting 
point of the optimization process. By choosing the starting point to be at a sufficiently low 
amplitude, this condition can always be met. The initial states of the system are chosen such 
that the system is moving on or close to only one mode. This provides the starting point for 
the determination of the selected nonlinear normal mode. Each nonlinear normal mode is then 
identified one mode at a time from a similar starting point. 

The second step is the integration of the nonlinear equations forward one period of oscil- 
lation (as approximately by one period of the linear system) from an initial condition of zero 
displacement and initial velocities placing the motion on the linear mode of choice. The equa- 
tions are also integrated backward from the same initial condition. This creates approximately 
two cycles of motion near the nonlinear normal mode. Both the period of oscillation and the 
path of the motion in the trajectory space will be in error. If the chosen initial condition causes 
the motion to be identically repeated, then the motion has taken place in a nonlinear normal 
mode [7]. If the final displacements are non-zero after integrating forward one cycle, then the 
motion is either not taking place in a nonlinear normal mode or the period of oscillation is 
incorrect. 

The third step is the determination of a measure of error for the chosen initial conditions. 
Two measures of error are readily apparent. The first is 

cost1 =/~I"= (z i( t )  - z i ( t  - 7-))2 dt , (1) 

where zi represents the ith state when the equations are written in state space, t represents 
time, 7- represents the approximate period of oscillation, and n is the number of degrees of 
freedom. This measure quantifies how far apart the two successive cycles are from each other. 
A second simpler measure of error is given by 

n 

cost2=Zxi(7-) 2, (2) 
i=1 

where xi represents the ith displacement, which measures variation of the displacement after 
a period 7-. 

The fourth step in determining the nonlinear normal modes is the minimization of these 
errors. Minimization of the first cost function such that its value is zero is identical to meeting 
the Rosenberg [7] criteria for a nonlinear normal mode when 7- is known. Unfortunately, the 
true period of oscillation, 7-*, is not known a priori. It is approximately known, however, since 
it is nearly identical to the linear period of oscillation for small oscillations. The minimum 
value for each cost function is zero when the system is moving in a nonlinear normal mode 
and 7- = 7-*. Practical limitations of numerical integration dictate that zero values for the 
cost functions are most likely unobtainable. The best approximation for the nonlinear normal 
mode and its period of oscillation is the trajectory, found from integration of the nonlinear state 
equations of motion, that minimizes both costs. Since the minimums for functions one and 
two may not occur at the same place, a linear combination of the two functions is minimized 
instead. 

An infinite number of solutions exist to the minimization problem unless the modal ampli- 
tude is constrained in some fashion. This can be done by constraining the kinetic energy at 
time zero to be constant throughout the optimization, or by constraining one single velocity 
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Fig. 2. A nonlinear two-degree-of-freedom system. 

to a constant at time zero. This later constraint can fail, however, in the case where the chosen 
degree of freedom is near a linear node [1], or when mode localization takes place. Once 
the initial values for the velocities have been determined for a low amplitude motion of the 
system in the selected mode, then the nonlinear mode shape is identified for that single level 

of vibration. 
The final step is to use the initial values found for the low amplitude of vibration, increase 

them by a small step (perhaps 10%) and combine them with the determined value of r* for 
the previous amplitude as the initial guesses for the optimization at a slightly higher modal 
amplitude. If the step size is small enough, the initial guess will be close enough to allow quick 
minimization of equations (1) and (2). If the step size is too large, the initial conditions will 
be sufficiently far away from the desired mode such that another minimum of equations (1) 
and (2) may be found pertaining to one of the other modes. 

Steps two through five are repeatedly performed until a set of initial conditions and 
corresponding periods of oscillation are found over the range of modal amplitudes desired for 
the chosen model. All of the preceding steps are then performed for each desired nonlinear 
normal mode. 

Example 

Consider the two-degree-of-freedom system studied by Shaw and Pierre [9] shown in Figure 2. 
The potential energies of the springs are given by 

1 1 Xl 2 + x4 Vl=  g 

1 
v2 = (z2 -Xl) 2 

1 
v3 = (3) 

and the masses are of unit mass. The equations of motion for the system are 

:el ] Yl 
Yi ---- --2Xl -- 1 X~ -'~ X 2 (4) 

:~2 Y2 ' 
~)2 Xl -- 2X2 

where Yl and Y2 are the time derivatives of the positions x 1 and x2. For small amplitude 
motion, the system can be approximated by the equations 

aT1 Yl 
Yl = --2Xl q- X2 (5) 
:b2 Y2 
~)2 Xl -- 2X2 
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The linear mode shapes for these equations are xl = z2 and xl = - z 2  with natural 
frequencies of 1 rad/sec and v/3 rad/sec. For demonstration purposes, only the determination 
of the first nonlinear normal modes will be shown. Both nonlinear normal modes are shown 
in the results, however. 

For small oscillations, the first nonlinear normal mode and the first linear mode will nearly 
coincide. Thus, initial conditions on the first linear mode will nearly coincide with initial 
conditions on the nonlinear normal mode. The starting guess for the initial conditions is 
chosen to be [Xl ffl ~72 ~)2] T = [0 0.1 0 0.1] T. The results are shown in Figure 3. Cell one 
is a plot of all four states integrated forward and backward in time. Cell two shows the initial 
conditions and the cost functions for this set of initial conditions. In cell three, the two cycles 
have been plotted on the same time scale for comparison. Cell four shows the differences in 
the states between the two cycles. 

It is clear from Figure 3 that the initial conditions determined from the linear mode are 
very close to the nonlinear normal mode. Constrained minimization was performed using 

the constr.m function of the MATLAB (~) Optimization Toolbox. Free states of the initial 
conditions (the velocities) were constrained to within 20% of their initially guessed values. 
This constraint kept the optimization in a region dominated primarily by the chosen mode. 
Likewise, the total integration period was constrained to be within 20% of the initial guess for 
the period of oscillation in order to constrain the integration to one period of oscillation, yet 
allow the period to change with amplitude. In performing this example, it was also determined 
that cost two could be used just as effectively as a linear combination of the two costs. This 
slightly reduced the function evaluation time and thus decreased the time to perform the 
optimization. 



24 J. C. Slater 

0.15, 

co 
co 0.1 

¢~ 0.05 

09 
"5 0-. 

E -0.05-. 
0 

-o.1 
,m 

-0.15 
0.1 

0.1 

o o /  0.05 

-0.05 

,,,'-,,,yWe~o~" -0.2 -0.1 Modal Modal Displacement 

Fig. 4. Displacement of mass two as a function of the modal displacement and velocity for mode one at low 
amplitude. 

Minimization of the total cost function yields that the actual initial conditions should be 
[5:1 91 5:2 92] T = [0 0.10000 0 0.10025] r .  Figure 4 shows the displacement of mass two 
as a function of the modal displacement and velocity for mode one over two cycles. (Note 
that for this example, the motion of the first mass has been defined as the modal coordinate.) 
Clearly the system is moving in the nonlinear normal mode nearest the corresponding linear 
mode for the initial conditions found since the modal motion is repeated. 

As would be expected, at higher amplitudes the nonlinear mode shape diverges from the 
linear mode shape. Figure 5 shows the numerical results of forward and backward integration 
from [5:1 91 5:2 92] T = [0 1 0 1] 7". Clearly this guess for the initial condition is quite poor, 
but it is still closer to the first nonlinear mode than the second nonlinear mode. In stepping 
through initial modal velocity amplitudes from 0.1 to 1, the initial prediction for the velocity 
of mass two is 1.21071. The final result after minimizing the cost function is found to be 
1.25790. As an example, Figure 6 shows the motion of the second mass as a function of the 
modal amplitude and velocity found from numerically integrating the equations of motion 
from the "correct" initial conditions. This result was repeated for a range of modal amplitudes 
from 0.1 to 2 by steps of 0.1. The results are shown in Figure 7. By stepping through to 
higher amplitudes gradually, the optimization at each amplitude can begin from a much better 
starting point, and the optimization is much more likely to converge to the correct nonlinear 
normal mode (and will converge much more quickly) than if larger steps are taken. 

To give an idea of how nonlinear mode one is, Figure 8 shows the difference between the 
numerically determined nonlinear normal mode and the linear mode. It is clear that even at 
relatively low amplitudes, the nonlinear contribution is significant. 

Shaw and Pierre [9] represented the first nonlinear normal mode with a third order polyno- 
mial in the modal displacement, u, and the modal velocity, v, as z2 = u +  1/6u3+ 1/4uv 2 where 
x2 is the displacement of the second degree of freedom. Numerically solving for the first nonlin- 
ear normal mode and curve fitting u and v yields instead that z2 = u+O. 18780u3+O.22403uv 2. 
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0.5 

Modal Displacement 

Fig. 6. Displacement of mass two as a function of the modal displacement and velocity for mode one at high 
amplitude. 

All of the other polynomial coefficients found using the numerical method are zero to five 
decimal places. The error between the two polynomial representations and the numerically 
determined mode are shown in Figures 9 and 10. 
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Clearly, the polynomial fit of the numerical solution is a better representation of the 
nonlinear normal mode at higher amplitudes. This is because the invariant manifold method, 
not unlike perturbation methods, is dependent on relatively low amplitudes in order to have 
convergence of the polynomial. Above a modal amplitude of 1, the assumption that higher 
order polynomial terms are negligible cannot be assumed (truncation of the power series 
expansion cannot be justified). Thus, the analysis cannot be performed accurately. In simply 
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curve fitting a polynomial to the raw data for the range of  amplitudes of interest, a much better 
polynomial representation to the nonlinear normal mode can be obtained. It is also possible 
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to easily evaluate the accuracy of the polynomial representation by observing error plots such 
as Figures 9 and 10. 

The second nonlinear normal mode was also determined numerically and is shown in 
Figure 11. It is extremely planar and thus is very close to the linear mode even at high 
amplitudes. Figure 12 shows the error obtained when assuming that the mode is linear. Note 
that the modal displacement and modal velocity axes of Figures 11 and 12 have been switched 
as compared to Figures 7-10 to aid in the visualization of mode two. 



t -  
O 

c~ 
t -  
O2 
(,9 

,e 0.04-, 
n" 

E 0.02- 
O 
C 

O 
(3_ 

"O 0 -  

._. 

-0.02 - 
__> 

0 

-o.044; 
z 
L_ 
0 

W 

A Numerical Method for Determining Nonlinear Normal Modes 29 

4 
1 / - - " 2  

-1 

Modal Velocity -4 -2 Modal Displacement 

Fig. 13. Difference between numerical solution and polynomial curve fit for mode two. 

c- 
O 

0.04- 
(:1) 
r~ 

_rr 0,02, 
._ 
E 
0 ¢- 
> ,  
o O, 
13. 

L. 
._e 

-0.02-  
¢., 

-0.04_- 
,-- 4 
0 

W / A 1 .  5 
2 0 ~ f "  1 _.~._j--<Jf~/~0 0.5 

-0.5 
-1 

Modal Velocity -4 -1.5 Modal Displacement 

Fig. 14. Difference between numerical solution and invariant manifold solution for mode two. 

Shaw and Pierre [9] represented the second nonlinear normal mode by a third order 
polynomial in the modal displacement, u, and the modal velocity, v as x2 = - u  + 5/26u 3 + 
3/52uv 2 where z2 is the displacement of the second degree of freedom. Numerically solving 
for the first nonlinear normal mode and curve fitting a third order polynomial in u and v 
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yields instead that x2 = -0.99117u + 0.16243u 3 + 0.04676uv 2. All of the other polynomial 
coefficients found using the numerical method are again zero to five decimal places. The error 
between the two polynomial representations and the numerically determined mode are shown 
in Figures 13 and 14. 

Again, the polynomial curve fit of the numerically determined nonlinear normal mode is 
much more accurate at high amplitudes than the representation determined using the invariant 
manifold method. It should be noted however that both representations are always less than 
5% away from the numerically determined solution for the range of amplitudes considered 
for mode 2. 

Conclusion 

A numerical method for determining nonlinear normal modes has been presented that allows 
for greater accuracy at high amplitudes than analytical methods that rely on power series 
expansions. This is due to the effect that power series cannot be effectively truncated at higher 
amplitudes. An example has been presented that demonstrates the breakdown of power series 
representations at high amplitudes while demonstrating the ability to numerically identify the 
mode shapes. Although the numerical method can be used to find nonlinear normal modes 
more accurately, it is clear from the flow chart of Figure 1 that in cases where bifurcation 
occurs, the bifurcation can go undetected if it is not identified a priori. 
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