
Machine Learning 2: 139-172, 1987
© 1987 Kluwer Acadenfic Publishers, Boston Manufactured in The Netherlands

Knowledge Acquisition Via Incremental
Conceptual Clustering

DOUGLAS H. FISHER (DFISHER@ICS.UCI.EDU)

Irvine Computational Intelligence Project, Department of Information and Computer
Scie~tce, Univer,sity of California, Irvine. California 92717, U.S.A.

(Received: October 6, 1986)
(Revised: July 4, 1987)

Keywords: Conceptual clustering, concept formation, incremental learning, inference,
hill climbing

Abstract. Conceptual clustering is an important way of summarizing and explaining
data. However, the recent formulation of this paradigm has allowed little exploration
of conceptual (:lustering as a means of improving performance. Furthermore, previous
work in conceptual clustering has not explicitly dealt with constraints imposed by real
world environments. This article presents COBWEB, a conceptual clustering system that
organizes data so as to maximize inference ability. Additionally, COBWEB is incremental
and computationally economical, and thus can be flexibly applied in a variety of domains.

1. I n t r o d u c t i o n

Machine learning is concerned with improving performance by automat-
ing knowledge acquisition and refinement. This view is reflected in the
simple model of intelligent processing (Dietterieh, 1982) shown in Figure
1. In this model~ a learning system accepts environmental observations and
incorporates them into a knowledge base, thereby facilitating some perfor-
mance task. Assumptions about the environment~ knowledge base, and
performance element all impact the design of a learning system (Rendell,
1986). This article is concerned with conceptual clustering, a learning task
that has not traditionally been discussed in the larger context of intelligent
processing. As with other forms of learning, such a t rea tment can have
i inportant implications on the design of clustering systems.

Conceptual chlstering is a machine learning task defined by Michalski
(1980). A conceptual clustering system accepts a set of object descriptions
(events, observations, facts) and produces a classification scheme over the
observations. These systems do not require a ' teacher' to preclassify ob-
jects, but use an evaluation flmction to discover classes with 'good' con-

140 D. H. FISHER

Learning ~ Performance
Element Element

Figure 1. A model of learning and performance.

ceptual descriptions. Thus, conceptual clustering is a type of learning by
observation (as opposed to learning from examples) and is an important
way of smnmarizing data in an understandable manner. However, because
this paradigm has been formalized only recently, previous work has not
focused on explicating these methods in the context of an environment
and performance task. Traditional treatments have concentrated almost
exclusively on the clustering (i.e., learning) mechanism and the form of the
resultant classification (i.e., knowledge base). This paper presents COB-
WEB, a conceptual clustering system that is inspired by environmental
and performance concerns.

The most important contextual factor surrounding clustering is the gen-
eral perfl)rmance task that benefits from this capability. While most sys-
tems do not explicitly address this task (and thus the often asked question:
"How do you know the resulting classifications are any good?"), some ex-
ceptions exist. CLUSTER/S (Stepp & Michalski, 1986) augments object
descriptions with attributes that may be useful for inferring conditions un-
der which domain-dependent goals (e.g., 'survival') can be attained. Cheng
and Fu (1985) and Fu and Buchanan (1985) use clustering to organize ex-
pert system knowledge. Abstracting these uses of conceptual clustering,
classification schemes can be a basis for effective inference of unseen object
properties. The generality of classification as a means of guiding infer-
ence is manifest in recent discussions of problem solving as classification
(Clancey, 1985). For example, a tiger may be recognized by its observed
features and thus be regarded as life-endangering, or a set of symptoms
may suggest a particular disease from which a cure can be inferred. COB-
WEB favors elasses that maximize the information that can be predicted
from knowledge of class membership.

A second contextual factor surrounding learning is the environment.
Conceptual clustering systems typically assume environmental inputs are
indefinitely available for examination and thus the environment is amenable
to nonincremental processing of observations. However, real world environ-

INCREMENTAL CONCEPTUAL CLUSTERING 141

merits (Carbonell & Hood, 1986; Langley, Kibler, & Granger, 1986; Sam-
rout & Hume, 1986) motivate incremental object assimilation. Learning
methods that incrementally process observations are gaining prominence
(Lebowitz, 1982; Kolodner, 1983; Reinke & Michalski, 1985; Rendell, 1986;
Sehlimmer & Fisher, 1986). In response to real world considerations, COB-
WEB has been constructed as an incremental method of conceptual clus-
tering.

In summary, COBWEB's design was motivated by concerns for envi-
ronment and performance: learning is incremental and seeks to maximize
inference abilities. The following section develops conceptual clustering as
a process of search. Section 3 follows with a detailed description of COB-
WEB in terms of this framework. Section 4 demonstrates that COBWEB
performs effective incremental learning of categories that are useful for pre-
dicting unknown object properties. Section 5 concludes with a summary of
results, a discussion of shortcomings, and suggestions on how fllture work
might rectify some of these problems.

2. Background: Learning as search

This section develops a framework for understanding COBWEB in terms
of a pervasive paradigm of AI - search. Concept learning as search was first
proposed to describe learning from examples and the main ideas are sum-
marized here. The search model is then extended to conceptual clustering.
Finally, a form of incremental learning is described along two dimensions:
,search control and search direction.

2.1 Concept learning from examples

The predominant form of concept learning studied in AI has been learn-
ing from examples. This task assumes that objects are classified by a
'teacher' with respect to a number of object classes. The goal is to de-
rive concepts that appropriately describe each class. Mitchell (1982) has
characterized learning from examples as a process of search. For each ob-
ject (:lass, the learner navigates through a space of concept descriptions
until it finds an appropriate concept.

Using tile search framework, systems for learning from examples have
been characterized along a number of dimensions (Mitchell, 1982; Diet-
terich & Michalski, 1983; Langley & Carbonell, 1984). One dimension is
the search control strategy; this can vary from exhaustive strategies, such
as depth-first or breadth-first search, to heuristic methods like hill climb-
ing, beam search, or best-first search. A second dimension, the direction of
search, tbllows from the observation that concept descriptions are ordered

142 D. H. FISHER

Table I. Animal descriptions.

Name BodyCover HeartChamber BodyTemp Fertilization

'mammal ~

'bird'
'reptile'
'amphibian'
'fish'

hair
feathers
cornified-skin
moist-skin
scales

four
h)ur
imperfect-four
three
two

regulated
regulated
unregulated
unregulated
unregulated

internal
internal
internal
external
external

by generality. Specifically, a learner may use generalization operators to
search from specific concepts to more general ones, or it may use special-
ization operators to search from general to specific.

While learning from examples is a simple context for introducing the
idea of learning as search, the real interest is in extending this framework
to conceptual clustering. This task differs from learning from examples in
that no teacher preclassifies objects; the task of the learner is to discover
appropriate classes, as well as concepts for each class.

2.2 Conceptual clustering

Clustering forms a classification tree over objects. For example, given the
animal descriptions in Table 1, clustering might result in the classification
tree shown in Figure 2. Methods of conceptual clustering (Michalski, 1980;
Michalski & Stepp, 1983) differ from earlier methods of numerical taxonomy
(Everitt, 1980) in that clustering quality is not solely a flmction of indi-
vidual objects, but is dependent on concepts that describe object classes
(e.g., the simplicity of concepts) and/or the map between concepts and
the classes they cover (e.g., the fit or generality of derived concepts). De-
spite differences in representation (Rendell, 1986) and quality judgements
(e.g., understandability versus inference ability), all conceptual clustering
systems evaluate class quality by looking to a summary or concept descrip-
tion of the class.

There are two problems that must be addressed by a conceptual cluster-
ing system:

• The clustering problem involves determining useful subsets of an object
set. This consists of identifying a set of object classes, each defined as
an extensional set of objects.

• The characterization problem involves determining useful concepts for
each (extensionally defined) object class. This is simply the problem
of learning from examples.

INCREMENTAL CONCEPTUAL CLUSTERING 143

'reptile'

'mammal' 'bird' 'fish' 'amphibian'

Figure 2. A h ierarchica l c lus ter ing over an imal descr ip t ions .

Fisher and Langley (1985, 1986) adapt the view of learning as search to fit
conceptual clustering. Clustering and characterization dictate a two-tiered
search, a search through a space of object clusters and a subordinate search
through a space of concepts. 1 In the case of hierarchical techniques this
becomes a three-tiered search, with a top-level search through a space of
hierarchies.

As with learning fl'om examples, the dimensions of search control and
,~earch direction can also be used to distinguish conceptual clustering sys-
tems. For instance, most systems transform a single classification tree
throughout processing and rialS hill climb through the space of hierarchies
(Michalski & Stepp, 1983; Fisher, 1985). On the other hand, Langley
and Sage's (1984) DISCON system makes a nearly exhaustive search of
hierarchy space. Second, when searching through a space of hierarchies,
search direction may dictate building a tree top down (divi,~ive techniques)
by continually dividing nodes (Langley & Sage, 1984; Miehalski & Stepp,
1983; Fisher, 1985) or building a tree bottom-up (agglomerative methods)
by continually fusing nodes (Hanson & Bauer, 1986; Cheng & Fu, 1985).

Search control and direction are important dimensions of concept learn-
ing. The next section motivates choices along these dimensions for purposes
of incremental learning.

tMethods of numerical taxonomy do not result in concept descriptions for discovered
classes. By definition, clustering and characterization cannot be independent in concep-
tual clustering; the results of characterization (i.e., a set of concepts) must be used to
determine the quality of object classes (i.e.. the result of clustering).

144 D. H. FISHER

2.3 Incrementa l concept induct ion

Many concept learning systems, whether they carry out learning from
examples or conceptual clustering, are nonincremental all objects must be
present at the outset of system execution. In contrast, incremental methods
accept a stream of objects that are assimilated one at a time. A primary
motivation for using incremental systems is that knowledge may be rapidly
updated with each new observation, thus sustaining a continual basis for
reacting to new stimuli. This is an important property of systems that are
used under real-world constraints (Carbonell & Hood, 1986; Langley, Ki-
bler, & Granger, 1986; Sammut & Hume, 1986). Search-intensive methods
may be appropriate in a nonincremental system, but may be too costly for
incremental processing, since they require updating a frontier of concept
hypotheses and/or examining a list of previously seen objects. Schlimmer
and Fisher (1986) imply that incremental processes are profitably viewed
as strategies operating under diminished search control. Specifically, they
use a hill-climbing strategy (with no backtracking) to implement and test
incremental variants of Quinlan's (1983) ID3 program.

Schlimmer and Fisher demonstrate that the cost of object incorporation
can be significantly reduced, while preserving the ability of the learning
system to converge on concept descriptions of high quality. The ability
to achieve high quality concept descriptions, despite the limitations of hill
climbing, is maintained by extending the set of available operators. Rather
than restricting search to be unidirectional, both generalization and special-
ization operators are supplied. Bidirectional mobility allows an incremental
system to recover from a bad learning path.

In learning from examples, Winston's (1975) 'ARCH' program fits this
view of incremental processing; it employs a hill-climbing strategy with
operators for both generalization and specialization. This view can also be
extended to conceptual clustering. For instance, Fisher and Langley (1985,
1986) view Lebowitz' (1982, 1986a) UNIMEM as an incremental conceptual
chlstering system. Given a new object and an existing hierarchy that was
built from previous observations, the program incorporates the object into
the hierarchy. This results in a classification hierarchy that covers the new
object as well as previously seen objects. Since UNIMEM maintains only
one hierarchy following each observation, it can be viewed as hill climbing
through a space of classification hierarchies. Second, UNIMEM does not
build its hierarchies in an entirely top-down or bottom-up fashion. Instead,
it has operators tot merging nodes in an agglomerative manner and deleting
nodes and associated subtrees. Node deletion selectively undoes the effects
of past learning and thus approximates backtracking.

INCREMENTAL CONCEPTUAL CLUSTERING 145

While existing descriptions of UNIMEM and similar systems like CYRUS
(Kolodner, 1983) are not fl'amed as search, desirable search properties can
be abstracted from them. These systems use diminished search control
and greater operator flexibility to navigate through hierarchy space, and
thus employ a practical strategy for incremental learning. The advantage
of viewing these systems in terms of search is that it requires explicit con-
sideration of the 'goal' of learning and of the system's ability to achieve
or approximate this goal. The search framework forces analysis to move
beyond anecdotal characterizations of system behavior.

3. C O B W E B : Incremental conceptual c lustering

UNIMEM and CYRUS, along with the conceptual clustering work of
Miehalski and Stepp, have inspired the COBWEB system. COBWEB is
an incremental system for hierarchical conceptual clustering. The system
carries out a hill-climbing search through a space of hierarchical classifica-
tion schemes using operators that enable bidirectional travel through this
space. This section describes COBWEB, filling in the details of the general
incremental strategy. Specifically, the section gives

• the heuristic evaluation measure used to guide search,

• the state representation, including the structure of hierarchies and the
representation of concepts.

• the operator,s used to build classification schemes, and

• the control strategy, including a high level description of the system.

3.1 Category utility: A heuristic evaluation measure

COBWEB uses a heuristic measure called category utility to guide search.
Gluck and Corter (1985) originally developed this metric as a means of
predicting the basic level in human classification hierarchies. Briefly, basic
level categories (e.g., bird) are retrieved more quickly than either more
general (e.g., animal) or more specific (e.g., robin) classes during object
recognition. More generally, basic level categories are hypothesized to be
where a number of inference-related abilities are maximized in humans
(Mervis & Rosch, 1981).

Identifying preferred concepts in humans is important from a cognitive
modeling standpoint, but it also provides a basis for developing principled
criteria for evaluating concept quality in AI systems. Category utility can
be viewed as a fimction that rewards traditional virtues held in clustering
generally sinfilarity of objects within the same class and dissimilarity
of objects in different classes. In particular, category utility is a tradeoff

146 D . H . F I S H E R

between intra-class similarity and inter-class dissimilarity of objects, where
objects are described in terms of (nominal) a t t r ibute-value pairs like those
in Table 1. Intra-class similarity is reflected by condit ional probabilities of
the form P(Ai = Vij]Ck), where Ai = Vi i is an at t r ibute-value pair and Ck
is a class. The larger this probability, the greater the propor t ion of class
members sharing the value and the more predictable the value is of class
members . Inter-class similarity is a function of P(Ck[Ai = Vij). The larger
this probability, the fewer the objects in contras t ing classes tha t share this
value and the more predictive the value is of the class.

These probabili t ies are dispositions of individual values, but they can be
combined to give an overall measure of par t i t ion quality, where a par t i t ion
is a set. of mutually-exclusive object classes, {C1, C2, ..., Cn}. Specifically,

n

~ ~ r (Ai = Vij)P(CklAi = Vij)P(A~ = VijlCk), 3 - 1
k = l i j

is a tradeoff between intra-class similarity (through P(Ai = Vij[Ck)) and
inter-class dissimilarity (through P(Ck[Ai = Vii)) tha t is summed across
all classes (k), a t t r ibutes (i), and values (j). The probabili ty P(Ai = Vii)
weights the impor tance of individual values, in essence saying it is more im-
por tan t to increase the class-conditioned predictabil i ty and predictiveness
of frequently occurring values than for infrequently occurring ones.

Funct ion 3 1 balances tradit ional concerns of intra- and inter-class simi-
larity (i.e., predictabil i ty and predictiveness). However, it also rewards the
inference potent ia l of object class part i t ions. More precisely, for any i, j ,
and k, P(Ai '=- Vij)P(CklAi = Vij) = P(Ck)P(Ai = VijlCk) by Bayes rule,
so by subs t i tu t ion function 3 1 equals

n

r (ck) ~ ~ P(Ai = VisIG?. 3 - 2
k = l i j

In words, ~i ~ j P(Ai = Vij]Ck) 2 is the expected number of a t t r ibute val-
ues that can be correctly guessed for an arbi t rary Inember of class Ck.
This expecta t ion assumes a guessing s trategy tha t is probability matching,
meaning tha t an a t t r ibute value is guessed with a probabil i ty equal to its
probabili ty of occurring. Thus, it assumes tha t a value is guessed with
probabil i ty P(Ai = Vij[Ck) and tha t this guess is correct with the same
probability. 2

2Probabil i ty match ing can be contras ted with probability maximizing. The la t ter s trat-
egy assumes the most frequently occurr ing value is always guessed. While this s t ra tegy
may seem superior at a cursory level, it is not sensitive to the distribution of all a t t r ibu te
values and is not as desirable for henristically ordering object part i t ions.

INCREMENTAL CONCEPTUAL CLU~S TER.IN(,~ 147

Table 2. Probabilistic representation of {fish, amphibian, mammal}.

Attributes Values and probabilities

BodyCover
HeartChamber
BodyTemp
Fertilization

scales [0.331. moist-skin [0.33]. hair [0.33]
two [0.331, three [0.33], four [0.33]
unregulated [0.67], regulated [0.331
external [0.67], internal [0.33]

Finally, Cluck and Corter define category utility as the increase in tile
expected number of attr ibute values that can be correctly guessed (P(Ck)
~ ~ j P(Ai = V~jlCk) 2) given a partit ion {C1 (J~n} over the expected
number of correct guesses with no such knowledge (~i ~ P(Ai = Vii)2).
More formally, CU({C1, C2, ..., C,~}) equals

E~=~ P(Ck)[Ei E j P(Ai = VijlCk) 2 -- Ei E j P(Ai = V/j) 2]
3 - 3

7/

The denominator, n, is tile number of categories in a partition. Aver-
aging over categories allows comparison of different size partitions. If
an attribute value, Ai = Vii, is independent of class membership, then
P(Ai VijlCk) P(Ai = Vij) and P(Ai = VijlCk) 2 P(Ai t•.ij)2 = O.
If this is true for all the attribute 's values then the attribute is effectively
irrelevant for any expression of category makeup.

3.2 Representa t ion of concepts

At the basis of any classification scheme is a representation of individual
concepts. Given its sensitivity to the distribution of attribute values, tile
choice of category utility as a heuristic measure dictates a concept rep-
resentation other than the logical, typically conjunctive, representations
used in AI. Category utility can be computed from P(Ck) of each category
in a partit ion and P(Ai = VijlCk) for each attr ibute value. A summary
representation that lists attribute values and associated probabilities is a
probabili,stic concept (Smith & Media. 1981), an example of which is shown
in Table 2.

Attribute value probabilities are computed from two integer counts. For
example, a concept for the class of birds has an entry, P(fliesIbird), that is

t imes -a -b i rd -was observed-to fly
computed by #tirnes-a-bird-was-ob,served . Both counts of the quotient
are stored at the node corresponding to "birds'. As convenient, concepts
will be alternatively discussed in terms of attribute-value probabilities and

148 D.H. FISHER

the integer counts that underlie these probabilities.

In COBWEB, a probabilistic concept labels each node in the classifi-
cation tree and summarizes the objects classified under the node. Proba-
bilistic concept trees are unlike strict discrimination networks or decision
trees (Feigenbaum & Simon, 1984) in that probabilistic (and not logical)
descriptors label nodes (and not arcs) of the tree. Classification using a
probabilistic concept tree is done using a partial matching function to de-
scend the tree along a path of 'best' matching nodes. 3 The following section
shows how COBWEB adapts this general procedure for tree update.

3.3 Operators and control

COBWEB incrementally incorporates objects into a classification tree,
where each node is a probabilistic concept that represents an object class.
The incorporation of an object is a process of classifying the object by
descending the tree along an appropriate path, updating counts along the
way, and performing one of several operators at each level. These operators
include

• classifying the object with respect to an existing class,

• creating a new class,

• combining two classes into a single class, and

• dividing a class into several classes.

While these operators are applied to a single object set partition (i.e., set of
siblings in tile tree), compositions of these primitive operators transform
a single classification tree. The emergent search strategy is one of hill-
climbing through a space of classification trees.

3.3.1 Operator I: Placing an object in an existing class

Perhaps the most natural way of updating a set of classes is to simply
place a new object in an existing class. In order to determine which cate-
gory 'best' hosts a new object, COBWEB tentatively places the object in
each category. The partition that results from adding the object to a given
node is evaluated using category utility (3 3). The node that results in the
best partition is identified as the best existing host for the new object.

aThis procedure is polythetic; the choice of what path to follow at each node is de-
pendent on an object's values along many attributes. In contrast, most decision trees
are monothetic in that descent at each node is based on the value of a single attribute.
Fisher (1987) discusses the relative advantages of the probabilistie tree approach.

INCREMENTAL CONCEPTUAL CLUSTERING 149

3.3,2 Operator 2: Creating a new class

In addition to placing objects in existing (:lasses, there is a way to create
new classes. Specifically, tile quality of the partition resulting from plaeing
the object in the best existing host is compared to tile partit ion resulting
from creating a new singleton class containing the object. Depending on
which partit ion is best with respect to category utility, the object is t)laced
in the best existing class or a new class is created. This operator allows
COBWEB to automatically adjust the number of classes in a partition.
The number of classes is not bounded by a system paraineter (e.g., as in
CLUSTER/2) , but emerges as a flmction of enviromnental regularity.

3.3.3 A simple example

Figure 3 demonstrates the effect of operators 1 and 2 in three snapshots.
Snapshot (a) shows a classification tree that has been previously built over
the 'fish' and 'amphibian' objects of Table 1. Listed with each node (class)
are tile probability of tile class and the probabilities of attribute values
conditioned on class membership. For example, the probability of having
scales is 0.5 for objects classified at the root of snapshot (a), while scales are
assured with probability 1.0 for objects classified at C1 (a singleton ('.lass
containing only ~fish'). Space prohibits showing more than one attr ibute
value for each node, but all values exhibited over objects of a node are
stored with their respective conditional probabilities. For example, node
Co of tree (b) is completely specified by tile probabilistic concept of Table
2. Probabilities reflect attribute value distributions over observed objects.
As with any inductive program, there is an implicit assumption that the
observations collectively approximate the environment as a whole. How-
ever, distributions are not permanent, but change in response to further
observation (Cheeseman, 1985).

Snapshot (b) shows a new class being created. Tile transition from (a)
to (b) is caused by incorporating the 'mammal ' object of Table 1. The
probability, P(sealeslG)), reflects this addition at the root. Creating a new
singleton class (Ca) corresponding to 'mammal ' yields a better partition
than adding the object to either of the existing (:lasses.

Snapshot (c) demonstrates an object being added to an existing class.
Adding 'bird' to tile tree of snapshot (b) causes appropriate alterations
at the root; e.g., scales now occur in only one quarter of the observed
animals. Adding 'bird' to the existing (:lass corresponding to "mammal'
yields the best possible partition. Since this node is a leaf in snapshot (b).
incorporation of 'bird' involves expanding the leaf to accommodate the new
object, as well as the previously classified one.

150 D.H. FISHER

(a)

Figure 3.Adding 'mammal' and 'bird' to an existing classification tree. Each node
represents an object class, Ci, that is summarized by a set of probabili-
ties, P(valuelCi).

INCREMENTAL CONCEPTUAL CLUSTERING 151

Figure 4.

(> J
. . . .

The effect of node merging.

/
)

Figure 3 demonstrates how a concept hierarchy is constructed over se-
quential observations and how distributions change to reflect increasing
information. While the figure shows probabilities at each node, recall that
they arc actually computed from two integer counts. Stored at each node
is a count of the number of objects classified under the node. Addition-
ally, each attribute-value entry includes an integer count of the number
of objects classified under the node possessing that value. Probabilities
are computed on demand for evaluation purposes, but it is the underlying
counts that are updated.

3.3.4 Operators 3 and 4: Merging and splitting

While operators 1 and 2 are effective in many cases, by themselves they
are very sensitive to the ordering of initial input. To guard against the ef-
fects of initially skewed data, COBWEB includes operators for node merg-
ing and splitting. Merging takes two nodes of a level (of n nodes) and
'combines' them in hopes that the resultant partition (of n - 1 nodes) is
of better quality. Merging two nodes involves creating a new node and
summing the attribute-value counts of the nodes being merged. Tile two
original nodes are made children of the newly created node as shown in
Figure 4. Although merging could be attempted on all possible node pah's
every time an object is observed, such a. strategy would be unnecessarily
redundant and costly. Instead, when an object is incorporated, only the
two best hosts (as indicated by category utility) are considered for merging.

152 D .H . FISHER

(
J

. . . .

/
)

. . . .

>

Figure 5. The effect of node split t ing.

An example of merging occurs when adding a second instance of 'fish'
from Table 1 to the last tree in Figure 3; nodes C1 and C2 are identified as
the best and second best hosts, respectively. Merging these nodes results
in a partition superior to that obtained by incorporating the object in the
best host.

As with node merging, splitting may increase partition quality. A node of
a partition (of n nodes) may be deleted and its children promoted, resulting
in a partition of n + m - 1 nodes, where the deleted node had rn children
as shown in Figure 5. Splitting is considered only for the children of the
best host among the existing categories.

Node merging and splitting are roughly inverse operators and allow
COBWEB to move bidirectionally through a space of possible hierarchies.
Splitting can be invoked to undo the effects of a prior merging should
conditions change and vice versa. In general, merging is invoked when
initial observations suggest that the environment is a space of highly sim-
ilar objects, relative to the actual structure of the environment suggested
by subsequent observations. Splitting is invoked when the environment is
more 'compressed' than suggested by initial input. Merging and splitting
decrease the sensitivity of COBWEB to input ordering due to their inverse
relation. 4

4Space has not permitted discussion of a fifth operator, node promotion, that allows
selectively promoting a single node without splitting its parent (Fisher, 1987).

INCREMENTAL CONCEPTUAL CLUSTERING 153

Table 3. The control structure of COBWEB.

FUNCTION COBWEB (Object, Root (of a classification tree })
1) Update counts of the Root
2) IF Root is a leaf

THEN Return the expanded leaf to accommodate the new object
ELSE Find that child of Root that best hosts Object and

perform o n e of the following
a) Consider creating a new class and do so if appropriate
b) Consider node merging and do so if appropriate and

call COBWEB (Object, Merged node)
c) Consider node splitting and do so if appropriate and

call COBWEB (Object, Root)
d) IF none of the above (a, b, or e) were performed

THEN call COBWEB (Object, Best child of Root)

3.3.5 COBWEB' s control structure

Table 3 summarizes the control strategy that COBWEB uses to organize
its learning operators. Using this strategy, the system tends to converge
on classification trees in which the first level (tile root is the 'zeroth' level)
is the optimal partition (with respect to category utility) over the entire
object set. For example, over the objects of Table l, COBWEB consis-
tently converges on the tree of Figure 2. However, as the example for node
merging indicates, some orderings may require more than one instance of
the same object to converge. Furthermore, while merging and splitting de-
sensitize the systenl to the effects of initial input ordering, all hill-climbing
approaches are susceptible to problems related to initial input ordering.
This limitation and other matters are discussed in the following section.

4. E v a l u a t i o n o f C O B W E B

This section evaluates COBWEB with respect to Dietterich's learning
model. The model posits three elements that surround learning: the knowl-
edge base, the performance element, and the environment. First, tile gen-
eral form of COBWEB classification trees (knowledge base) is reviewed by
examining an anecdotal domain. Next, the utility of this acquired knowl-
edge for inference (performance task) is examined ill the domain of soybean
diseases. The section concludes with an investigation of COBWEB's effec-
tiveness as an incremental learner (environment).

4.1 M o r e on c lass i f i cat ion trees a n d c o n c e p t s

Given a sequence of objects, COBWEB forms a classification tree that
summarizes and organizes those objects. For example, given the animal

154 D.H. FISHER

Table 4. Descriptions of two categories from congressional vot ing tree.

Normative
values

N1 ('conservative') N2 ('liberal')
[P(valuelN1), P(Xl Ivalue)] [P(valuelN2), P(N2 Ivalue)]

Toxic Waste - yes [0.81,0.90]
Budget Cuts yes [0.81,0.81]
SDI reduction no [0.93,0.88]
Contra Aid yes [0.88,0.881
Line-Item Veto yes [0.91,0.90]
MX Production yes [0.90,0.95[

Toxic Waste no [0.88, 0.78]
Budget Cuts no [0.90, 0.78]
SDI reduction yes [0.83,0.90]
Contra Aid no [0.83,0.83]
Line-Item Veto no [0.86, 0.88]
MX Production no [0.93,0.87]

descriptions of Table 1, the system formed the tree of Figure 2 along with a
probabilistic concept for each node. A domain that illustrates COBWEB's
use of probabilistic concepts is congressional voting records. Members of
the U.S. Senate were represented by 14 key votes taken in 1985. 5 These
votes ranged from domestic issues, such as emergency farm credits, gun
control, and school prayer, to foreign affairs issues like Nicaraguan 'Contra'
aid. Party affiliations (democrat and republican) were not included in the
representation. Each attribute corresponded to one of the 14 votes, with
each attribute having two possible values, 'yes' or 'no'.

Based on these data, COBWEB formed a classification tree that patti-
tioned senators at the top level into groups corresponding roughly to 'lib-
erals' and 'conservatives'. Democrats predominantly inhabited the 'liberal'
cluster and republicans dominated the 'conservative' cluster. Table 4 shows
these nodes with a number of predictable and predictive values. Lower level
nodes further distinguish these top-level groups. For instance, one node nn-
der the 'conservative' cluster contains eight of the ten democrats classified
in the 'conservative' cluster. This smaller group corresponds roughly to
the concept of 'southern democrat' or alternatively 'Jackson democrat', 6
which differed from other members of the 'conservative' group by opposing
budget cuts (with probability 0.92).

An important feature of the congressional classification tree is that none
of the 'conservative', 'liberal', and 'southern democrat' clusters contained
any perfectly common values. However, several values occurred with high
probability and collectively represent strong tendencies of their respective
classes. In general, a number of authors (Hanson & Bauer, 1986; Rendell,
1986; Smith & Media, 1981) point out that many object classes are more

5Votes were designated as key votes by the Congressional Quarterly, 1985, pp. 6
15, and not selected by the author. This domain was inspired by similar data used by
Lebowitz (1986b).

6Seven of eight senators were from southern states. A 'Jackson' democrat is one who
votes conservatively on military/foreign policy issues and liberally on social issues.

INCREMENTAL CONCEPTUAL CLUSTERING 155

Figure 6. Classification tree of soybean ease histories.

amenable to a probabilistic representation than to a logical one; important
conditions may only be true with high probability.

Concept properties that can be inferred with high confidence go by a
number of names, including normative (Kolodner, 1983) and predictable
(Lebowitz, 1982). In Kolodner's (1983) CYRUS, normative values are those
that are present with a probability greater than a constant threshold (e.g.,
0.67). COBWEB takes a different approach to identifying 'norms' (Fisher,
1987) by looking at a tradeoff between value predictability and predic-
tiveness. Briefly, a value may only be normative at nodes that render it
(approximately) conditionally independent of other attribute values. This
approach generalizes constant threshold strategies, since an attribute with
a highly probable value (e.g., 0.67) will tend to approximate independence
from other attributes; this is trivially true when the probability is 1.0. The
values in Table 4 are examples of normative values that were identified by
COBWEB. These values can be viewed as default values (Brachman, 1985)
with probabilistic qualifiers.

Normative values allow for a compact summary of category information
and provide a link between probabilistic and symbolic representations. In
this regard, Hanson and Bauer (1986) suggest the use of polymorphic con-
cepts to delineate category membership. A polymorphic set of normative
conditions is true if some number of the total set are true. For example, the
polymorphous concept {Contra Aid = yes, Lineltem Veto = yes, Gramm-

156 D .H. FISHER

Table 5. Descriptions of the 'Charcoal Rot' cluster from the soybean tree. The
predictability and predictiveness for each normative value are given in
brackets, i.e., [P(valuelCharcoal Rot), P(Charcoal Rotlvalue)].

_Normative
values

N2 ('Charcoal Rot ')
[P(valuelN2), P(N21value)]

Precipitation = below-normal [1.0, 1.0]
Temperature = above-normal [0.60, 1.0]
Stem-cankers = absent I1.0, 1.0]
Fruit-pod-condition = normal [1.0, 0.50]
Canker-lesion-color = tan [1.0, 1.0]
Outer-stem-decay = absent [1.0,0.48]
Internal-stem-discoloration = black [1.0, 1.0]
Sclerotia-internal-external = present [1.0, 1.01

Rudman = yes} can be used to classify senators as 'conservatives' if two
of the three conditions are true. In Michalski and Stepp's (1983) terms,
polymorphic rules can supply simple and tightly fitting representations of
data.

COBWEB forms classes that may be best represented probabilistically.
However, such representations do not preclude compact and understand-
able concept descriptions. In fact, while classes of the congressional domain
exhibited no necessary and sufficient conditions, such classes arise in many
domains. This is demonstrated in a domain of soybean case histories.
COBWEB was tested in a domain of 47 soybean disease cases taken from
Stepp (1984). Each case (object) was described along 35 attributes. An
example case history is {Precipitation = low, Temperature = normal, . . . ,
Root-condition = rotted}. Four categories of soybean disease were present
in the data Diaporthe Stem Canker, Charcoal Rot, Rhizoetonia Root
Rot, and Phytophthora Rot but for this experiment they were not in-
eluded in object descriptions. When COBWEB was run on the instances
the four classes were 'rediscovered' as nodes of the resultant classification
tree shown in Figure 6. 7

Normative values for the 'Charcoal rot' class are given in Table 5. An
important characteristic of this domain, not observed in the congressional
domain, is that many classes arise that can be described by necessary and

7Stepp's (1984) CLUSTER system also rediscovered the disease classes. However,
Stepp's system is search-intensive and nonincremental; its results are independent of
input order. On the other hand, COBWEB is order dependent and required three
iterations through the data before converging on the reported tree. Issues related to
convergence are described in 4.3.

INCREMENTAL CONCEPTUAL CLUSTERINC 157

sufficient values. For example, Charcoal rot has a total of seven neces-
sary values (i.e., P(value[Charcoal rot) = 1.0), six sufficient values (i.e.,
P(Charcoal rotlvalue) = 1.0), and five necessary and sufficient values.
Classes with necessary and sufficient conditions naturally emerge fl'om the
more general process of looking for classes with predictable and predictive
values.

4.2 T h e ut i l i ty o f c lass i f i cat ions for inference

A central claim of this paper is that classification structures produced by
conceptual clustering systems, particularly COBWEB, are useful for mak-
ing inferences. As described earlier, the current system employs an evalu-
ation function that prefers categories from which more can be predicted.
The efficacy of this domain-independent heuristic requires that important
properties be dependent on regularities or 'hidden causes' (Cheng & Fu,
1985; Pearl, 1985) in the environment. This section describes experimen-
tation aimed at verifying COBWEB's ability to uncover such regularities,
thereby improving prediction.

COBWEB's utility for inference was demonstrated by running the sys-
tem on instances from the soybean domain a second time. However, in

"these experiments diagnostic condition was included in each object de-
scription, though it was simply treated as a 36th attribute. In building a
classification tree, diagnostic condition was not used to classify objects as
it would in learning from examples.

After incorporating every fifth instance, the remaining u n s e e n cases
were classified (but not incorporated) with respect to the classification tree
constructed up until that point. Thus, in the tradition of Quinlan (1983),
the input was implicitly divided into training and test sets. The goal was
to determine if induction over the training set improved inference over the
test set through a process of classification. Classification was performed in
a manner similar to incorporation, except that statistics were not updated,
nor were merging, splitting, or class creation performed. Test instances
being classified contained no information regarding diagnostic condition,
but the value of this attribute was inferred as a byproduct of classification.
Specifically, classification terminated when the test object was matched
against a leaf of the classification tree. The leaf represented the previously
observed object that best matched the test object. The diagnostic condition
of the test object was predicted to be the corresponding condition of the
leaf.

Figure 7 gives the results of the experiment. The graph shows that after
five instances the classification tree could be used to correctly infer diagnos-
tic condition (over the remaining 42 unseen cases) 88% of the time. After

158 D.H. FISHER

100'

90'

80'

70"

60

50

40

30

20-

10.

0
0

! i

5

qR
0

- 0

0
U

IU
.u
IU

Q.

F w i

10 15 20 25
Number of observed objects

Figure 7. Diagnostic success with soybean cases.

ten instances, 100% correct diagnosis was achieved and maintained for the
rest of the run. While impressive, these results follow from the regular-
ity of this domain. COBWEB's 'rediscovery' of expert-defined diagnostic
conditions in section 4.1 indicates that diagnostic condition participates in
a network of at tr ibute correlations. Forming classes around these correla-
tions is rewarded by category utility, resulting in classes corresponding to
the human-defined diseases.

The success at inferring the diagnostic condition suggests a relationship
between an attr ibute 's dependence on other attributes and the utility of
COBWEB classification trees for induction over that attribute. To further
characterize this relationship, the induction test was repeated for each of
the remaining 35 attributes. The results of these tests (including diagnostic
condition) were averaged over all attributes and are presented in Figure 8.
On the average, correct induction of attr ibute values for unseen objects
reaches 87% after COBWEB has observed one half of the soybean case
histories, s

To put these results into perspective, Figure 8 also graphs the averaged
results of a simpler, but reasonable inferencing strategy. This ~frequency-
based' method dictates that one always guess the most frequently occurring

SRecall that this is an induction task. As would be expected, when classifying previ-
ously observed objects, correct prediction of missing attribute vahles is nearly 100%.

INCREMENTAL CONCEPTUAL CLUSTERING 159

.- 100-
0

._u 90-

K 80-

"6
.~ 70-

u 60

5O

{I.
40

30

20

10

0
0

Figure 8.

COBWEB

frequency-based

i r i i

5 10 15 20 25
Number of observed objects

Succes~ at inference averaged over all soybean attributes.

value of the unknown attribute. Averaged results using this strategy level
off at 74% correct prediction, placing it at 13% under the more complicated
classification strategy. However, these averaged results do not tell the
whole story - the primary interest is in determining a relationship between
a t t r ibute correlations and the ability to correctly infer an at t r ibute 's value
using COBWEB's classification trees.

To characterize the relationship between at t r ibute dependence and in-
ferencing ability, it is necessary to introduce a measure of a t t r ibute depen-
dence. The dependence of all a t t r ibute AM on other at tr ibutes Ai (:all be
defined as:

E i Ej~ P(Ai = Viii) E j M [P (A M = VMjM IAi = Viii)2 _ P(AM = VMj,,,)2_]

I{iJ& ¢ AMil
4 - 1

This function is derived in much the same way as category utility, but it.
measures the average increase in the ability to guess a value of AM given
the value of a second attr ibute, Ai ¢ AM. l/.~ij~ signifies the j i th value of
a t t r ibute Ai. If AM is independent of all other attributes, Ai, then equation
4 1 equals 0 since P(AM = VMj~,I& = V#.~) = P(AM = VMj~) for all Ai,
and thus P(AM = VMjM IA~ = V)a,) 2 - P(AM = VMj.,,)2 = O.

160 D.H. FISHER

• - 1 0 0 -
o

u 90-

" 80-

70-
U

, - . 60"

"~' 50'

,-u 40" . =

30! l)
8 • •
a. 20.

10.

OJ. _l

-I0 =r--'=

0

Root-condition

• • • m# m

Diagnostic-condition

• i

64%

i ! i

0.05 0 . I 0 .15
Attribute dependence

Figure 9. Increase in correct soybean inference as a function of dependence.

Figure 9 shows the increase in correct prediction afforded by COBWEB's
classification tree (after 25 instances) over the frequency-based method as
a function of attribute dependence. Each point on the scatter graph rep-
resents one of the 36 attributes used to describe soybean cases. There is a
significant positive correlation between an attribute's dependence on other
attributes and the degree that COBWEB trees improve inference. 9 For
example, diagnostic condition is most dependent on other attributes and it
is also the attribute for which prediction benefits most from classification.
For this attribute, the frequency-based approach results in 36% correct pre-
diction compared to 100% correct prediction using the tree generated by
COBWEB (i.e., 64% difference). Prediction of attributes that approximate
independence from other attributes does not benefit from classification and
in the case of four attributes it is less effective than the frequency-based
approach. The important methodological point to be gleaned from this
analysis is that prediction tasks vary in difficulty and COBWEB has been
characterized with respect to domains that span a spectrum from difficult
to easy. Ill general, little attention has been paid to Simon's (1969) point

9The Pea r son p r o d u c t - m o m e n t coefficient is 0.88, ind ica t ing a h ighly s ignif icant
corre la t ion .

INCREMENTAL CONCEPTUAL CLUSTERING 161

that domains must be characterized before the advantage of a learning
system can be evaluated.

In addition to the soybean domain, tests were conducted using a domain
of 150 thyroid patient case histories (Fisher, 1987) and a similar pattern

i " 1 . ral of correct prediction was exh blted. In gene , experiments indicate
that COBWEB is a viable means of organizing observations to support
inference. 11 The utility of classifications is assured in domains where there
are data dependencies involving important attributes (e.g., diagnostic con-
dition). In this light, the performance task associated with COBWEB
can be contrasted with that of learning from examples. While a learning
from examples system seeks to maximize inference with respect to a single,
teacher-selected 'attribute' (e.g., diagnostic condition), COBWEB seeks to
maximize a probabilistic average across all attributes. The predictabil-
ity of an attribute appears to rise roughly in proportion to the degree it
participates in intercorrelations. Attributes that participate in few inter-
dependencies come to be treated as irrelevant. The effectiveness of this
approach stems from observations that real-world domains tend to exhibit
significant degrees of data dependence (Mervis & Rosch, 1981).

Before moving on, it is important to point out that effective prediction
is not restricted to classification schemes that employ probabilistic concept
representations or that were formulated using category utility. Undoubt-
edly, many functions represent a tradeoff of attribute-value predictiveness
and predictability that operationalizes the performance criterion of max-
imizing inference ability. These may even be functions applied to logical
concept representations. As Medin, Wattenmaker, and Michalski (1986)
point out, predictiveness and predictability are continuously-valued analogs
of logical sufficiency and necessity, respectively. Category utility can be
viewed as a continuously-valued analog of quality measures used with log-
ical representations, most notably CLUSTER/2's measures of simplicity
and fit (Michalski & Stepp, 1983). As discussed earlier, using category
utility tends to result in concept descriptions that are compact and under-
standable. Conversely, it is likely that a tradeoff between simplicity and
fit will reward classification schemes with greater utility for inference.

While many domains exhibit significant regularity, the ability to uncover
this regularity may be hindered by a number of factors. One difference
between COBWEB and other conceptual clustering systems is that it is
incremental. The inability to examine all instances simultaneously can

1°These data were kindly supplied by J. R. Quinlan.
11Experiments (Fisher, 1987) indicate that classification need not proceed all the way

to leaves as with the experiments reported here. Instead, using normative or default
values (briefly described earlier), classification need only proceed to about one tenth the
depth of the tree on average to obtain comparable inference results.

162 D.H. FISHER

be a significant barrier to learning. The following discussion explores the
impact of incremental processing.

4.3 C O B W E B as an i n c r e m e n t a l s y s t e m

COBWEB is an incremental conceptual clustering system that can be
viewed as hill climbing through a space of classification trees. The pro-
gram does not adopt a purely agglomerative or divisive approach, but uses
divisive (splitting) as well as agglomerative (merging) operators in tree
construction. Schlimmer and Fisher (1986) propose three criteria for eval-
uating incremental systems that were inspired by Simon (1969). These
criteria (adapted for conceptual clustering) are:

• the cost of incorporating a single instance into a classification tree,

• the quality of learned classification trees, and

• the number of objects required to converge on a stable classification
tree.

They argue that for incremental systems in general, incorporation cost
should be low, thus allowing real-time update. However, this may come at
the cost of learning lower quality classifications and/or requiring a larger
sample of objects to find a good classification than a similarly biased non-
incremental, search-intensive method. This section evaluates COBWEB
using these criteria and verifies it to be an economical and robust learner.

4.3.1 Cost of assimilating a single object

To compute the cost of incorporating an object into an existing classifi-
cation tree, assume that B is the average branching factor of the tree and
that n is the number of previously classified objects, so that logBn approx-
imates the average depth of a leaf. Also, let A be the nmnber of defining
attributes and let V be the average number of values per attribute. In com-
paring an object to a node during classification, the appropriate counts of
the node are incremented and the entire set of children to which the node
belongs is evaluated by category utility. This costs O(BAV) and must be
made for each of the B children (on the average). Therefore, comparing an
object to a set of siblings requires O(B2AV) time. In addition to testing
an object with respect to existing nodes, class creation is evaluated (one
comparison), as is merging (one comparison), and splitting (B compar-
isons). These costs are additive so that O(B2AV) remains a legitimate
approximation of comparison cost.

In general, classification proceeds to a leaf, the approximate depth of
which is logBn. Thus, the total number of comparisons necessary to incor-
porate an object is roughly

category utility
of partition based

on Ao and Ax
Ao A1 A2 A3

(1) 0.5

(4) 0.5

INCREMENTAL CONCEPTUAL CLUSTERING 163

category utility
of partition based

on A2 and A3

0.5

0.32

Figure i0. Artificial domains with global and local optima.

cost = O(B 2 log B n x AV).

In COBWEB, the branching factor is dependent, on regularity inherent
in the environment; it is not bounded above by a constant as in CLUS-
TER/2 (Michalski & Stepp, 1983), or by the average number of values
per attr ibute as in RUMMAGE (Fisher, 1985) and DISCON (Langley &
Sage, 1984). This makes an exact upper bound on update cost difficult
to come by analytically. However, tests in a variety of domains indicate
that the branching factor of trees produced by COBWEB range from two
to five. This agrees with Michalski and Stepp's (1983) intuition that most
'good' classification trees have small branching factors and lends support
to bounding the branching factor in their system. In any case, the cost
of adding a single object in COBWEB is significantly less expensive than
rebuilding a classification tree for a new object using a search-intensive
method such as CLUSTER/2. Polynomial or exponential cost will be as-
sociated with any search-intensive clustering system.

4.3.2 The quality of clas~ification8

COBWEB differs from other incremental systems like UNIMEM and
CYRUS in that it explicitly seeks classification trees in which the first

164 D.H. FISHER

level is optimal with respect to a measure of clustering quality. Although
node splitting and merging reduce the sensitivity of COBWEB to initial
sample skew and aid convergence on optimal partitions~ all hill-climbing
approaches are susceptible to becoming trapped in local optima. While
natural domains were appropriate for earlier discussion, the pliability of
artificial domains make them better suited for demonstrating the range of
a system's behavior. Thus artificial domains were used to test COBWEB's
ability to converge on optimal partitions with respect to category utility.

COBWEB was tested in four artificial domains in which globally and
locally optimal partitions existed. The difference between the quality of the
global and local optimum (in terms of category utility) was systematically
varied from domain to domain. Figure 10 gives state machines representing
two of these domains: the domain with the least (domain 1) and greatest
(4) disparity between the global and local optima. Each state machine
represents a domain whose objects it recognizes. Objects in each domain
are represented by attributes A0 through A3. For example, one member
of domain 4 is {A0 = 0, A1 = 0, A2 = 4, A3 = 4}. A state machine
representation was chosen because it provides a compact and pictorial view
of the correlation between attributes. In each domain, the optimal partition
is a segregation based on the values of attributes, A0 and A1, including
domain 1 in which there is a tie. Partitioning based on attributes A2 and
A3 form a partition of lesser quality: a local optimum.

COBWEB was run 20 times on random samples of 50 objects for each
domain. Figure 11 shows the results. The vertical axis is the percentage
of runs in which the optimal partition was discovered, while the horizontal
axis represents the distance between the category utility of the optimal and
local optima normalized to lie in [0, 1]. 12 The graph indicates that as the
distance between global and local partitions grows, the possibility of be-
coming trapped in local optima rapidly dhninishes. The system's inability
to converge on optimal partitions in extreme cases is a direct result of its
hill-climbing strategy; a search-intensive method would typically discover
the optimal partition in all situations. However, since category utility mea-
sures the degree to which a partition promotes correct prediction of object
properties (i.e., the expected number of correctly guessed attribute values),
COBWEB finds the global optimum when it is most important to do so
(i.e., when there is most at stake in terms of correct inference). The pro-
gram will stumble into local optima only when there is little lost in terms
of inference ability.

12Distance was normalized by taking the optimal score, subtracting by the local score,
and dividing by the optimal score. A normalized score of zero indicates the 'global' and
'local' optimum are tied, while a score of one indicates there is only one optimum or
peak in the domain.

INCREMENTAL CONCEPTUAL CLUSTERING 165

E 100-

._E 90
0

% 80
e~
0

"~ 70
C

0
60

c

50
I f :

0
u 40

E 30

20
13.

10

1

! , ! ! | ! ! , ! !

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Difference between global and local optima

Figure 11. Convergence on optimal partitions.

4.3.3 Number of object8 required for convergence

Experiments indicate that COBWEB tends to converge on classification
trees in which the first level is optimal. In this section, COBWEB is dis-
cussed in terms of a third criterion for evaluating incremental methods
the number of objects required to converge on a 'stable' partition. Again,
four artificial domains were used to examine the program's behavior. These
domains systematically differed in terms of the quality of the optimal par-
tition. The two domains of least and greatest quality are pictured in Figure
12. The domains were selected so that the optimal partition of each do-
main is unambiguous and easily visualized, but the ease with which it can
be discerned with incremental object presentation varies across domains.

COBWEB was run on five random orderings of objects from each do-
main. During learning, 100 random objects were intermittently selected
from the domain and were classified using the classification tree formed
thus far by COBWEB. If the top-most partit ion segregated the sample in
the same manner as the optimal partit ion of the environment as a whole,
the two partitions were regarded as equivalent. Figure 13 shows the results
of this experiment. As the quality of the optimal partit ion grows, fewer

1 6 6 0@ D. H. FISHER

0,1,2 ,.-,,~ 0,1,2f.~ 0,1,2j~..j 0,1,2~-,,_~, 0,1,2f-.,...x_., 0,1,2 ,.-,, ~ ~..., 0 ,1 ,2 j a~.,, 0,1,~a.. ~

domain (1): category utility of optimal partition = 0.45

o o

1 ~,.- . , 1 _ r - ~ 1 _ r - , 1 . . I . - , 1 _r ' - , 1 0 , 1 , 2 f ~ 0 , 1 ,
" X . _ 2 ~ ~ X, . . / ~ k . J ~ K . J ~ X , J

2 ~r ' - , 2 ~ t"~ 2 ~t"-, 2 ~,.- , , 2 ~ 2

domain (4): category utility of optimal partition = 1.77

Figure 12. Artificial domains with various optimal partition values.

objects are required to find the optimal partition. Inversely, as quality
decreases, the number of objects required for convergence appears to expo-
nentially accelerate upwards. Although a search-intensive method would
probably also increase, the rate of acceleration would likely be shallower.

While COBWEB may require many objects to stabilize on a partition,
it appears to converge rapidly in domains exhibiting significant regularity,
as indicated by higher category utility scores for the optimal partition. To
put some of the previously examined domains in context, the partition (i.e.,
first level of the classification tree) formed for the congressional domain
measured 1.20, the soybean domain measured 1.50, and the thyroid domain
measured 0.50. While these scores literally represent a function of the
expected munber of attributes that can be correctly predicted, informally
they indicate the degree of attribute interdependencies. Given the graph
in Figure 13, the category utility values inherent in these natural domains
provide further evidence for their learnability by COBWEB.

In summary, experiments indicate that COBWEB is a cost effective
means of learning classification trees; update cost is low and convergence
time and hierarchy quality gracefully degrade with decreasing environmen-
tal regularity. However, in some ways the system may be too extreme
in allowing only one object to be incorporated at a time. For example,
Hanson and Bauer (1986) describe an incremental method that allows a
specified number of objects to be simultaneously considered. While raising
update cost (presumably by a constant, factor), this generalized approach

INCREMENTAL CONCEPTUAL CLUSTERING 167

100

5~ 90
O

lU

"6

. m

2

80.

70-

60-

50-

40-

30-

20-

10-

0
0

1

thyroid

congress

I soybean

I ! ! i

0.5 1 1.5 2
Category utility of optimal partition

Figure 13. Number of objects required to converge.

may improve convergence time and hierarchy quality in cases of little en-
vironmental regularity.

5. C o n c l u d i n g r e m a r k s

COBWEB is a conceptual clustering system that is incremental, eco-
nomical, and robust. Furthermore, classifications produced by the system
are effective tools for inference. While the system uses an evaluation func-
tion consistent with preferences in human categorization (Gluck & Cotter,
1985), it should not be regarded as a cognitive model, but as a general-
purpose clustering method. COBWEB explicitly seeks to optimize its clas-
sification tree with respect to category utility, and it does not show how
such preferences emerge as the result of more primitive measures. However,
Fisher (1987) describes an offspring of this system that can be viewed as
a cognitive model and that accounts for certain psychological phenomena,
including basic-level and typicality effects.

From a machine learning standpoint, this research has been greatly in-
fluenced by work in conceptual clustering, especially Michalski and Stepp

168 D.H. FISHER

(1983), Fisher and Langley (1985, 1986), and other concept formation sys-
tems, particularly UNIMEM (Lebowitz, 1982). COBWEB seeks classi-
fications that maximize a heuristic measure (as in conceptual clustering
systems) and uses a search strategy abstracted from incremental systems
such as UNIMEM and CYRUS. Describing COBWEB in terms of search
has motivated an evaluation of its behavior with respect to the cost and
quality of learning. Importantly, this analysis is probably extendable to
UNIMEM and CYRUS and it seems likely that they share many of COB-
WEB's strengths and limitations.

Hopefully, this discussion will lead to comparative studies, something
that has been lacking in previous reports. This paper has carefully avoided
claims of superiority with respect to related systems. In fact, Fisher (1987)
discusses reasons why several systems might perform better along some di-
mensions (e.g., prediction). Rather, this work embraces a methodology
for empirically characterizing learning systems. COBWEB's characteriza-
tion downplays anecdotal evidence, stressing instead the appropriate use
of natural and artificial domains and abstract measures for characterizing
domains as well as algorithms. This study enumerates dimensions along
which comparisons between concept formation systems can be made in the
first place.

Future work will focus on rectifying a number of COBWEB's limita-
tions. One limiting aspect is the object description language: nominal
attribute-value pairs. One way to relax this constraint is to allow nu-
meric, continuously-valued attributes. Gennari, Langley, and Fisher (in
press) have described CLASSIT, a variation on COBWEB that rewards
partitions formed around 'dense' value areas of numeric attributes. An
alternative approach is employed by Michalski and Stepp (1983). Their
system discretizes continuous attribute domains into ranges based on how
well they contribute to higher-order conceptual descriptions. A range of
values can then be treated like a nominal value.

A second way of relaxing object description constraints is to allow struc-
tured objects and concepts. Manipulating structured representations is
an important prerequisite for applying conceptual clustering methods in
sophisticated problem-solving domains. As CLUSTER/2 and UNIMEM
served as precursors to COBWEB, CLUSTER/S (Stepp, 1984; Stepp &
Michalski, 1986) and RESEARCHER (Lebowitz, 1986a) are likely starting
points for work on incremental clustering of structured objects. Work by
Vere (1978) on 'clustering' relational productions shows how conceptual
clustering methods might be applied to operator descriptions.

Finally, future work will focus on improving COBWEB's hill-climbing
search strategy. While the limitations of hill climbing are generally not
problematic, there are a number of real-world problems in which these lira-

INCREMENTAL CONCEPTUAL CLUSTERING 169

itations would significantly manifest themselves. One problem is that of
tracking changes in the environment (e.g., the change of seasons), which
Schlimmer and Granger (1986) have studied in the context of learning from
examples. In real-world domains, a concept formation system must be cog-
nizant of changes in the regularity of the environment. Tracking concept
drift is equivalent to the problem of dealing with extremely skewed data.
Under extreme skew, a hill-climbing strategy results in a classification tree
whose utility may irreversibly and progressively degrade. A principled
solution to this and similar problems would involve monitoring the effec-
tiveness of classification trees for performance and using this information
to trigger global changes in the classification scheme, rather than the local
alterations typically made.

Thus, while the impact of conceptual clustering on performance has been
discussed, solutions to a number of important problems will involve looking
to ways that performance can affect clustering. In terms of Dietterich's
learning model (Figure 1), the insight that performance impacts learning
remains an unrealized impetus for future work in conceptual clustering and
concept formation.

Acknowledgements

I thank members of the UCI machine learning group for their helpfifl
comments on earlier drafts of the paper, including Pat Langley, Jeff Schlim-
mer, Dennis Kibler, Rogers Hall, and Rick Granger. Dennis Kibler and Pat
Langley gave initial direction to this work and contributed to its early con-
ceptual development. Discussions with Jeff Schlimmer continually suggest
new ideas and hone old ones. Dennis Volper suggested the domains of
Figure 10. Comments by Ryszard Michalski and other reviewers helped
improve the style, understandability, and correctness of the paper.

This work was supported by Contract N00014-84-K-0345 from the Office
of Naval Research and a gift from Hughes Aircraft Company.

References

Brachman, R. J. (1985). I lied about the trees. AI Magazine, 6, 80 93.
Carbonell, J. G., & Hood, G. (1986). The World Modelers Project: Objec-

tives and simulator architecture. In R. S. Michalski, J. G. Carbonell, &
T. M. Mitchell (Eds.), Machine learning: A guide to current research.
Boston, MA: Kluwer.

Cheeseman, P. (1985). In defense of probability. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence (pp. 1002
1009). Los Angeles, CA: Morgan Kaufmann.

170 D.H. FISHER

Cheng, Y., & Fu, K. (1985). Conceptual clustering in knowledge organi-
zation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 7, 592 598.

Clancey, W. J. (1984). Classification problem solving. Proceedings of the
National Conference on Artificial Intelligence (pp. 49-55). Austin, TX:
Morgan Kaufmann.

Dietterich, T. G. (1982). Learning and inductive inference. In P. R. Cohen
& E. A. Feigenbaum (Eds.), The handbook of artificial intelligence. Los
Altos, CA: Morgan Kaufmann.

Dietterich, T. G., & Michalski, R. S. (1983). A comparative review of
selected methods of learning from examples. In R. S. Michalski, J. G.
Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach. Los Altos, CA: Morgan Kaufmann.

Everitt, B. (1980). Cluster analysis. London: Heinemann Educational
Books.

Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like models of recogni-
tion and learning. Cognitive Science, 8, 305 336.

Fisher, D. H. (1985). A hierarchical conceptual clustering algorithm (Tech-
nical Report 85-21). Irvine, CA: University of California, Department
of Information and Computer Science.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual
clustering. Doctoral dissertation, Department of Information and Com-
puter Science, University of California, Irvine.

Fisher, D. H., & Langley, P. (1985). Approaches to conceptual cluster-
ing. Proceedings of the Ninth International Conference on Artificial
Intelligence (pp. 691 697). Los Angeles, CA: Morgan Kaufmann.

Fisher, D., & Langley, P. (1986). Methods of conceptual clustering and
their relation to numerical taxonomy. In W. Gale (Ed.), Artificial
intelligence and statistics. Reading, MA: Addison-Wesley.

Fu, L., & Buchanan, B. G. (1985). Learning intermediate concepts in
constructing a hierarchical knowledge base. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence (pp. 659 666).
Los Angeles, CA: Morgan Kaufmann.

Gennari, J. H., Langley, P., & Fisher, D. H. (1987). Models of incremen-
tal concept formation (Technical Report). Irvine, CA: University of
California, Department of Information and Computer Science.

Olnck, M. A., & Corter, J. E. (1985). Information, uncertainty, and tile
utility of categories. Proceedings of the Seventh Annual Conference
of the Cognitive Science Society (pp. 283 287). Irvine, CA: Lawrence
Erlbaum Associates.

INCREMENTAL CONCEPTUAL CLUSTERING 171

Hanson, S. J., & Bauer, M. (1986). Machine learning, clustering, and
polymorphy. In L. N. Kanal & J. F. Lemmer (Eds.), Uncertainty in
artificial intelligence. Amsterdam: North-Holland.

Kolodner, J. L. (1983). Reconstructive memory: A computer model. Cog-
nitive Science, 7, 281 328.

Langley, P., & Carbonell, J. G. (1984). Approaches to machine learning.
Journal of the American Society for Information Science, 35, 306 316.

Langley, P., Kibler, D., & Granger, R. (1986). Components of learning
in a reactive environment. In R. S. Miehalski, J. G. Carbonell, & T.
M. Mitchell (Eds.), Machine learning: A guide to current research.
Bostom MA: Kluwer.

Langley, P., & Sage, S. (1984). Conceptual clustering as discrimination
learning. Proceedings of the Fifth Biennial Conference of the Canadian
Society for Computational Studies of Intelligence (pp. 95 98). London,
Ontario, Canada.

Lebowitz, M. (1982). Correcting erroneous generalizations. Cognition and
Brain Theory, 5, 367 381.

Lebowitz, M. (1986a). Concept learning in a rich input domain: General-
ization-based memory. In R. S. Michalski, J. G. Carbonell, & T. M.
Mitchell (Eds.), Machine learning: An artificial intelligence approach
(Vol. 2). Los Altos, CA: Morgan Kaufmann.

Lebowitz, M. (1986b). Integrated learning: Controlling explanation. Cog-
nitive Science, 10,219 240.

Medin, D. L., Wattenmaker, W. D., & Miehalski, R. S. (1986). Conetraint~
and preference8 in inductive learning: An experimental study compar-
ing human and machine performance (Technical Report ISG 86-1).
Urbana, IL: University of Illinois, Department of Computer Science.

Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects.
Annual Review of Psychology, 32, 89-115.

Michalski, R. S. (1980). Knowledge acquisition through conceptual clus-
tering: A theoretical framework and algorithm for I)artitioning data
into conjunctive concepts. International Journal of Policy Analysis
and Information Systems, 4, 219-243.

Miehalski, R. S., & Stepp, R. E. (1983). Learning from observation: Con-
ceptual (:lustering. In R. S. Michalski, J. G. Carbonell, & T. M.
Mitchell (Eds.), Machine learning: An artificial intelligence approach.
Los Altos, CA: Morgan Kauflnann.

Mitchell, T. M. (1982). (]eneralization as search. Artificial Intelligence,
18, 203 226.

172 D.H. FISHER

Pearl, J. (1985). Learning hidden causes from empirical data. Proceedings
of the Ninth International Joint Conference on Artificial Intelligence
(pp. 567-572). Los Angeles, CA: Morgan Kaufmann.

Quinlan, J. R. (1983). Learning efficient classification procedures and their
application to chess end games. In R. S. Michalski, J. G. Carbonell,
& T. M. Mitchell (Eds.), Machine learning: An artificial intelligence
approach. Los Altos, CA: Morgan Kaufmann.

Reinke, R., & Michalski, R. S. (1986). Incremental learning of concept
descriptions. Machine intelligence (Vol. 11). Oxford University Press.

Rendell, L. (1986). A general framework for induction and a study of
selective induction. Machine Learning, 1,177 226.

Sammut, C., & Hume, D. (1986). Learning concepts in a complex robot
world. In R. S. Miehalski, J. G. Carbonell, & T. M. Mitchell (Eds.),
Machine learning: A guide to current research. Boston, MA: Kluwer.

Schlimmer, J. C., & Fisher, D. H. (1986). A case study of incremental
concept induction. Proceedings of the Fifth National Conference on
Artificial Intelligence (pp. 496-501). Philadelphia, PA: Morgan Kauf-
m a n n .

Sehlimmer, J. C., & Granger, R. H. (1986). Beyond incremental processing:
Tracking concept drift. Proceedings of the Fifth National Conference
on Artificial Intelligence (pp. 502-507). Philadelphia, PA: Morgan
Kaufmann.

Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: MIT
Press.

Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge,
MA: Harvard University Press.

Stepp, R. E. (1984). Conjunctive conceptual clustering: A methodology and
experimentation (Technical Report UIUCDCS-R-84-1189). Doctoral
dissertation, Department of Computer Science, University of Illinois,
Urbana.

Stepp, R. E., & Michalski, R. S. (1986). Conceptual clustering: Inventing
goal-directed classifications of structured objects. In R. S. Michalski, J.
G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial
intelligence approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.

Vere, S. A. (1978). Inductive learning of relational productions. In D.
Waterman & F. Hayes-Roth (Eds.), Pattern-directed inference systems.
Orlando, FL: Academic Press.

Winston, P. H. (1975). Learning structural descriptions from examples. In
P. H. Winston (Ed.), The psychology of computer vision. New York:
McGraw-Hill.

