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Abstract.  Conceptual clustering is an important way of summarizing and explaining 
data. However, the recent formulation of this paradigm has allowed little exploration 
of conceptual (:lustering as a means of improving performance. Furthermore, previous 
work in conceptual clustering has not explicitly dealt with constraints imposed by real 
world environments. This article presents COBWEB, a conceptual clustering system that 
organizes data so as to maximize inference ability. Additionally, COBWEB is incremental 
and computationally economical, and thus can be flexibly applied in a variety of domains. 

1. I n t r o d u c t i o n  

Machine learning is concerned with improving performance by automat-  
ing knowledge acquisition and refinement. This view is reflected in the 
simple model of intelligent processing (Dietterieh, 1982) shown in Figure 
1. In this model~ a learning system accepts environmental observations and 
incorporates them into a knowledge base, thereby facilitating some perfor- 
mance task. Assumptions about  the environment~ knowledge base, and 
performance element all impact the design of a learning system (Rendell, 
1986). This article is concerned with conceptual clustering, a learning task 
that  has not traditionally been discussed in the larger context of intelligent 
processing. As with other  forms of learning, such a t rea tment  can have 
i inportant implications on the design of clustering systems. 

Conceptual  chlstering is a machine learning task defined by Michalski 
(1980). A conceptual clustering system accepts a set of object descriptions 
(events, observations, facts) and produces a classification scheme over the 
observations. These systems do not require a ' teacher'  to preclassify ob- 
jects, but  use an evaluation flmction to discover classes with 'good' con- 
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Learning ~ Performance 
Element Element 

Figure 1. A model of learning and performance. 

ceptual descriptions. Thus, conceptual clustering is a type of learning by 
observation (as opposed to learning from examples) and is an important 
way of smnmarizing data in an understandable manner. However, because 
this paradigm has been formalized only recently, previous work has not 
focused on explicating these methods in the context of an environment 
and performance task. Traditional treatments have concentrated almost 
exclusively on the clustering (i.e., learning) mechanism and the form of the 
resultant classification (i.e., knowledge base). This paper presents COB- 
WEB, a conceptual clustering system that is inspired by environmental 
and performance concerns. 

The most important contextual factor surrounding clustering is the gen- 
eral perfl)rmance task that benefits from this capability. While most sys- 
tems do not explicitly address this task (and thus the often asked question: 
"How do you know the resulting classifications are any good?"), some ex- 
ceptions exist. CLUSTER/S (Stepp & Michalski, 1986) augments object 
descriptions with attributes that may be useful for inferring conditions un- 
der which domain-dependent goals (e.g., 'survival') can be attained. Cheng 
and Fu (1985) and Fu and Buchanan (1985) use clustering to organize ex- 
pert system knowledge. Abstracting these uses of conceptual clustering, 
classification schemes can be a basis for effective inference of unseen object 
properties. The generality of classification as a means of guiding infer- 
ence is manifest in recent discussions of problem solving as classification 
(Clancey, 1985). For example, a tiger may be recognized by its observed 
features and thus be regarded as life-endangering, or a set of symptoms 
may suggest a particular disease from which a cure can be inferred. COB- 
WEB favors elasses that maximize the information that can be predicted 
from knowledge of class membership. 

A second contextual factor surrounding learning is the environment. 
Conceptual clustering systems typically assume environmental inputs are 
indefinitely available for examination and thus the environment is amenable 
to nonincremental processing of observations. However, real world environ- 
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merits (Carbonell & Hood, 1986; Langley, Kibler, & Granger, 1986; Sam- 
rout & Hume, 1986) motivate incremental object assimilation. Learning 
methods that incrementally process observations are gaining prominence 
(Lebowitz, 1982; Kolodner, 1983; Reinke & Michalski, 1985; Rendell, 1986; 
Sehlimmer & Fisher, 1986). In response to real world considerations, COB- 
WEB has been constructed as an incremental method of conceptual clus- 
tering. 

In summary, COBWEB's design was motivated by concerns for envi- 
ronment and performance: learning is incremental and seeks to maximize 
inference abilities. The following section develops conceptual clustering as 
a process of search. Section 3 follows with a detailed description of COB- 
WEB in terms of this framework. Section 4 demonstrates that COBWEB 
performs effective incremental learning of categories that are useful for pre- 
dicting unknown object properties. Section 5 concludes with a summary of 
results, a discussion of shortcomings, and suggestions on how fllture work 
might rectify some of these problems. 

2. Background:  Learning as search 

This section develops a framework for understanding COBWEB in terms 
of a pervasive paradigm of AI - search. Concept learning as search was first 
proposed to describe learning from examples and the main ideas are sum- 
marized here. The search model is then extended to conceptual clustering. 
Finally, a form of incremental learning is described along two dimensions: 
,search control and search direction. 

2.1 Concept learning from examples 

The predominant form of concept learning studied in AI has been learn- 
ing from examples. This task assumes that objects are classified by a 
'teacher' with respect to a number of object classes. The goal is to de- 
rive concepts that appropriately describe each class. Mitchell (1982) has 
characterized learning from examples as a process of search. For each ob- 
ject (:lass, the learner navigates through a space of concept descriptions 
until it finds an appropriate concept. 

Using tile search framework, systems for learning from examples have 
been characterized along a number of dimensions (Mitchell, 1982; Diet- 
terich & Michalski, 1983; Langley & Carbonell, 1984). One dimension is 
the search control strategy; this can vary from exhaustive strategies, such 
as depth-first or breadth-first search, to heuristic methods like hill climb- 
ing, beam search, or best-first search. A second dimension, the direction of 
search, tbllows from the observation that concept descriptions are ordered 
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Table I. Animal descriptions. 

Name BodyCover HeartChamber BodyTemp Fertilization 

'mammal ~ 

'bird' 
'reptile' 
'amphibian' 
'fish' 

hair 
feathers 
cornified-skin 
moist-skin 
scales 

four 
h)ur 
imperfect-four 
three 
two 

regulated 
regulated 
unregulated 
unregulated 
unregulated 

internal 
internal 
internal 
external 
external 

by generality. Specifically, a learner may use generalization operators to 
search from specific concepts to more general ones, or it may use special- 
ization operators to search from general to specific. 

While learning from examples is a simple context for introducing the 
idea of learning as search, the real interest is in extending this framework 
to conceptual clustering. This task differs from learning from examples in 
that no teacher preclassifies objects; the task of the learner is to discover 
appropriate classes, as well as concepts for each class. 

2.2 Conceptual clustering 

Clustering forms a classification tree over objects. For example, given the 
animal descriptions in Table 1, clustering might result in the classification 
tree shown in Figure 2. Methods of conceptual clustering (Michalski, 1980; 
Michalski & Stepp, 1983) differ from earlier methods of numerical taxonomy 
(Everitt, 1980) in that clustering quality is not solely a flmction of indi- 
vidual objects, but is dependent on concepts that describe object classes 
(e.g., the simplicity of concepts) and/or the map between concepts and 
the classes they cover (e.g., the fit or generality of derived concepts). De- 
spite differences in representation (Rendell, 1986) and quality judgements 
(e.g., understandability versus inference ability), all conceptual clustering 
systems evaluate class quality by looking to a summary or concept descrip- 
tion of the class. 

There are two problems that must be addressed by a conceptual cluster- 
ing system: 

• The clustering problem involves determining useful subsets of an object 
set. This consists of identifying a set of object classes, each defined as 
an extensional set of objects. 

• The characterization problem involves determining useful concepts for 
each (extensionally defined) object class. This is simply the problem 
of learning from examples. 
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'reptile' 

'mammal' 'bird' 'fish' 'amphibian' 

Figure 2. A h ierarchica l  c lus ter ing  over an imal  descr ip t ions .  

Fisher and Langley (1985, 1986) adapt the view of learning as search to fit 
conceptual clustering. Clustering and characterization dictate a two-tiered 
search, a search through a space of object clusters and a subordinate search 
through a space of concepts. 1 In the case of hierarchical techniques this 
becomes a three-tiered search, with a top-level search through a space of 
hierarchies. 

As with learning fl'om examples, the dimensions of search control and 
,~earch direction can also be used to distinguish conceptual clustering sys- 
tems. For instance, most systems transform a single classification tree 
throughout processing and rialS hill climb through the space of hierarchies 
(Michalski & Stepp, 1983; Fisher, 1985). On the other hand, Langley 
and Sage's (1984) DISCON system makes a nearly exhaustive search of 
hierarchy space. Second, when searching through a space of hierarchies, 
search direction may dictate building a tree top down (divi,~ive techniques) 
by continually dividing nodes (Langley & Sage, 1984; Miehalski & Stepp, 
1983; Fisher, 1985) or building a tree bottom-up (agglomerative methods) 
by continually fusing nodes (Hanson & Bauer, 1986; Cheng & Fu, 1985). 

Search control and direction are important dimensions of concept learn- 
ing. The next section motivates choices along these dimensions for purposes 
of incremental learning. 

tMethods of numerical taxonomy do not result in concept descriptions for discovered 
classes. By definition, clustering and characterization cannot be independent in concep- 
tual clustering; the results of characterization (i.e., a set of concepts) must be used to 
determine the quality of object classes (i.e.. the result of clustering). 
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2.3 Incrementa l  concept  induct ion  

Many concept learning systems, whether they carry out learning from 
examples or conceptual clustering, are nonincremental all objects must be 
present at the outset of system execution. In contrast, incremental methods 
accept a stream of objects that are assimilated one at a time. A primary 
motivation for using incremental systems is that knowledge may be rapidly 
updated with each new observation, thus sustaining a continual basis for 
reacting to new stimuli. This is an important property of systems that are 
used under real-world constraints (Carbonell & Hood, 1986; Langley, Ki- 
bler, & Granger, 1986; Sammut & Hume, 1986). Search-intensive methods 
may be appropriate in a nonincremental system, but may be too costly for 
incremental processing, since they require updating a frontier of concept 
hypotheses and/or examining a list of previously seen objects. Schlimmer 
and Fisher (1986) imply that incremental processes are profitably viewed 
as strategies operating under diminished search control. Specifically, they 
use a hill-climbing strategy (with no backtracking) to implement and test 
incremental variants of Quinlan's (1983) ID3 program. 

Schlimmer and Fisher demonstrate that the cost of object incorporation 
can be significantly reduced, while preserving the ability of the learning 
system to converge on concept descriptions of high quality. The ability 
to achieve high quality concept descriptions, despite the limitations of hill 
climbing, is maintained by extending the set of available operators. Rather 
than restricting search to be unidirectional, both generalization and special- 
ization operators are supplied. Bidirectional mobility allows an incremental 
system to recover from a bad learning path. 

In learning from examples, Winston's (1975) 'ARCH' program fits this 
view of incremental processing; it employs a hill-climbing strategy with 
operators for both generalization and specialization. This view can also be 
extended to conceptual clustering. For instance, Fisher and Langley (1985, 
1986) view Lebowitz' (1982, 1986a) UNIMEM as an incremental conceptual 
chlstering system. Given a new object and an existing hierarchy that was 
built from previous observations, the program incorporates the object into 
the hierarchy. This results in a classification hierarchy that covers the new 
object as well as previously seen objects. Since UNIMEM maintains only 
one hierarchy following each observation, it can be viewed as hill climbing 
through a space of classification hierarchies. Second, UNIMEM does not 
build its hierarchies in an entirely top-down or bottom-up fashion. Instead, 
it has operators tot merging nodes in an agglomerative manner and deleting 
nodes and associated subtrees. Node deletion selectively undoes the effects 
of past learning and thus approximates backtracking. 
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While existing descriptions of UNIMEM and similar systems like CYRUS 
(Kolodner, 1983) are not fl'amed as search, desirable search properties can 
be abstracted from them. These systems use diminished search control 
and greater operator flexibility to navigate through hierarchy space, and 
thus employ a practical strategy for incremental learning. The advantage 
of viewing these systems in terms of search is that it requires explicit con- 
sideration of the 'goal' of learning and of the system's ability to achieve 
or approximate this goal. The search framework forces analysis to move 
beyond anecdotal characterizations of system behavior. 

3. C O B W E B :  Incremental  conceptual  c lustering 

UNIMEM and CYRUS, along with the conceptual clustering work of 
Miehalski and Stepp, have inspired the COBWEB system. COBWEB is 
an incremental system for hierarchical conceptual clustering. The system 
carries out a hill-climbing search through a space of hierarchical classifica- 
tion schemes using operators that enable bidirectional travel through this 
space. This section describes COBWEB, filling in the details of the general 
incremental strategy. Specifically, the section gives 

• the heuristic evaluation measure used to guide search, 

• the state representation, including the structure of hierarchies and the 
representation of concepts. 

• the operator,s used to build classification schemes, and 

• the control strategy, including a high level description of the system. 

3.1 Category utility: A heuristic evaluation measure 

COBWEB uses a heuristic measure called category utility to guide search. 
Gluck and Corter (1985) originally developed this metric as a means of 
predicting the basic level in human classification hierarchies. Briefly, basic 
level categories (e.g., bird) are retrieved more quickly than either more 
general (e.g., animal) or more specific (e.g., robin) classes during object 
recognition. More generally, basic level categories are hypothesized to be 
where a number of inference-related abilities are maximized in humans 
(Mervis & Rosch, 1981). 

Identifying preferred concepts in humans is important from a cognitive 
modeling standpoint, but it also provides a basis for developing principled 
criteria for evaluating concept quality in AI systems. Category utility can 
be viewed as a fimction that rewards traditional virtues held in clustering 
generally sinfilarity of objects within the same class and dissimilarity 
of objects in different classes. In particular, category utility is a tradeoff 
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between intra-class similarity and inter-class dissimilarity of objects, where 
objects are described in terms of (nominal) a t t r ibute-value pairs like those 
in Table 1. Intra-class similarity is reflected by condit ional  probabilities of 
the form P(Ai = Vij]Ck), where Ai = Vi i is an at t r ibute-value pair and Ck 
is a class. The  larger this probability, the greater  the propor t ion  of class 
members  sharing the value and the more predictable the value is of class 
members .  Inter-class similarity is a function of P(Ck[Ai = Vij). The larger 
this probability, the fewer the objects in contras t ing classes tha t  share this 
value and the more predictive the value is of the class. 

These probabili t ies are dispositions of individual  values, but  they can be 
combined to give an overall measure of par t i t ion quality, where a par t i t ion 
is a set. of mutually-exclusive object classes, {C1, C2, ..., Cn}. Specifically, 

n 

~ ~ r (Ai  = Vij)P(CklAi = Vij)P(A~ = VijlCk), 3 - 1 
k = l  i j 

is a tradeoff between intra-class similarity ( through P(Ai = Vij[Ck)) and 
inter-class dissimilarity ( through P(Ck[Ai = Vii)) tha t  is summed  across 
all classes (k), a t t r ibutes  (i), and values (j). The  probabili ty P(Ai = Vii) 
weights the impor tance  of individual values, in essence saying it is more im- 
por tan t  to increase the class-conditioned predictabil i ty and predictiveness 
of frequently occurring values than  for infrequently occurring ones. 

Funct ion 3 1 balances tradit ional  concerns of intra- and inter-class simi- 
larity (i.e., predictabil i ty and predictiveness).  However, it also rewards the 
inference potent ia l  of object class part i t ions.  More precisely, for any i, j ,  
and k, P(Ai '=- Vij)P(CklAi = Vij) = P(Ck)P(Ai = VijlCk) by Bayes rule, 
so by subs t i tu t ion  function 3 1 equals 

n 

r (ck)  ~ ~ P(Ai = VisIG?. 3 - 2 
k = l  i j 

In words, ~i  ~ j  P(Ai = Vij]Ck) 2 is the expected number  of a t t r ibute  val- 
ues that  can be correctly guessed for an arbi t rary Inember of class Ck. 
This expecta t ion assumes a guessing s trategy tha t  is probability matching, 
meaning tha t  an a t t r ibute  value is guessed with a probabil i ty equal to its 
probabili ty of occurring. Thus,  it assumes tha t  a value is guessed with 
probabil i ty P(Ai = Vij[Ck) and tha t  this guess is correct with  the same 
probability. 2 

2Probabil i ty match ing  can be contras ted with  probability maximizing. The la t ter  s trat-  
egy assumes the most  frequently occurr ing value is always guessed. While this s t ra tegy 
may seem superior  at a cursory level, it is not  sensitive to the  distribution of all a t t r ibu te  
values and is not  as desirable for henristically ordering object  part i t ions.  
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Table 2. Probabilistic representation of {fish, amphibian, mammal}. 

Attributes Values and probabilities 

BodyCover 
HeartChamber 
BodyTemp 
Fertilization 

scales [0.331. moist-skin [0.33]. hair [0.33] 
two [0.331, three [0.33], four [0.33] 
unregulated [0.67], regulated [0.331 
external [0.67], internal [0.33] 

Finally, Cluck and Corter define category utility as the increase in tile 
expected number of attr ibute values that  can be correctly guessed (P(Ck) 
~ ~ j  P(Ai = V~jlCk) 2) given a partit ion {C1 ..... (J~n} over the expected 
number of correct guesses with no such knowledge (~i  ~ P(Ai = Vii)2). 
More formally, CU({C1, C2, ..., C,~}) equals 

E~=~ P(Ck)[Ei E j  P(Ai = VijlCk) 2 -- Ei  E j  P(Ai = V/j) 2] 
3 - 3  

7/ 

The denominator,  n, is tile number of categories in a partition. Aver- 
aging over categories allows comparison of different size partitions. If 
an attribute value, Ai = Vii, is independent of class membership, then 
P(Ai . . . .  VijlCk) P(Ai = Vij) and P(Ai = VijlCk) 2 P(Ai t•.ij)2 = O. 
If this is true for all the attribute 's  values then the attribute is effectively 
irrelevant for any expression of category makeup. 

3.2 Representa t ion  of concepts  

At the basis of any classification scheme is a representation of individual 
concepts. Given its sensitivity to the distribution of attribute values, tile 
choice of category utility as a heuristic measure dictates a concept rep- 
resentation other than the logical, typically conjunctive, representations 
used in AI. Category utility can be computed from P(Ck) of each category 
in a partit ion and P(Ai = VijlCk) for each attr ibute value. A summary 
representation that  lists attribute values and associated probabilities is a 
probabili,stic concept (Smith & Media. 1981), an example of which is shown 
in Table 2. 

Attribute value probabilities are computed from two integer counts. For 
example, a concept for the class of birds has an entry, P(fliesIbird), that  is 

# t imes -a -b i rd -was  observed-to fly 
computed by #tirnes-a-bird-was-ob,served . Both counts of the quotient 
are stored at the node corresponding to "birds'. As convenient, concepts 
will be alternatively discussed in terms of attribute-value probabilities and 



148 D.H.  FISHER 

the integer counts that underlie these probabilities. 

In COBWEB, a probabilistic concept labels each node in the classifi- 
cation tree and summarizes the objects classified under the node. Proba- 
bilistic concept trees are unlike strict discrimination networks or decision 
trees (Feigenbaum & Simon, 1984) in that probabilistic (and not logical) 
descriptors label nodes (and not arcs) of the tree. Classification using a 
probabilistic concept tree is done using a partial matching function to de- 
scend the tree along a path of 'best' matching nodes. 3 The following section 
shows how COBWEB adapts this general procedure for tree update. 

3.3 Operators and control 

COBWEB incrementally incorporates objects into a classification tree, 
where each node is a probabilistic concept that represents an object class. 
The incorporation of an object is a process of classifying the object by 
descending the tree along an appropriate path, updating counts along the 
way, and performing one of several operators at each level. These operators 
include 

• classifying the object with respect to an existing class, 

• creating a new class, 

• combining two classes into a single class, and 

• dividing a class into several classes. 

While these operators are applied to a single object set partition (i.e., set of 
siblings in tile tree), compositions of these primitive operators transform 
a single classification tree. The emergent search strategy is one of hill- 
climbing through a space of classification trees. 

3.3.1 Operator I: Placing an object in an existing class 

Perhaps the most natural way of updating a set of classes is to simply 
place a new object in an existing class. In order to determine which cate- 
gory 'best' hosts a new object, COBWEB tentatively places the object in 
each category. The partition that results from adding the object to a given 
node is evaluated using category utility (3 3). The node that results in the 
best partition is identified as the best existing host for the new object. 

aThis procedure is polythetic; the choice of what path to follow at each node is de- 
pendent on an object's values along many attributes. In contrast, most decision trees 
are monothetic in that descent at each node is based on the value of a single attribute. 
Fisher (1987) discusses the relative advantages of the probabilistie tree approach. 
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3.3,2 Operator 2: Creating a new class 

In addition to placing objects in existing (:lasses, there is a way to create 
new classes. Specifically, tile quality of the partition resulting from plaeing 
the object in the best existing host is compared to tile partit ion resulting 
from creating a new singleton class containing the object. Depending on 
which partit ion is best with respect to category utility, the object is t)laced 
in the best existing class or a new class is created. This operator allows 
COBWEB to automatically adjust the number of classes in a partition. 
The number of classes is not bounded by a system paraineter (e.g., as in 
CLUSTER/2) ,  but emerges as a flmction of enviromnental regularity. 

3.3.3 A simple example 

Figure 3 demonstrates the effect of operators 1 and 2 in three snapshots. 
Snapshot (a) shows a classification tree that  has been previously built over 
the 'fish' and 'amphibian'  objects of Table 1. Listed with each node (class) 
are tile probability of tile class and the probabilities of attribute values 
conditioned on class membership. For example, the probability of having 
scales is 0.5 for objects classified at the root of snapshot (a), while scales are 
assured with probability 1.0 for objects classified at C1 (a singleton ('.lass 
containing only ~fish'). Space prohibits showing more than one attr ibute 
value for each node, but all values exhibited over objects of a node are 
stored with their respective conditional probabilities. For example, node 
Co of tree (b) is completely specified by tile probabilistic concept of Table 
2. Probabilities reflect attribute value distributions over observed objects. 
As with any inductive program, there is an implicit assumption that  the 
observations collectively approximate the environment as a whole. How- 
ever, distributions are not permanent,  but change in response to further 
observation (Cheeseman, 1985). 

Snapshot (b) shows a new class being created. Tile transition from (a) 
to (b) is caused by incorporating the 'mammal '  object of Table 1. The 
probability, P(sealeslG)), reflects this addition at the root. Creating a new 
singleton class (Ca) corresponding to 'mammal '  yields a better partition 
than adding the object to either of the existing (:lasses. 

Snapshot (c) demonstrates an object being added to an existing class. 
Adding 'bird' to tile tree of snapshot (b) causes appropriate alterations 
at the root; e.g., scales now occur in only one quarter of the observed 
animals. Adding 'bird' to the existing (:lass corresponding to "mammal' 
yields the best possible partition. Since this node is a leaf in snapshot (b). 
incorporation of 'bird' involves expanding the leaf to accommodate the new 
object, as well as the previously classified one. 
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(a) 

Figure 3.Adding 'mammal'  and 'bird' to an existing classification tree. Each node 
represents an object class, Ci, that is summarized by a set of probabili- 
ties, P(valuelCi ). 
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Figure 4. 

( > J  
. . . .  

The effect of node merging. 
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Figure 3 demonstrates how a concept hierarchy is constructed over se- 
quential observations and how distributions change to reflect increasing 
information. While the figure shows probabilities at each node, recall that 
they arc actually computed from two integer counts. Stored at each node 
is a count of the number of objects classified under the node. Addition- 
ally, each attribute-value entry includes an integer count of the number 
of objects classified under the node possessing that value. Probabilities 
are computed on demand for evaluation purposes, but it is the underlying 
counts that are updated. 

3.3.4 Operators 3 and 4: Merging and splitting 

While operators 1 and 2 are effective in many cases, by themselves they 
are very sensitive to the ordering of initial input. To guard against the ef- 
fects of initially skewed data, COBWEB includes operators for node merg- 
ing and splitting. Merging takes two nodes of a level (of n nodes) and 
'combines' them in hopes that the resultant partition (of n - 1 nodes) is 
of better quality. Merging two nodes involves creating a new node and 
summing the attribute-value counts of the nodes being merged. Tile two 
original nodes are made children of the newly created node as shown in 
Figure 4. Although merging could be attempted on all possible node pah's 
every time an object is observed, such a. strategy would be unnecessarily 
redundant and costly. Instead, when an object is incorporated, only the 
two best hosts (as indicated by category utility) are considered for merging. 
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> 

Figure 5. The  effect of node split t ing. 

An example of merging occurs when adding a second instance of 'fish' 
from Table 1 to the last tree in Figure 3; nodes C1 and C2 are identified as 
the best and second best hosts, respectively. Merging these nodes results 
in a partition superior to that obtained by incorporating the object in the 
best host. 

As with node merging, splitting may increase partition quality. A node of 
a partition (of n nodes) may be deleted and its children promoted, resulting 
in a partition of n + m - 1 nodes, where the deleted node had rn children 
as shown in Figure 5. Splitting is considered only for the children of the 
best host among the existing categories. 

Node merging and splitting are roughly inverse operators and allow 
COBWEB to move bidirectionally through a space of possible hierarchies. 
Splitting can be invoked to undo the effects of a prior merging should 
conditions change and vice versa. In general, merging is invoked when 
initial observations suggest that the environment is a space of highly sim- 
ilar objects, relative to the actual structure of the environment suggested 
by subsequent observations. Splitting is invoked when the environment is 
more 'compressed' than suggested by initial input. Merging and splitting 
decrease the sensitivity of COBWEB to input ordering due to their inverse 
relation. 4 

4Space has not permitted discussion of a fifth operator, node promotion, that  allows 
selectively promoting a single node without splitting its parent (Fisher, 1987). 
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Table 3. The control structure of COBWEB. 

FUNCTION COBWEB (Object, Root ( of a classification tree }) 
1) Update counts of the Root 
2) IF Root is a leaf 

THEN Return the expanded leaf to accommodate the new object 
ELSE Find that child of Root that best hosts Object and 

perform o n e  of the following 
a) Consider creating a new class and do so if appropriate 
b) Consider node merging and do so if appropriate and 

call COBWEB (Object, Merged node) 
c) Consider node splitting and do so if appropriate and 

call COBWEB (Object, Root) 
d) IF none of the above (a, b, or e) were performed 

THEN call COBWEB (Object, Best child of Root) 

3.3.5 COBWEB' s  control structure 

Table 3 summarizes the control strategy that COBWEB uses to organize 
its learning operators. Using this strategy, the system tends to converge 
on classification trees in which the first level (tile root is the 'zeroth' level) 
is the optimal partition (with respect to category utility) over the entire 
object set. For example, over the objects of Table l, COBWEB consis- 
tently converges on the tree of Figure 2. However, as the example for node 
merging indicates, some orderings may require more than one instance of 
the same object to converge. Furthermore, while merging and splitting de- 
sensitize the systenl to the effects of initial input ordering, all hill-climbing 
approaches are susceptible to problems related to initial input ordering. 
This limitation and other matters are discussed in the following section. 

4. E v a l u a t i o n  o f  C O B W E B  

This section evaluates COBWEB with respect to Dietterich's learning 
model. The model posits three elements that surround learning: the knowl- 
edge base, the performance element, and the environment. First, tile gen- 
eral form of COBWEB classification trees (knowledge base) is reviewed by 
examining an anecdotal domain. Next, the utility of this acquired knowl- 
edge for inference (performance task) is examined ill the domain of soybean 
diseases. The section concludes with an investigation of COBWEB's effec- 
tiveness as an incremental learner (environment). 

4.1 M o r e  on c lass i f i cat ion  trees  a n d  c o n c e p t s  

Given a sequence of objects, COBWEB forms a classification tree that 
summarizes and organizes those objects. For example, given the animal 
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Table 4. Descriptions of two categories from congressional vot ing tree. 

Normative 
values 

N1 ('conservative') N2 ('liberal') 
[P(valuelN1), P(Xl Ivalue)] [P(valuelN2 ), P(N2 Ivalue)] 

Toxic Waste - yes [0.81,0.90] 
Budget Cuts yes [0.81,0.81] 
SDI reduction no [0.93,0.88] 
Contra Aid yes [0.88,0.881 
Line-Item Veto yes [0.91,0.90] 
MX Production yes [0.90,0.95[ 

Toxic Waste no [0.88, 0.78] 
Budget Cuts no [0.90, 0.78] 
SDI reduction yes [0.83,0.90] 
Contra Aid no [0.83,0.83] 
Line-Item Veto no [0.86, 0.88] 
MX Production no [0.93,0.87] 

descriptions of Table 1, the system formed the tree of Figure 2 along with a 
probabilistic concept for each node. A domain that illustrates COBWEB's 
use of probabilistic concepts is congressional voting records. Members of 
the U.S. Senate were represented by 14 key votes taken in 1985. 5 These 
votes ranged from domestic issues, such as emergency farm credits, gun 
control, and school prayer, to foreign affairs issues like Nicaraguan 'Contra' 
aid. Party affiliations (democrat and republican) were not included in the 
representation. Each attribute corresponded to one of the 14 votes, with 
each attribute having two possible values, 'yes' or 'no'. 

Based on these data, COBWEB formed a classification tree that patti- 
tioned senators at the top level into groups corresponding roughly to 'lib- 
erals' and 'conservatives'. Democrats predominantly inhabited the 'liberal' 
cluster and republicans dominated the 'conservative' cluster. Table 4 shows 
these nodes with a number of predictable and predictive values. Lower level 
nodes further distinguish these top-level groups. For instance, one node nn- 
der the 'conservative' cluster contains eight of the ten democrats classified 
in the 'conservative' cluster. This smaller group corresponds roughly to 
the concept of 'southern democrat'  or alternatively 'Jackson democrat',  6 
which differed from other members of the 'conservative' group by opposing 
budget cuts (with probability 0.92). 

An important feature of the congressional classification tree is that none 
of the 'conservative', 'liberal', and 'southern democrat'  clusters contained 
any perfectly common values. However, several values occurred with high 
probability and collectively represent strong tendencies of their respective 
classes. In general, a number of authors (Hanson & Bauer, 1986; Rendell, 
1986; Smith & Media, 1981) point out that many object classes are more 

5Votes were designated as key votes by the Congressional Quarterly, 1985, pp. 6 
15, and not selected by the author. This domain was inspired by similar data used by 
Lebowitz (1986b). 

6Seven of eight senators were from southern states. A 'Jackson' democrat is one who 
votes conservatively on military/foreign policy issues and liberally on social issues. 
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Figure 6. Classification tree of soybean ease histories. 

amenable to a probabilistic representation than to a logical one; important 
conditions may only be true with high probability. 

Concept properties that can be inferred with high confidence go by a 
number of names, including normative (Kolodner, 1983) and predictable 
(Lebowitz, 1982). In Kolodner's (1983) CYRUS, normative values are those 
that are present with a probability greater than a constant threshold (e.g., 
0.67). COBWEB takes a different approach to identifying 'norms' (Fisher, 
1987) by looking at a tradeoff between value predictability and predic- 
tiveness. Briefly, a value may only be normative at nodes that render it 
(approximately) conditionally independent of other attribute values. This 
approach generalizes constant threshold strategies, since an attribute with 
a highly probable value (e.g., 0.67) will tend to approximate independence 
from other attributes; this is trivially true when the probability is 1.0. The 
values in Table 4 are examples of normative values that were identified by 
COBWEB. These values can be viewed as default values (Brachman, 1985) 
with probabilistic qualifiers. 

Normative values allow for a compact summary of category information 
and provide a link between probabilistic and symbolic representations. In 
this regard, Hanson and Bauer (1986) suggest the use of polymorphic con- 
cepts to delineate category membership. A polymorphic set of normative 
conditions is true if some number of the total set are true. For example, the 
polymorphous concept {Contra Aid = yes, Lineltem Veto = yes, Gramm- 
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Table 5. Descriptions of the 'Charcoal Rot' cluster from the soybean tree. The 
predictability and predictiveness for each normative value are given in 
brackets, i.e., [P(valuelCharcoal Rot), P(Charcoal Rotlvalue)]. 

_Normative 
values 

N2 ('Charcoal Rot ')  
[P(valuelN2), P(N21value)] 

Precipitation = below-normal [1.0, 1.0] 
Temperature = above-normal [0.60, 1.0] 
Stem-cankers = absent I1.0, 1.0] 
Fruit-pod-condition = normal [1.0, 0.50] 
Canker-lesion-color = tan [1.0, 1.0] 
Outer-stem-decay = absent [1.0,0.48] 
Internal-stem-discoloration = black [1.0, 1.0] 
Sclerotia-internal-external = present [1.0, 1.01 

Rudman = yes} can be used to classify senators as 'conservatives' if two 
of the three conditions are true. In Michalski and Stepp's (1983) terms, 
polymorphic rules can supply simple and tightly fitting representations of 
data. 

COBWEB forms classes that  may be best represented probabilistically. 
However, such representations do not preclude compact and understand- 
able concept descriptions. In fact, while classes of the congressional domain 
exhibited no necessary and sufficient conditions, such classes arise in many 
domains. This is demonstrated in a domain of soybean case histories. 
COBWEB was tested in a domain of 47 soybean disease cases taken from 
Stepp (1984). Each case (object) was described along 35 attributes. An 
example case history is {Precipitation = low, Temperature = normal, . . . ,  
Root-condition = rotted}. Four categories of soybean disease were present 
in the data Diaporthe Stem Canker, Charcoal Rot, Rhizoetonia Root 
Rot, and Phytophthora  Rot but  for this experiment they were not in- 
eluded in object descriptions. When COBWEB was run on the instances 
the four classes were 'rediscovered' as nodes of the resultant classification 
tree shown in Figure 6. 7 

Normative values for the 'Charcoal rot'  class are given in Table 5. An 
important  characteristic of this domain, not observed in the congressional 
domain, is that  many classes arise that  can be described by necessary and 

7Stepp's (1984) CLUSTER system also rediscovered the disease classes. However, 
Stepp's system is search-intensive and nonincremental; its results are independent of 
input order. On the other hand, COBWEB is order dependent and required three 
iterations through the data before converging on the reported tree. Issues related to 
convergence are described in 4.3. 
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sufficient values. For example, Charcoal rot has a total of seven neces- 
sary values (i.e., P(value[Charcoal rot) = 1.0), six sufficient values (i.e., 
P(Charcoal rotlvalue ) = 1.0), and five necessary and sufficient values. 
Classes with necessary and sufficient conditions naturally emerge fl'om the 
more general process of looking for classes with predictable and predictive 
values. 

4.2 T h e  ut i l i ty  o f  c lass i f i cat ions  for inference  

A central claim of this paper is that classification structures produced by 
conceptual clustering systems, particularly COBWEB, are useful for mak- 
ing inferences. As described earlier, the current system employs an evalu- 
ation function that prefers categories from which more can be predicted. 
The efficacy of this domain-independent heuristic requires that important 
properties be dependent on regularities or 'hidden causes' (Cheng & Fu, 
1985; Pearl, 1985) in the environment. This section describes experimen- 
tation aimed at verifying COBWEB's ability to uncover such regularities, 
thereby improving prediction. 

COBWEB's utility for inference was demonstrated by running the sys- 
tem on instances from the soybean domain a second time. However, in 

"these experiments diagnostic condition was included in each object de- 
scription, though it was simply treated as a 36th attribute. In building a 
classification tree, diagnostic condition was not used to classify objects as 
it would in learning from examples. 

After incorporating every fifth instance, the remaining u n s e e n  cases 
were classified (but not incorporated) with respect to the classification tree 
constructed up until that point. Thus, in the tradition of Quinlan (1983), 
the input was implicitly divided into training and test sets. The goal was 
to determine if induction over the training set improved inference over the 
test set through a process of classification. Classification was performed in 
a manner similar to incorporation, except that statistics were not updated, 
nor were merging, splitting, or class creation performed. Test instances 
being classified contained no information regarding diagnostic condition, 
but the value of this attribute was inferred as a byproduct of classification. 
Specifically, classification terminated when the test object was matched 
against a leaf of the classification tree. The leaf represented the previously 
observed object that best matched the test object. The diagnostic condition 
of the test object was predicted to be the corresponding condition of the 
leaf. 

Figure 7 gives the results of the experiment. The graph shows that after 
five instances the classification tree could be used to correctly infer diagnos- 
tic condition (over the remaining 42 unseen cases) 88% of the time. After 
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Figure 7. Diagnostic success with soybean cases. 

ten instances, 100% correct diagnosis was achieved and maintained for the 
rest of the run. While impressive, these results follow from the regular- 
ity of this domain. COBWEB's  'rediscovery' of expert-defined diagnostic 
conditions in section 4.1 indicates that  diagnostic condition participates in 
a network of at tr ibute correlations. Forming classes around these correla- 
tions is rewarded by category utility, resulting in classes corresponding to 
the human-defined diseases. 

The success at inferring the diagnostic condition suggests a relationship 
between an attr ibute 's  dependence on other attributes and the utility of 
COBWEB classification trees for induction over that  attribute. To further 
characterize this relationship, the induction test was repeated for each of 
the remaining 35 attributes. The results of these tests (including diagnostic 
condition) were averaged over all attributes and are presented in Figure 8. 
On the average, correct induction of attr ibute values for unseen objects 
reaches 87% after COBWEB has observed one half of the soybean case 
histories, s 

To put  these results into perspective, Figure 8 also graphs the averaged 
results of a simpler, but reasonable inferencing strategy. This ~frequency- 
based' method dictates that  one always guess the most frequently occurring 

SRecall that this is an induction task. As would be expected, when classifying previ- 
ously observed objects, correct prediction of missing attribute vahles is nearly 100%. 
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Succes~ at inference averaged over all soybean attributes. 

value of the unknown attribute.  Averaged results using this strategy level 
off at 74% correct prediction, placing it at 13% under the more complicated 
classification strategy. However, these averaged results do not tell the 
whole story - the primary interest is in determining a relationship between 
a t t r ibute  correlations and the ability to correctly infer an at t r ibute 's  value 
using COBWEB's  classification trees. 

To characterize the relationship between at t r ibute  dependence and in- 
ferencing ability, it is necessary to introduce a measure of a t t r ibute  depen- 
dence. The dependence of all a t t r ibute  AM on other at tr ibutes Ai (:all be 
defined as: 

E i  Ej~ P(Ai  = Viii) E j M [ P ( A M  = VMjM IAi = Viii )2 _ P(AM = VMj,,, )2_] 

I{iJ& ¢ AMil 
4 - 1  

This function is derived in much the same way as category utility, but  it. 
measures the average increase in the ability to guess a value of AM given 
the value of a second attr ibute,  Ai ¢ AM. l/.~ij~ signifies the j i th  value of 
a t t r ibute  Ai. If AM is independent of all other attributes,  Ai, then equation 
4 1 equals 0 since P(AM = VMj~,I& = V#.~) = P(AM = VMj~) for all Ai, 
and thus P(AM = VMjM IA~ = V)a,) 2 - P(AM = VMj.,, )2 = O. 



160 D.H. FISHER 

• - 1 0 0 -  
o 

u 90- 

" 80- 

70- 
U 

, - .  60" 

"~' 50'  

,-u 40" . =  

30! l )  
8 • • 
a. 20. 

10. 

OJ. _l .... 

-I0 =r--'= 

0 

Root-condition 

• • • m# m 

Diagnostic-condition 

• i  

64% 

i ! i 

0.05  0 . I  0 .15 
Attribute dependence 

Figure 9. Increase in correct soybean inference as a function of dependence. 

Figure 9 shows the increase in correct prediction afforded by COBWEB's 
classification tree (after 25 instances) over the frequency-based method as 
a function of attribute dependence. Each point on the scatter graph rep- 
resents one of the 36 attributes used to describe soybean cases. There is a 
significant positive correlation between an attribute's dependence on other 
attributes and the degree that COBWEB trees improve inference. 9 For 
example, diagnostic condition is most dependent on other attributes and it 
is also the attribute for which prediction benefits most from classification. 
For this attribute, the frequency-based approach results in 36% correct pre- 
diction compared to 100% correct prediction using the tree generated by 
COBWEB (i.e., 64% difference). Prediction of attributes that approximate 
independence from other attributes does not benefit from classification and 
in the case of four attributes it is less effective than the frequency-based 
approach. The important methodological point to be gleaned from this 
analysis is that prediction tasks vary in difficulty and COBWEB has been 
characterized with respect to domains that span a spectrum from difficult 
to easy. Ill general, little attention has been paid to Simon's (1969) point 

9The  Pea r son  p r o d u c t - m o m e n t  coefficient is 0.88, ind ica t ing  a h ighly  s ignif icant  
corre la t ion .  
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that domains must be characterized before the advantage of a learning 
system can be evaluated. 

In addition to the soybean domain, tests were conducted using a domain 
of 150 thyroid patient case histories (Fisher, 1987) and a similar pattern 

i " 1 .  ral of correct prediction was exh blted. In gene , experiments indicate 
that COBWEB is a viable means of organizing observations to support 
inference. 11 The utility of classifications is assured in domains where there 
are data dependencies involving important attributes (e.g., diagnostic con- 
dition). In this light, the performance task associated with COBWEB 
can be contrasted with that of learning from examples. While a learning 
from examples system seeks to maximize inference with respect to a single, 
teacher-selected 'attribute' (e.g., diagnostic condition), COBWEB seeks to 
maximize a probabilistic average across all attributes. The predictabil- 
ity of an attribute appears to rise roughly in proportion to the degree it 
participates in intercorrelations. Attributes that participate in few inter- 
dependencies come to be treated as irrelevant. The effectiveness of this 
approach stems from observations that real-world domains tend to exhibit 
significant degrees of data dependence (Mervis & Rosch, 1981). 

Before moving on, it is important to point out that effective prediction 
is not restricted to classification schemes that employ probabilistic concept 
representations or that were formulated using category utility. Undoubt- 
edly, many functions represent a tradeoff of attribute-value predictiveness 
and predictability that operationalizes the performance criterion of max- 
imizing inference ability. These may even be functions applied to logical 
concept representations. As Medin, Wattenmaker, and Michalski (1986) 
point out, predictiveness and predictability are continuously-valued analogs 
of logical sufficiency and necessity, respectively. Category utility can be 
viewed as a continuously-valued analog of quality measures used with log- 
ical representations, most notably CLUSTER/2's measures of simplicity 
and fit (Michalski & Stepp, 1983). As discussed earlier, using category 
utility tends to result in concept descriptions that are compact and under- 
standable. Conversely, it is likely that a tradeoff between simplicity and 
fit will reward classification schemes with greater utility for inference. 

While many domains exhibit significant regularity, the ability to uncover 
this regularity may be hindered by a number of factors. One difference 
between COBWEB and other conceptual clustering systems is that it is 
incremental. The inability to examine all instances simultaneously can 

1°These data were kindly supplied by J. R. Quinlan. 
11Experiments (Fisher, 1987) indicate that classification need not proceed all the way 

to leaves as with the experiments reported here. Instead, using normative or default 
values (briefly described earlier), classification need only proceed to about one tenth the 
depth of the tree on average to obtain comparable inference results. 
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be a significant barrier to learning. The following discussion explores the 
impact of incremental processing. 

4.3 C O B W E B  as an i n c r e m e n t a l  s y s t e m  

COBWEB is an incremental conceptual clustering system that can be 
viewed as hill climbing through a space of classification trees. The pro- 
gram does not adopt a purely agglomerative or divisive approach, but uses 
divisive (splitting) as well as agglomerative (merging) operators in tree 
construction. Schlimmer and Fisher (1986) propose three criteria for eval- 
uating incremental systems that were inspired by Simon (1969). These 
criteria (adapted for conceptual clustering) are: 

• the cost of incorporating a single instance into a classification tree, 

• the quality of learned classification trees, and 

• the number of objects required to converge on a stable classification 
tree. 

They argue that for incremental systems in general, incorporation cost 
should be low, thus allowing real-time update. However, this may come at 
the cost of learning lower quality classifications and/or  requiring a larger 
sample of objects to find a good classification than a similarly biased non- 
incremental, search-intensive method. This section evaluates COBWEB 
using these criteria and verifies it to be an economical and robust learner. 

4.3.1 Cost of assimilating a single object 

To compute the cost of incorporating an object into an existing classifi- 
cation tree, assume that B is the average branching factor of the tree and 
that n is the number of previously classified objects, so that logBn approx- 
imates the average depth of a leaf. Also, let A be the nmnber of defining 
attributes and let V be the average number of values per attribute. In com- 
paring an object to a node during classification, the appropriate counts of 
the node are incremented and the entire set of children to which the node 
belongs is evaluated by category utility. This costs O(BAV) and must be 
made for each of the B children (on the average). Therefore, comparing an 
object to a set of siblings requires O(B2AV) time. In addition to testing 
an object with respect to existing nodes, class creation is evaluated (one 
comparison), as is merging (one comparison), and splitting (B compar- 
isons). These costs are additive so that O(B2AV) remains a legitimate 
approximation of comparison cost. 

In general, classification proceeds to a leaf, the approximate depth of 
which is logBn. Thus, the total number of comparisons necessary to incor- 
porate an object is roughly 



category utility 
of partition based 

on Ao and Ax 
Ao A1 A2 A3 

(1) 0.5 

(4) 0.5 

INCREMENTAL CONCEPTUAL CLUSTERING 163 

category utility 
of partition based 

on A2 and A3 

0.5 

0.32 

Figure i0. Artificial domains with global and local optima. 

cost = O(B 2 log B n x AV). 

In COBWEB, the branching factor is dependent, on regularity inherent 
in the environment; it is not bounded above by a constant as in CLUS- 
TER/2  (Michalski & Stepp, 1983), or by the average number of values 
per attr ibute as in RUMMAGE (Fisher, 1985) and DISCON (Langley & 
Sage, 1984). This makes an exact upper bound on update cost difficult 
to come by analytically. However, tests in a variety of domains indicate 
that  the branching factor of trees produced by COBWEB range from two 
to five. This agrees with Michalski and Stepp's (1983) intuition that  most 
'good' classification trees have small branching factors and lends support  
to bounding the branching factor in their system. In any case, the cost 
of adding a single object in COBWEB is significantly less expensive than 
rebuilding a classification tree for a new object using a search-intensive 
method such as CLUSTER/2.  Polynomial or exponential cost will be as- 
sociated with any search-intensive clustering system. 

4.3.2 The quality of clas~ification8 

COBWEB differs from other incremental systems like UNIMEM and 
CYRUS in that  it explicitly seeks classification trees in which the first 
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level is optimal with respect to a measure of clustering quality. Although 
node splitting and merging reduce the sensitivity of COBWEB to initial 
sample skew and aid convergence on optimal partitions~ all hill-climbing 
approaches are susceptible to becoming trapped in local optima. While 
natural domains were appropriate for earlier discussion, the pliability of 
artificial domains make them better suited for demonstrating the range of 
a system's behavior. Thus artificial domains were used to test COBWEB's 
ability to converge on optimal partitions with respect to category utility. 

COBWEB was tested in four artificial domains in which globally and 
locally optimal partitions existed. The difference between the quality of the 
global and local optimum (in terms of category utility) was systematically 
varied from domain to domain. Figure 10 gives state machines representing 
two of these domains: the domain with the least (domain 1) and greatest 
(4) disparity between the global and local optima. Each state machine 
represents a domain whose objects it recognizes. Objects in each domain 
are represented by attributes A0 through A3. For example, one member 
of domain 4 is {A0 = 0, A1 = 0, A2 = 4, A3 = 4}. A state machine 
representation was chosen because it provides a compact and pictorial view 
of the correlation between attributes. In each domain, the optimal partition 
is a segregation based on the values of attributes, A0 and A1, including 
domain 1 in which there is a tie. Partitioning based on attributes A2 and 
A3 form a partition of lesser quality: a local optimum. 

COBWEB was run 20 times on random samples of 50 objects for each 
domain. Figure 11 shows the results. The vertical axis is the percentage 
of runs in which the optimal partition was discovered, while the horizontal 
axis represents the distance between the category utility of the optimal and 
local optima normalized to lie in [0, 1]. 12 The graph indicates that as the 
distance between global and local partitions grows, the possibility of be- 
coming trapped in local optima rapidly dhninishes. The system's inability 
to converge on optimal partitions in extreme cases is a direct result of its 
hill-climbing strategy; a search-intensive method would typically discover 
the optimal partition in all situations. However, since category utility mea- 
sures the degree to which a partition promotes correct prediction of object 
properties (i.e., the expected number of correctly guessed attribute values), 
COBWEB finds the global optimum when it is most important to do so 
(i.e., when there is most at stake in terms of correct inference). The pro- 
gram will stumble into local optima only when there is little lost in terms 
of inference ability. 

12Distance was normalized by taking the optimal score, subtracting by the local score, 
and dividing by the optimal score. A normalized score of zero indicates the 'global' and 
'local' optimum are tied, while a score of one indicates there is only one optimum or 
peak in the domain. 
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Figure 11. Convergence on optimal partitions. 

4.3.3 Number of object8 required for convergence 

Experiments indicate that  COBWEB tends to converge on classification 
trees in which the first level is optimal. In this section, COBWEB is dis- 
cussed in terms of a third criterion for evaluating incremental methods 
the number of objects required to converge on a 'stable' partition. Again, 
four artificial domains were used to examine the program's behavior. These 
domains systematically differed in terms of the quality of the optimal par- 
tition. The two domains of least and greatest quality are pictured in Figure 
12. The domains were selected so that  the optimal partition of each do- 
main is unambiguous and easily visualized, but the ease with which it can 
be discerned with incremental object presentation varies across domains. 

COBWEB was run on five random orderings of objects from each do- 
main. During learning, 100 random objects were intermittently selected 
from the domain and were classified using the classification tree formed 
thus far by COBWEB. If the top-most partit ion segregated the sample in 
the same manner as the optimal partit ion of the environment as a whole, 
the two partitions were regarded as equivalent. Figure 13 shows the results 
of this experiment. As the quality of the optimal partit ion grows, fewer 
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objects are required to find the optimal partition. Inversely, as quality 
decreases, the number of objects required for convergence appears to expo- 
nentially accelerate upwards. Although a search-intensive method would 
probably also increase, the rate of acceleration would likely be shallower. 

While COBWEB may require many objects to stabilize on a partition, 
it appears to converge rapidly in domains exhibiting significant regularity, 
as indicated by higher category utility scores for the optimal partition. To 
put some of the previously examined domains in context, the partition (i.e., 
first level of the classification tree) formed for the congressional domain 
measured 1.20, the soybean domain measured 1.50, and the thyroid domain 
measured 0.50. While these scores literally represent a function of the 
expected munber of attributes that can be correctly predicted, informally 
they indicate the degree of attribute interdependencies. Given the graph 
in Figure 13, the category utility values inherent in these natural domains 
provide further evidence for their learnability by COBWEB. 

In summary, experiments indicate that COBWEB is a cost effective 
means of learning classification trees; update cost is low and convergence 
time and hierarchy quality gracefully degrade with decreasing environmen- 
tal regularity. However, in some ways the system may be too extreme 
in allowing only one object to be incorporated at a time. For example, 
Hanson and Bauer (1986) describe an incremental method that allows a 
specified number of objects to be simultaneously considered. While raising 
update cost (presumably by a constant, factor), this generalized approach 
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Figure 13. Number of objects required to converge. 

may improve convergence time and hierarchy quality in cases of little en- 
vironmental regularity. 

5. C o n c l u d i n g  r e m a r k s  

COBWEB is a conceptual clustering system that is incremental, eco- 
nomical, and robust. Furthermore, classifications produced by the system 
are effective tools for inference. While the system uses an evaluation func- 
tion consistent with preferences in human categorization (Gluck & Cotter, 
1985), it should not be regarded as a cognitive model, but as a general- 
purpose clustering method. COBWEB explicitly seeks to optimize its clas- 
sification tree with respect to category utility, and it does not show how 
such preferences emerge as the result of more primitive measures. However, 
Fisher (1987) describes an offspring of this system that can be viewed as 
a cognitive model and that accounts for certain psychological phenomena, 
including basic-level and typicality effects. 

From a machine learning standpoint, this research has been greatly in- 
fluenced by work in conceptual clustering, especially Michalski and Stepp 
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(1983), Fisher and Langley (1985, 1986), and other concept formation sys- 
tems, particularly UNIMEM (Lebowitz, 1982). COBWEB seeks classi- 
fications that maximize a heuristic measure (as in conceptual clustering 
systems) and uses a search strategy abstracted from incremental systems 
such as UNIMEM and CYRUS. Describing COBWEB in terms of search 
has motivated an evaluation of its behavior with respect to the cost and 
quality of learning. Importantly, this analysis is probably extendable to 
UNIMEM and CYRUS and it seems likely that they share many of COB- 
WEB's strengths and limitations. 

Hopefully, this discussion will lead to comparative studies, something 
that has been lacking in previous reports. This paper has carefully avoided 
claims of superiority with respect to related systems. In fact, Fisher (1987) 
discusses reasons why several systems might perform better along some di- 
mensions (e.g., prediction). Rather, this work embraces a methodology 
for empirically characterizing learning systems. COBWEB's characteriza- 
tion downplays anecdotal evidence, stressing instead the appropriate use 
of natural and artificial domains and abstract measures for characterizing 
domains as well as algorithms. This study enumerates dimensions along 
which comparisons between concept formation systems can be made in the 
first place. 

Future work will focus on rectifying a number of COBWEB's limita- 
tions. One limiting aspect is the object description language: nominal 
attribute-value pairs. One way to relax this constraint is to allow nu- 
meric, continuously-valued attributes. Gennari, Langley, and Fisher (in 
press) have described CLASSIT, a variation on COBWEB that rewards 
partitions formed around 'dense' value areas of numeric attributes. An 
alternative approach is employed by Michalski and Stepp (1983). Their 
system discretizes continuous attribute domains into ranges based on how 
well they contribute to higher-order conceptual descriptions. A range of 
values can then be treated like a nominal value. 

A second way of relaxing object description constraints is to allow struc- 
tured objects and concepts. Manipulating structured representations is 
an important prerequisite for applying conceptual clustering methods in 
sophisticated problem-solving domains. As CLUSTER/2 and UNIMEM 
served as precursors to COBWEB, CLUSTER/S (Stepp, 1984; Stepp & 
Michalski, 1986) and RESEARCHER (Lebowitz, 1986a) are likely starting 
points for work on incremental clustering of structured objects. Work by 
Vere (1978) on 'clustering' relational productions shows how conceptual 
clustering methods might be applied to operator descriptions. 

Finally, future work will focus on improving COBWEB's hill-climbing 
search strategy. While the limitations of hill climbing are generally not 
problematic, there are a number of real-world problems in which these lira- 
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itations would significantly manifest themselves. One problem is that of 
tracking changes in the environment (e.g., the change of seasons), which 
Schlimmer and Granger (1986) have studied in the context of learning from 
examples. In real-world domains, a concept formation system must be cog- 
nizant of changes in the regularity of the environment. Tracking concept 
drift is equivalent to the problem of dealing with extremely skewed data. 
Under extreme skew, a hill-climbing strategy results in a classification tree 
whose utility may irreversibly and progressively degrade. A principled 
solution to this and similar problems would involve monitoring the effec- 
tiveness of classification trees for performance and using this information 
to trigger global changes in the classification scheme, rather than the local 
alterations typically made. 

Thus, while the impact of conceptual clustering on performance has been 
discussed, solutions to a number of important problems will involve looking 
to ways that performance can affect clustering. In terms of Dietterich's 
learning model (Figure 1), the insight that performance impacts learning 
remains an unrealized impetus for future work in conceptual clustering and 
concept formation. 
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