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A B S T R A C T  
The failure of materials due to slow crack growth, under dynamic loading conditions, is analyzed in terms of  crack 
velocity, stress intensity relationships. It is shown that this type of analysis can fully describe the failure characteristics 
for both constant strain-rate and constant stress-rate loading. The analysis is used to predict the variations of strength 
and subcritical crack growth with strain-rate and stress-rate. Application of the analysis to several ceramic systems 
give data which are entirely consistent with available experimental data. 

1. Introduction 

Recent studies have shown that slow crack growth in ceramic [1, 2] and brittle metallic [3, 4] 
systems can be described by the crack velocity (V) and the stress intensity factor (K) for a given 
microstructure and corrosive species (if required). The relationship between K and V for any 
system depends on the concentration of the corrosive species in the test environment and the 
test temperature; it is independent of crack length, test geometry, etc. Typical K, V curves are 
shown schematically in Fig. 1. There are three principal regions: Region I in which the rate of 
the reaction at the crack tip controls crack motion and in general, Voc exp (ilK), where fl is a 
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Figure 1. A schematic representation of a typical K, V curve. Ko is the stress corrosion limit for the system and Kr  L 
is the stress intensity factor at the onset of Region II. Vo is the velocity acquired by the crack when K reached K0 ; 
Vr is the constant crack velocity in region II. 

constant (this region commences at the minimum K value for the system, Ko, the slow crack 
growth limit) [2]; Region II in which the crack velocity is essentially constant and crack motion 
is controlled by diffusion of the corrosive species; Region III in which the crack velocity 
increases very rapidly with increase in K. At the onset of Region III, K is generally close to 
K~c, the critical stress intensity factor for crack propagation in the absence of slow crack growth. 
It is usually possible, therefore, to consider that fast fracture (K = K~c) commences at the end of 
region II [4]. As crack growth proceeds K continues to increase, due to the kinetic energy 

* Now at: Inorganic Materials Division, National Bureau of Standards, Washington, D. C. 20234 (U.S.~.) 
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acquired by the specimen, but the rate of increase (dK/dV) is substantially lower than during 
sl~w crack growth. 

Using K, V curves, it should be possible to predict any of the time dependent failure charac- 
teristics. It has already been shown [-2, 4] that such curves can be used to successfully describe 
the variations in time-to-failure at constant applied tensile stress, a. The curves have not, how- 
ever, been used to examine the characteristics of dynamic failure at constant elastic strain-rate 
(~) or constant stress-rate (d). Constant strain-rate experiments are used extensively for fracture 
strength evaluations and it is important to understand how these strengths are affected by slow 
crack growth. A previous study by Charles [5] has examined constant stress-rate failure for a 
simplified K, V relationship. A more general description of dynamic failure (for both constant 
strain-rate and constant stress-rate loading) is presented in this paper based on the detailed 
form of the K, V curves. 

First, the failure criteria for dynamic loading are defined and, based on these, a description 
of failure is derived from a typical K, V curve. This is followed by an examination of the effects 
of strain-rate and stress-rate on strength and on the crack extension that occurs prior to failure. 
Several specific systems are then examined so that the predicted description of failure may be 
compared with available experimental data. 

2. Dynamic failure criteria 

2.1. Constant stress-rate failure 

For constant stress-rate the stress continues to increase until failure such that the maximum 
stress occurs just prior to the crack leaving the specimen. The maximum stress is thus found by 
relating stress a, to the crack length, C, and hence obtaining a at C ~  W, the specimen width. 

2.2. Constant strain-rate failure 

Constant strain-rate experiments are used extensively to obtain values of fracture strength 
(as), i.e., the maximum stress during failure. In contrast to constant stress-rate experiments the 
fracture stress is generally reached well before the crack leaves the specimen. The condition for 
maximum stress is given quite simply by: 

( 8 o )  = 0 ~  (1) 

The maximum stress is again found by relating stress and crack length, and then imposing the 
condition given by equation (1). 

3. Stress crack length relations during slow crack growth 

3.1. Constant stress-rate conditions 

The stress intensity factor, K, is related to the stress by: 

K = YcrC ~ (2) 

where Y is a geometrical factor that depends on C/W [6]. 
The crack velocity, dC/dt, is given by: 

d C _ ( 8 C )  da 
dt ~ K., d~' (3) 

the other partial derivatives vanish for constant stress rate conditions because K is a unique 
I .  

function of V. Rearranging eqn. (3) gives 
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da = ~ OC (4) 

Since V is a function of K- -and  hence tr and C through eqn. (2)--this equation may be solved 
for a, either numerically for each specific system, or analytically if there is a functional relation- 
ship between K and V. As described above, the K, V curves can be separated into three regions : 
in Region I, V oc exp (ilK); in Region II, V is approximately constant; then, at the end of region 
II, fast fracture occurs. It is convenient therefore to separate the integral into three K regimes. 

In Region L substitution of the exponential relationship between K and V into the integral 
leads to an intractable integration. A satisfactory solution to the integral requires therefore 
another relationship between K and V which also gives a good fit to the experimental data. It 
may be shown that a logarithmic relationship (of the type used by Charles [5]) in which V is 
proportional to K", i.e. V/V o =(K/Ko) ~ for K > K o, usually gives as good a fit to available 
experimental data as the exponential relationship, for both metallic and ceramic systems (see 
Fig. 2 for the data on glass). The solutions to the integral are still however specific to a particular 
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Figure 2. K, V data for the glass/water and glass/air (0.2~ humidity) systems [2] plotted on logarithmic axes, showing 
that the data gives a very good fit in Region I to the relationship V/Vo=(K/Ko)". 

test geometry, unless C ~  0.1 W where Y is constant (~n¢). This simple solution, as shown 
later, applies to a large number of systems. 

Substituting 

V =  V o , and K = K  o 

into Eq. (4) and integrating gives*: 

Ko [ 1 +  

except for n= 2 where 

= + -  

2(rrr½(n+l)C(o"+l'/2~(l'~("/2-)' tl)("/2-1) 1 1/"+11 
VoKo(n-2) CoJ 

(5) 

VoKo In (6) 

* Subscripts 0 in this paper refer to the value of the parameters corresponding to the initial extension of the crack. 
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When n is large, e.g., for glass (Fig. 2) n= 16, a rapidly approaches an asymptote of 

a = ~  Ko ~[1 + ~j2n½aC~(n+ I)l'/"+" 

In Region II, the analysis is similar but with n=0. Thus, 

Kr [1 n~'eC~(C-CT)I 
O" = (%CT)~ L + ~ J 

(7) 

(8) 

For subsequent crack growth, a modified form of equation (6) applies; 

Ktc [I 2an½(n+l)C~+X)/2F( 1 ~(.,2-,) (1)("'2-'I] x,,.+,) 
a=(~c,c)* + V-~-cK~ L\C-~c] - e (9) 

Since n is very large, this essentially reduces to: 

a = K,d(  C , #  (10) 
so that crack growth after region 1I occurs at constant stress. The nature of the stress, crack 
length variations described by equations (5 to 10) are depicted in fig. 3. A value for the fracture 
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Figure 3. A schematic representation of the variation of stress with crack length for constant stress-rate experiments. 
The effects of increasing stress-rate (e) are indicated by the arrow. 

stress, a:, is obtained from equations (5), (8), and (9), using C = W as the fracture condition. 
This gives: 

Ko [ (1y, -'ll ',,"+', 
a: = ~ 1 + VoKo(n-2) L \Co/ - \Cr: JJ 

x [1 + 1 (C~c - Cr) j  (11) 

(This is essentially the same as the stress at K = Kic, so that for all practical purposes the fracture 
condition may be taken as the stress at which K =K~c rather than the stress at C=  W). For 
relatively small #and  Co, Eq. (11) reduces to, 

Ko [ 2n½#(n+ 1) ]1:(.+1) 
a: = ~ 1 + VoKo(n-2) C~ (12) 

which resembles the expression obtained by Charles [5], except at stresses approaching the 
stress corrosion limit. 

For values of Cxc >0.1 W, as depends on the test geometry (through the Y factor) and each 
geometry must be analyzed separately using a numerical integration. 
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3.2. Constant strain-rate conditions 

The analysis is developed on a similar basis to the constant stress-rate analysis, except that 
d is replaced by an expression containing the strain-rate ~. Stress and strain in a cracked body 
are related, via the elastic modulus (E), by: 

tr = Eef(C) (13) 

where .f(C) decreases as C increases and for a tensile experiment if may be shown that 7 : 

LW 
f(C) = (14) 

LW+2.f Y2CdC 

where L is the gauge length. 
Differentiating Eq. (13) with respect to time to introduce the strain-rate and substituting for 

d in eq. (4) gives: 

Again, if C~c < 0.1 W so that Y~ n ½ then f(C)=f(C)o= 1, and the integration is a general one. 
The solutions are identical to Eqs. (5 to 10) except that d is replaced by E~. As crack growth 
proceeds, however, Y and f(C) start to vary and the expressions for the stress should be 
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Figure 4. A schematic representation of the variation of stress with crack length for constant strain-rate experiments. 
The effects of loading rate are similar to those in Fig. 3 for constant stress-rate conditions. 

multiplied by Yf(C)/Yof(C)o. The term f(C) decreases at relatively large C/Co--when there is 
a significant reduction in the stiffness of the test specimen---and then the stress starts to decrease, 
as shown schematically in Fig. 4. Apart from this effect at large C/Co, the stress, craek'length 
variations are identical for both constant stress-rate and constant strain-rate experiments, 
provided that Ctc ~ 0.2 W (where f(C) =f(C)o = 1). For larger values of Clc/W the integrations 
in Eqs. (4) and (15) are different and there are substantial differences throughout between the 
constant stress-rate and constant strain-rate curves. 

The fracture stress may be obtained by superimposing the condition; (da/dC)=0 at a = a s. 
For C1c,~ 0.2 W, f(C)=f(C)o = 1, and the maximum stress is reached during fast fracture. 
Then, the fracture stress is identical to the constant stress rate solution given by equation (11). 
If C~c > 0.2 W, the constant strain-rate fracture stress will be less than the constant stress rate 
fracture stress, due to the reduction in f(C) before C reaches C~c. 

A value for the crack length at the fracture stress, C s, may be obtained by putting the con- 
dition, 
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into the fracture stress equation. This shows that (for a given Co) C:/Co ~ 1 at low strain-rate 
--where fracture occurs at go--and then ilacreases as the strain-rate increases. However, 
CI/C o is also ,~ 1 at high strain-rates where fracture occurs as it would in the absence of a 
corrosive environment. C I thus passes through a maximum at intermediate strain-rates. (The 
magnitude of the maximum in C s depends on Y and f(C), and hence upon the test geometry). 
Conversely C~c is a maximum at low strain-rates and decreases to C o at high strain-rates. This 
means that, at low strain-rates, the fracture stress is reached for crack lengths substantially 
smaller than C~c, whereas for larger strain-rates the fracture stress essentially coincides with 
C = Cic. The fracture stress in a constant strain-rate experiment is not therefore, determined, 
in general, by the stress at which C = C~c (or K = K~c). 

The importance of K~c emerges when the variation with time of stress, crack length, etc. is 
examined. When K > KIc the crack velocity increases sharply with crack length, so that the 
crack length--and hence the stress--vary rapidly with time. C1c is therefore a more useful 
crack-length parameter than C:, because it corresponds to the maximum crack extension prior 
to a rapid decrease in load and, for practical purposes, it also corresponds to the maximum 
crack extension that can be achieved before load removal no longer prevents failure. C1c may 
therefore be regarded as the limit of stable crack growth. 

4. Effects of loading rate on the fracture parameters 

The effect of strain-rate on strength is shown schematically in Fig. 5. There is a maximum of 
four regions A, B, B' and D. At low strain-rates, Region A, the strength begins to increase from 
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Figure 5. A schematic representation of the effects of strain-rate on strength. 

the minimum value for the system, a0. At higher strain-rates, Region B, there is a simple 
logarithmic relationship between a:  and ~, i.e., log a i~  1/(n+ 1)log ~; this region occurs if 
n is relatively large and its extent depends upon the K range for Region I of the K, V curve 
(Kr/Ko). At still higher strain-rates, Region B', strength varies in a complex manner with 
strain-rate; this region occurs if K reaches Kr  before entering the "region of nearly constant" 
stress in Fig. 4, and its extent depends on the K range for region II (K1c/Kr). Finally, at the 
highest strain-rates, Region D, fracture occurs at a stress approaching that expected in the 
absence of slow crack growth. (The effects of stress-rate on strength are similar, although the 
absolute strengths may differ if C~c > 0.2 W). 

The sub-critical crack extension, Ctc, also varies with loading rate over the same range of 
strain-rates (stress-rates) as a I. There are again four regions of behavior with C1c decreasing 
from a maximum value at low strain-rates to Co at high strain-rates. 

This general analysis of failure under dynamic loading should now be applied to a specific 
system to enable the analytical data to be compared with available experimental data. The only 
systems for which reliable K, V and a:, ~ data are available for comparable materials and testing 
conditions are soda-lime glass and polycrystalline aluminum oxide in water-containing 
environments; these systems are considered in the following section. 
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5. Dynamic failure of glass and alumina in water containing environments 

The stress intensity, crack velocity curves for soda-lime glass and alumina in two water con- 
centrations at 25°C are shown in Figs. 2 and 6. A lower limit for K(Ko) is detected for the tests 
on glass in water, at 0.25 MN m -~, with a corresponding Vo of 3 x 10 -1° m sec -1. The slope 
of the curves in Region I give n values of 16 and 31 for glass and alumina respectively. The 
corresponding values for Ktc are 0.75 MN m -~ [8] and 5.4 MN m -~ [9, 12]. 
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Figure 6. K, V data for the alumina/air system [8]. 

1 0 - 4  

10-5 

~- 1 0 - 6  t a  

S 
t~  > 

tO - 7  

1 0 - 8  

The strain-rate dependence of strength can be calculated from the K, V curves, using equation 
(11), for any value of the initial crack length Co. If Ko is not available, it can be shown by sub- 
stitution in equation (11) that in minimum K obtained for the system--and the corresponding 
V--may be used without substantially affecting the solution, except at very low strain-rates. 
A comparison with existing strength data requires, therefore, that a value for Co should be 
available. The dimensions of pre-existing cracks in ceramic materials are not readily amenable 
to empirical evaluation, so that Co values are not normally available, It is expedient, therefore, 
to calculate Co from the strength and then to use this Co to generate the strength, strain-rate 
relationship. The analysis thus affords comparisons of relative strength variations. 

A comparison of strength variations obtained on abraded glass--pre-existing flaw size 
~ 10/an--with the predicted variation is shown in fig. 7. Although the data is limited, the 
agreement is good. Also included in fig, 7 are the effects of strain-rate on strength for glass 
containing larger, 50/zm, or smaller, 2/an,  flaws. It is noticed that an increase in flaw size 
reduces the strength, as expected, but also translates the strain-rate dependent strength regime 
to lower strain-rates. 

A similar comparison for alumina is shown in fig. 8. Here there is very good agreement between 
the predicted curves and the expe~,,nental data for both notched and unnotched bars. The 
notched bar curve was calculated directly from equation (11) because a Co value was available. 
This comparison thus provides confn'mation of the absolute predictions of equation (11), 
whereas verification of relative strength predictions is provided by the other data. 

Finally, it is interesting to note that the strength variation at fixed strain-rate--due to the 
range of pre-existing flaw sizes--is smaller when slow crack growth occurs than in theabsence 
of slow crack growth (fig. 9). For example, the 2 # variation in strength for abraded glass rods 
in the absence of water (fig. 9) is from 100 to 2(10 MN m -2 (150 MN m -2 mean), whereas the 
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Figure 7. A comparison of the predicted effects of strain-rate on strength, for abraded glass, with experimental data [5]. 
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Figure 8. A comparison of the predicted effects of strain-rate on strength, for polycrystalline alumina, with experimental 
d a t a  [9, 10]. 
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Flgure 9. The effect of the initial crack length on the strength of glass in water at a strain-rate of 10- 5 sec- 1. 
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strength of the same rods tested in water  varies f rom 66 M N  m -  2 to only 90 M N  m -  2 (75 M N  
m -  2 mean).  

It  is concluded,  therefore, that  there is a very good  corre la t ion between predicted strength, 
s t rain-rate  var ia t ions and avai lable da ta  for mater ia ls  conta ining relatively large pre-existing 
flaws, where  fracture is de termined exclusively be the extension of these flaws. I f a  flaw init iat ion 
stage is required,  this will modify  the strength, s train-rate re la t ionship and  some addit ional  
informat ion  abou t  flaw initiation is required to enable strengths to be predicted. (A flaw 
init iat ion stage appears  to be required in chemically pol ished glass, so that  the relative s t rength 
var ia t ions  predicted using equat ion (11), are not  in good  agreement  with the measured  strength 
var ia t ions [ 11]). 

6. Conclusion 

An analysis for predicting stress, crack length var ia t ions  f rom crack velocity, stress intensity 
d iagrams,  under  bo th  constant  s train-rate and cons tant  stress-rate loading, is presented.  The 
effects of  s t rain-rate  and stress-rate on strength are then obta ined  by incorpora t ing  the ap- 
propr ia te  failure criteria. 

The  predicted strength,  s train-rate var ia t ions  are in good  agreement  with measured  effects 
when  failure is control led exclusively by the p ropaga t ion  of pre-existing flaws. When  a flaw 
init iat ion stage is required, addi t ional  informat ion  abou t  the kinetics of  flaw initiation are 
needed for s t rength predictions. 
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R/~SUM]~ 
La rupture des matSriaux due ~t une propagation lente d'une fissure sous des charges dynamiques est analys~e en 
termes de relations entre la vitesse de propagation et l'intensit6 des contraintes. 

On montre que le type d'analyse envisag~ peut compi~tement d~mrir¢ les caraet~ristiques d'une rupture sous charges 
caraeteris6es par une vitesse constante de dfformation, ou par une vitesse constante de tension. 

On utilise l'analyse pour pr~xlire les variations de la r6sistanee et la propagation subcritique de la fissure en fonction 
de la vitesse de dfformation ou de raise sons tension. 

L'application de l'analyse ~t divers syst~mes c6ramiques fournit des donn~es qui satisfont enti~rement les dqnn~es 
exp6rimentales disponibles. 

Z U S A M M E N F A S S U N G  
Der Bruch yon Material durch langsame RiBausdelmung, unter dynamischer Beanspruchung wild in Hinsicht der 
Beziehung zwischen dcr RiBansdehnungsgeschwindigkeit und der Spannungsintensi~t untersucht. Man zeigt daft 
diese Form von Untersuchung die Bruchbegebenheiten vollst~ndig beschreiben kann sowohl fiir eine Belastung, 
sowohl unter konstantem Vefformungsgrad, als unter konstantem Spannungsgrad. Die Untersuchung wird zur 
Voraussagung der ~,nderungen der Festigkeit und des subkritischen RiBwachstums mit dem Verforrnungs- und dem 
Spannungsgrad. Die Anwendung der Untersuchung auf verschiedene Keramiksysteme ergibt Ergebnisse die vor- 
ztiglich mit bestehenden Versuchsergebnissen iibereinstimmen. 
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