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Slow crack growth in brittle materials under dynamic loading
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ABSTRACT

The failure of materials due to slow crack growth, under dynamic loading conditions, is analyzed in terms of crack
velocity, stress intensity relationships. It is shown that this type of analysis can fully describe the failure characteristics
for both constant strain-rate and constant stress-rate loading. The analysis is used to predict the variations of strength
and subcritical crack growth with strain-rate and stress-rate. Application of the analysis to several ceramic systems
give data which are entirely consistent with available experimental data.

1. Introduction

Recent studies have shown that slow crack growth in ceramic [1, 2] and brittle metallic [3, 4]
systems can be described by the crack velocity (V) and the stress intensity factor (K) for a given
microstructure and corrosive species (if required). The relationship between K and V for any
system depends on the concentration of the corrosive species in the test environment and the
test temperature; it is independent of crack length, test geometry, etc. Typical K, V curves are
shown schematically in Fig. 1. There are three principal regions: Region I in which the rate of
the reaction at the crack tip controls crack motion and in general, V oc exp (K), where B is a

LOG V

Figure 1. A schematic representation of a typical K, V curve. K, is the stress corrosion limit for the system and K’
is the stress intensity factor at the onset of Region IL V, is the velocity acquired by the crack when K reached K, ;
Vr is the constant crack velocity in region II.

constant (this region commences at the minimum K value for the system, K, the slow crack
growth limit) [2]; Region II in which the crack velocity is essentially constant and crack motion
is controlled by diffusion of the corrosive species; Region III in which the crack velocity
increases very rapidly with increase in K. At the onset of Region III, K is generally close to
K 1¢, the critical stress intensity factor for crack propagation in the absence of slow crack growth.
It is usually possible, therefore, to consider that fast fracture (K = K;¢) commences at the end of
region II [4]. As crack growth proceeds K continues to increase, due to the kinetic energy

* Now at: Inorganic Materials Division, National Bureau of Standards, Washington, D. C. 20234 (U.S.A))
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acquired by the specimen, but the rate of increase (dK/dV) is substantially lower than during
slow crack growth.

Using K, V curves, it should be possible to predict any of the time dependent failure charac-
teristics. It has already been shown [2, 4] that such curves can be used to successfully describe
the variations in time-to-failure at constant applied tensile stress, ¢. The curves have not, how-
ever, been used to examine the characteristics of dynamic failure at constant elastic strain-rate
(€) or constant stress-rate (6). Constant strain-rate experiments are used extensively for fracture
strength evaluations and it is important to understand how these strengths are affected by slow
crack growth. A previous study by Charles [ 5] has examined constant stress-rate failure for a
simplified K, V relationship. A more general description of dynamic failure (for both constant
strain-rate and constant stress-rate loading) is presented in this paper based on the detailed
form of the K, V curves. -

First, the failure criteria for dynamic loading are defined and, based on these, a description
of failure is derived from a typical K, V curve. This is followed by an examination of the effects
of strain-rate and stress-rate on strength and on the crack extension that occurs prior to failure.
Several specific systems are then examined so that the predicted description of failure may be
compared with available experimental data.

2. Dynamic failure criteria
2.1. Constant stress-rate failure

For constant stress-rate the stress continues to increase until failure such that the maximum
stress occurs just prior to the crack leaving the specimen. The maximum stress is thus found by
relating stress o, to the crack length, C, and hence obtaining ¢ at Cx W, the specimen width.

2.2. Constant strain-rate failure

Constant strain-rate experiments are used extensively to obtain values of fracture strength
(o), i.e., the maximum stress during failure. In contrast to constant stress-rate experiments the
fracture stress is generally reached well before the crack leaves the specimen. The condition for
maximum stress is given quite simply by:

(7). g

The maximum stress is again found by relating stress and crack length, and then imposing the
condition given by equation (1).

3. Stress crack length relations during slow crack growth
3.1. Constant stress-rate conditions

The stress intensity factor, K, is related to the stress by:
K =YoC? 2)

where Y is a geometrical factor that depends on C/W [6].
The crack velocity, dC/dt, is given by:
sc_(acy dr
dr ke dt’ 3)

£’

the other partial deriva'tives vanish for constant stress rate conditions because K is a unique
function of V. Rearranging eqn. (3) gives
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Since V is a function of K—and hence ¢ and C through eqn. (2)—this equation may be solved
for g, either numerically for each specific system, or analytically if there is a functional relation-
ship between K and V. As described above, the K, V curves can be separated into three regions :
inRegion I, ¥ oc exp (BK); in Region I, V is approximately constant; then, at the end of region
I1, fast fracture occurs. It is convenient therefore to separate the integral into three K regimes.

In Region I, substitution of the exponential relationship between K and V into the integral
leads to an intractable integration. A satisfactory solution to the integral requires therefore
another relationship between K and ¥ which also gives a good fit to the experimental data. It
may be shown that a logarithmic relationship (of the type used by Charles [5]) in which V is
proportional to K", i.e. V/Vy=(K/K,)* for K > K, usually gives as good a fit to available
experimental data as the exponential relationship, for both metallic and ceramic systems (see
Fig. 2 for the data on glass). The solutions to the integral are still however specific to a particular
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Figure 2. K, V data for the glass/water and glass/air (0.2%; humidity) systems [2] plotted on logarithmic axes, showing
that the data gives a very good fit in Region I to the relationship V/V,=(K/K,)"

test geometry, unless CZ 0.1 W where Y is constant (x~n?*). This simple solution, as shown
later, applies to a large number of systems.
Substituting

n %
o

into Eq. (4) and integrating gives*:

CR 3 n+1)/2 (n/2—-1) (ni2-1) 1/n+1
.= KO, [l N 267 (n+1)C§ _1_) v (l) ] ] )
(rCo)? VoKo(n—2) Co c
except for n=2 where
Ko 36n C} (C :|*
o=y '+ Tk () ®

* Subscripts 0 in this paper refer to the value of the parameters corresponding to the initial extension of the crack.
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When n is large, e.g., for glass (Fig. 2) n=16, o rapidly approaches an asymptote of

K, 2n¥¢ Ch(n+1)]He+ Y
0= ol [1+ S0 )
(rCo)? VoKo(n—2)
In Region II, the analysis is similar but with n=0. Thus,
K g -C
g = T - [1 + n UC‘;'(C T)} (8)
(nCr) VrKr
For subsequent crack growth, a modified form of equation (6) applies;
LR 3 1 C(n+1)/2 1 (n/2—-1) 1 (nf2—-1) 1/(n+1)
o=k [ B (L (]
(rCic) VicKic(n—2) Crc C
Since n is very large, this essentially reduces to: .
0=Kic/@Cit (10)

so that crack growth after region II occurs at constant stress. The nature of the stress, crack
length variations described by equations (5 to 10) are depicted in fig. 3. A value for the fracture
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Figure 3. A schematic representation of the variation of stress with crack length for constant stress-rate experiments.
The effects of increasing stress-rate (¢) are indicated by the arrow.

stress, g, is obtained from equations (5), (8), and (9), using C=W as the fracture condition.
This gives:

5. = K, [1 N 2t 6 (n+1)c(n+l)/2\:<i>n/2—l _ (_1_ n/2—1]:l1/(n+1)
T (mCo) VoKo(n—2) Co Cr

x [1 LS T cT)] (11)

VrKr

(This is essentially the same as the stressat K =K 1¢» S0 that for all practical purposes the fracture
condition may be taken as the stress at which K =K rather than the stress at C=W). For
relatively small 6 and C,, Eq. (11) reduces to,

Ko [1 L 2] ]1/0'“)
(rCo)? VoKo(n—2)
which resembles the expression obtained by Charles [5], except at stresses approaching the

stress corrosion limit.
For values of C;c >0.1 W, 6, depends on the test geometry (through the Y factor) and each
geometry must be analyzed separately using a numerical integration.

oy = (12)
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3.2. Constant strain-rate conditions

The analysis is developed on a similar basis to the constant stress-rate analysis, except that
¢ is replaced by an expression containing the strain-rate £. Stress and strain in a cracked body
are related, via the elastic modulus (E), by:

o= Eef(C) (13)
where f(C) decreases as C increases and for a tensile experiment if may be shown that”:

fi0) = — ¥ (14)
LW+2{ Y2cdC

where L is the gauge length.
Differentiating Eq. (13) with respect to time to introduce the strain-rate and substituting for
¢ in eq. (4) gives:
) ¢ [df (C)] }dc
do { f(C)é +f(C)[ dt v (15)

Again, if C;- < 0.1 W so that Ya z* then f(C)=f(C),=1, and the integration is a general one.
The solutions are identical to Egs. (5 to 10) except that ¢ is replaced by Eé. As crack growth
proceeds, however, Y and f(C) start to vary and the expressions for the stress should be
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Figure 4. A schematic representation of the variation of stress with crack length for constant strain-rate experiments.
The effects of loading rate are similar to those in Fig. 3 for constant stress-rate conditions.

multiplied by Yf(C)/Y, f(C),. The term f(C) decreases at relatively large C/C,—when there is
a significant reduction in the stiffness of the test specimen—and then the stress starts to decrease,
as shown schematically in Fig. 4. Apart from this effect at large C/C,, the stress, crack length
variations are identical for both constant stress-rate and constant strain-rate experiments,
provided that C,c = 0.2 W (where f(C)=f(C),=1). For larger values of C,./W the integrations
in Egs. (4) and (15) are different and there are substantial differences throughout between the
constant stress-rate and constant strain-rate curves.

The fracture stress may be obtained by superimposing the condition; (d6/dC)=0at 6=o0,.
For Cic2 02 W, f(C)=f(C)o=1, and the maximum stress is reached during fast fracture.
Then, the fracture stress is identical to the constant stress rate solution given by equation (11).
If C;c > 0.2 W, the constant strain-rate fracture stress will be less than the constant stress rate
fracture stress, due to the reduction in f(C) before C reaches C.

A value for the crack length at the fracture stress, C;, may be obtained by putting the con-
dition,

K\ _11,(C (1)
1n<K0>—21n<CO)+ln Y.’
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into the fracture stress equation. This shows that (for a given Co) C;/Cy~1 at low strain-rate
—where fracture occurs at o,—and then ihcreases as the strain-rate increases. However,
C,/C, is also =1 at high strain-rates where fracture occurs as it would in the absence of a
corrosive environment. C, thus passes through a maximum at intermediate strain-rates. (The
magnitude of the maximum in C, depends on Y and f(C), and hence upon the test geometry).
Conversely C,¢ is a maximum at low strain-rates and decreases to C, at high strain-rates. This
means that, at low strain-rates, the fracture stress is reached for crack lengths substantially
smaller than C;., whereas for larger strain-rates the fracture stress essentially coincides with
C=C/¢. The fracture stress in a constant strain-rate experiment is not therefore, determined,
in general, by the stress at which C=C, (or K=K|).

The importance of K- emerges when the variation with time of stress, crack length, etc. is
examined. When K > K. the crack velocity increases sharply with crack length, so that the
crack length—and hence the stress—vary rapidly with time. C;¢ is therefore a more useful
crack-length parameter than C, because it corresponds to the maximum crack extension prior
to a rapid decrease in load and, for practical purposes, it also corresponds to the maximum
crack extension that can be achieved before load removal no longer prevents failure. C,; may
therefore be regarded as the limit of stable crack growth.

4. Effects of loading rate on the fracture parameters

The effect of strain-rate on strength is shown schematically in Fig. 5. There is a maximum of
four regions A, B, B’ and D. At low strain-rates, Region A, the strength begins to increase from
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Figure 5. A schematic representation of the effects of strain-rate on strength.

the minimum value for the system, g,. At higher strain-rates, Region B, there is a simple
logarithmic relationship between o, and §, i.e, log o,al/(n+1)log &; this region occurs if
n is relatively large and its extent depends upon the K range for Region I of the K, V curve
(K1/Ko). At still higher strain-rates, Region B’, strength varies in a complex manner with
strain-rate; this region occurs if K reaches K before entering the “region of nearly constant”
stress in Fig. 4, and its extent depends on the K range for region II (K;/K 7). Finally, at the
highest strain-rates, Region D, fracture occurs at a stress approaching that expected in the
absence of slow crack growth. (The effects of stress-rate on strength are similar, although the
absolute strengths may differ if C,c >0.2 W).

The sub-critical crack extension, C;¢, also varies with loading rate over the same range of
strain-rates (stress-rates) as o ;. There are again four regions of behavior with C,¢ decreasing
from a maximum value at low strain-rates to C, at high strain-rates.

This general analysis of failure under dynamic loading should now be applied to a specific
system to enable the analytical data to be compared with available experimental data. The only
systems for which reliable K, V and o, & data are available for comparable materials and testing
conditions are soda-lime glass and polycrystalline aluminum oxide in water-containing
environments; these systems are considered in the following section.
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5. Dynamic failure of glass and alumina in water containing environments

The stress intensity, crack velocity curves for soda-lime glass and alumina in two water con-
centrations at 25°C are shown in Figs. 2 and 6. A lower limit for K (K,) is detected for the tests
on glass in water, at 0.25 MN m ™%, with a corresponding ¥, of 3x 107!° m sec™". The slope
of the curves in Region I give n values of 16 and 31 for glass and alumina respectively. The
corresponding values for K- are 0.75 MN m~* [8] and 54 MN m™* [9, 12].
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Figure 6. K, V data for the alumina/air system [8].

The strain-rate dependence of strength can be calculated from the K, V curves, using equation
(11), for any value of the initial crack length Cy. If K|, is not available, it can be shown by sub-
stitution in equation (11) that in minimum K obtained for the system—and the corresponding
V—may be used without substantially affecting the solution, except at very low strain-rates.
A comparison with existing strength data requires, therefore, that a value for C, should be
available. The dimensions of pre-existing cracks in ceramic materials are not readily amenable
to empirical evaluation, so that C, values are not normally available. It is expedient, therefore,
to calculate C, from the strength and then to use this C, to generate the strength, strain-rate
relationship. The analysis thus affords comparisons of relative strength variations.

A comparison of strength variations obtained on abraded glass—pre-existing flaw size
~ 10 um—with the predicted variation is shown in fig. 7. Although the data is limited, the
agreement is good. Also included in fig. 7 are the effects of strain-rate on strength for glass
containing larger, 50 um, or smaller, 2 um, flaws. It is noticed that an increase in flaw size
reduces the strength, as expected, but also translates the strain-rate dependent strength regime
to lower strain-rates.

A similar comparison for alumina is shown in fig. 8. Here there is very good agreement between
the predicted curves and the expeirunental data for both notched and unnotched bars. The
notched bar curve was calculated directly from equation (11) because a C, value was available.
This comparison thus provides confirmation of the absolute predictions of equation (11),
whereas verification of relative strength predictions is provided by the other data.

Finally, it is interesting to note that the strength variation at fixed strain-rate—due to the
range of pre-existing flaw sizes—is smaller when slow crack growth occurs than in the absence
of slow crack growth (fig. 9). For example, the 2 u variation in strength for abraded glass rods
in the absence of water (fig. 9) is from 100 to 200 MN m~2 (150 MN m~? mean), whereas the
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Figure 7. A comparison of the predicted effects of strain-rate on strength, for abraded glass, with experimental data [5].
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strength of the same rods tested in water varies from 66 MN m~? to only 90 MN m ™2 (75 MN
m~? mean).

It is concluded, therefore, that there is a very good correlation between predicted strength,
strain-rate variations and available data for materials containing relatively large pre-existing
flaws, where fracture is determined exclusively be the extension of these flaws. If a flaw initiation
stage is required, this will modify the strength, strain-rate relationship and some additional
information about flaw initiation is required to enable strengths to be predicted. (A flaw
initiation stage appears to be required in chemically polished glass, so that the relative strength
variations predicted using equation (11), are not in good agreement with the measured strength
variations [11]).

6. Conclusion

An analysis for predicting stress, crack length variations from crack velocity, stress intensity
diagrams, under both constant strain-rate and constant stress-rate loading, is presented. The
effects of strain-rate and stress-rate on strength are then obtained by incorporating the ap-
propriate failure criteria.

The predicted strength, strain-rate variations are in good agreement with measured effects
when failure is controlled exclusively by the propagation of pre-existing flaws. When a flaw
initiation stage is required, additional information about the kinetics of flaw initiation are
needed for strength predictions.
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RESUME
La rupture des matériaux due & une propagation lente d’une fissure sous des charges dynamiques est analysée en
termes de relations entre la vitesse de propagation et I'intensité des contraintes.

On montre que le type d’analyse envisagé peut complétement décrire les caractéristiques d’une rupture sous charges
caracterisées par une vitesse constante de déformation, ou par une vitesse constante de tension.

On utilise 'analyse pour prédire les variations de la résistance et la propagation subcritique de la fissure en fonction
de la vitesse de déformation ou de mise sous tension.

L’application de I’analyse 4 divers systémes céramiques fournit des données qui satisfont entiérement les données
expérimentales disponibles.

ZUSAMMENFASSUNG

Der Bruch von Material durch langsame RiBausdehnung, unter dynamischer Beanspruchung wird in Hinsicht der
Beziehung zwischen der RiBausdehnungsgeschwindigkeit und der Spannungsintensitit untersucht. Man zeigt daf
diese Form von Untersuchung die Bruchbegebenheiten vollstindig beschreiben kann sowohl fiir eine Belastung,
sowohl unter konstantem Verformungsgrad, als unter konstantem Spannungsgrad. Die Untersuchung wird zur
Voraussagung der Anderungen der Festigkeit und des subkritischen RiBwachstums mit dem Verformungs- und dem
Spannungsgrad. Die Anwendung der Untersuchung auf verschiedene Keramiksysteme ergibt Ergebnisse die vor-
ziiglich mit bestehenden Versuchsergebnissen iibereinstimmen.
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