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Abstract .  This paper addresses the problem of computing cues to the three-dimensional structure of surfaces in 
the world directly from the local structure of the brightness pattern of either a single monocular image or a binocular 
image pair. 

It is shown that starting from Gaussian derivatives of order up to two at a range of scales in scale-space, local 
estimates of (i) surface orientation from monocular texture foreshortening, (ii) surface orientation from monocular 
texture gradients, and (iii) surface orientation from the binocular disparity gradient can be computed without iteration 
or search, and by using essentially the same basic mechanism. 

The methodology is based on a multi-scale descriptor of image structure called the windowed second moment 
matrix, which is computed with adaptive selection of both scale levels and spatial positions. Notably, this descriptor 
comprises two scale parameters; a local scale parameter describing the amount of smoothing used in derivative 
computations, and an integration scale parameter determining over how large a region in space the statistics of 
regional descriptors is accumulated. 

Experimental results for both synthetic and natural images are presented, and the relation with models of biological 
vision is briefly discussed. 

1. Introduct ion  

Virtually all methods for inferring properties of the 
three-dimensional world from one or more images re- 
quire an initial stage of retinotopic processing in which 
the raw image brightness pattern is transformed into 
some more useful representation. In practical computer 
vision applications this representation is often tailored 
for the specific task at hand, but a number of attempts 
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have been made at defining general principles for the 
structure of a more general-purpose set of low-level 
operators capable of computing useful representations 
without any specific prior knowledge of the image 
structures to be processed. 

One such approach, based primarily on theoretical 
considerations, is the scale-space representation, in- 
troduced by Witkin (1983), Koenderink (1984). Per- 
haps the most important conclusion of this theory is 
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that if the low-level operators are unbiased in the sense 
that they do not single out particular locations, orien- 
tations, or sizes, then the only permissible linear op- 
erations are convolutions with Gaussian kernels and 
their derivatives at various scales (Koenderink and van 
Doorn, 1992; Florack et al., 1992; Lindeberg, 1994a). 

An alternative approach is to try to emulate the struc- 
ture and characteristics of the early stages of primate 
vision, either for the purpose of gaining a better under- 
standing of it, or simply because the performance of 
biological vision systems is superior to that of existing 
computer vision systems. This approach has generated 
many interesting and useful results, despite the fact that 
the current understanding of biological vision is far 
from complete. For example, general considerations 
regarding the information processing requirements of 
the visual system led Marr (1976) to propose the com- 
putation of a primal sketch in which low-level features 
of the brightness pattern, such as bars and blobs, are ex- 
plicitly represented. Other models, e.g. (Turner, 1986; 
Bergen and Adelson, 1988; Malik and Perona, 1990), 
have been based on neurobiological studies of the struc- 
ture of the receptive fields in the mammalian retina and 
the primary visual cortex. These models have been 
quite successful at predicting human pre-attentive tex- 
ture discrimination, and have largely replaced the ear- 
lier texton theory by Julesz (1981). Interestingly, the 
theoretical scale-space approach and the more empir- 
ical receptive field approach are to a certain extent in 
agreement; simple receptive fields in the mammalian 
retina and primary visual cortex are well described by 
Gaussian derivatives (Young, 1985, 1987; Jones and 
Palmer, 1987a, 1987b) but also by similar models such 
as Gabor functions. 

Retinotopic processing models are often based on 
considerations of relatively low-level visual tasks, such 
as feature detection and two-dimensional texture dis- 
crimination. One might therefore be led to think that 
visual tasks concerning three-dimensional interpreta- 
tions of the environment require a qualitatively differ- 
ent type of information processing, which would have 
little in common with such basic operations as can be 
performed by a single cell or processing unit. In this pa- 
per, however, we show that at least some visual tasks of 
this type can be implemented as bottom-up retinotopic 
processing sequences, without the need for iterations, 
search, or a priori knowledge. 

More specifically, we consider the task of estimat- 
ing the shape and orientation of three-dimensional sur- 
faces in the scene from (i) perspective distortion of 

surface texture observed in a monocular image, and 
(ii) the gradient of disparity observed in a binocu- 
lar image pair. We show that this can be achieved 
using in principle only the following types of vi- 
sual front-end operations (Lindeberg, 1993b): (large 
support) diffusion smoothing, (small support) deriva- 
tive computations from smoothed brightness data, 
and (pointwise) non-linear combinations of these 
derivatives. 

The framework is based on the computation of a local 
(regional) descriptor of the structure of the brightness 
pattern, referred to as the windowed second moment 
matrix, which describes the local variance of blurred 
first-order directional Gaussian derivatives. We em- 
phasize and analyze the need for two different scale 
parameters; a local scale parameter describing the 
amount of smoothing used for suppressing irrelevant 
fine scale structures when computing pointwise non- 
linear descriptors of the image brightness pattern, and 
a second integration scale parameter describing the size 
of the spatial window used for accumulating statistics 
of the pointwise descriptors. 

Thus, the multi-scale nature of image structures is 
explicitly taken care of, and is built into the represen- 
tation. We do not attempt to make the representation 
"complete" in the sense of allowing reconstruction of 
the original image from the descriptors. On the con- 
trary, we emphasize adaptive selection of both scale 
levels and spatial positions, for the purpose of provid- 
ing an explicit representation of precisely the informa- 
tion needed by the later stage processes. Moreover, 
the representation is normalized in such a way that se- 
lection of interesting scale levels and spatial positions 
is achieved simply through detection of local extrema 
with respect to scale and position of the computed non- 
linear entities. 

The presentation is organized as follows. Section 2 
provides a formal definition and description of the ba- 
sic multi-scale image texture descriptor we propose. 
Section 3 describes scale problems arising in this con- 
text. The notions of local scale and integration scale are 
formalized, and it is shown how relevant scale values 
for these two scale parameters can be automatically se- 
lected. Section 4 demonstrates how the basic principles 
for scale selection can be applied to spatial selection, 
resulting in what can be viewed as a multi-scale blob de- 
tection method. These components are then combined 
in Section 5, which reviews the shape-from-texture 
problem and demonstrates how estimates of surface 
shape and orientation can be computed directly from 
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the multi-scale texture descriptor. Section 6 treats the 
problem of estimating shape from gradients of binoc- 
ular disparity, and demonstrates that the proposed ap- 
proach can be successfully applied to this problem as 
well. Finally, in Section 7 some general conclusions 
are made, and their implications are discussed. 

2. A Local Texture Descriptor 

The task of computing meaningful texture descriptors 
is often referred to in the literature as extraction of 
texture elements or "texels". Considering the great 
variability of natural textures, it is not surprising that 
there is no generally accepted definition of precisely 
what a texel is. A first and rather obvious requirement 
on a texel definition is that it must be computable for a 
large class of natural images, but this still leaves many 
degrees of freedom. 

Here, we shall take a functional approach to texel ex- 
traction. Rather than postulating any particular struc- 
ture of the texture, we consider the requirements of the 
higher-level processes that need to use the local tex- 
ture description. The basic principle of shape-from- 
texture estimation is to use the observed perspective 
distortion of the texture pattern to estimate the param- 
eters of the distorting transformation, which in turn 
allow properties of surface and/or viewing geometry 
to be inferred. The principle of shape-from-disparity- 
gradient estimation is analogous, the difference b,)ing 

. . . .  I 

that it uses the dlstomon from the right to the left image, 
rather than the distortion from a surface to its image. 
Hence, for both these processes, the texture descrip- 
tion must reflect perspective distortion of the texture in 
a predictable way, so that the parameters of the distort- 
ing transformation can be recovered from the texture 
description. 

A great simplification of the problem comes from 
the observation that for many purposes it is sufficient 
to recover the linear part of the perspective distortion. 
The analysis behind this observation is given in Sec- 
tions 5 and 6; for the moment we take it as a given 
fact. 

2.1. The Windowed Second Moment Matrix 

We propose that a texture descriptor expressed in the 
form of a two-dimensional second moment matrix is 
well suited for the purpose of estimating local lin- 
ear distortion. Such a second moment matrix can 

be thought of e.g. as a covariance matrix of a two- 
dimensional random variable, or, with a mechanical 
analogy, as the moment of inertia of a mass distribu- 
tion in the plane. It can be graphically represented by 
an ellipse, and as will be shown, a linear transforma- 
tion applied to the spatial coordinates affects the ellipse 
precisely as it would affect a physical ellipse painted 
on the surface. 

Various forms of second moment descriptors have 
previously been successfully applied to a number of vi- 
sual tasks. For estimation of shape from texture, Brown 
and Shvaytser (1990) used the second moment of the 
image brightness autocorrelation function to estimate 
foreshortening, G~rding (1991, 1992) used the second 
moment of the local Fourier spectrum to estimate fore- 
shortening and texture gradients, and Super and Bovik 
(1992) used the same moment to estimate relative fore- 
shortening. Second moments of the directional statis- 
tics of image contours have been used by Kanatani 
(1984), Blake and Marinos (1990a), Ghrding (1993) 
for estimation of foreshortening. Moreover, second 
moment descriptors of brightness gradients have been 
used by Bigtin et al. (1991), Rao and Schunk (1991) 
for analysis of oriented or flow-like texture patterns, as 
well as by F6rstner and Gtilch (1987) as an "interest" 
operator in the context of junction detection and stereo 
matching. 

Here, we shall use a particular type of second mo- 
ment matrix similar to some of those described in the 
above cited articles. It is defined as follows (Lindeberg 
and GSrding, 1993): Let L : R 2 --+ R be the im- 
age brightness, and let VL = (Lx, Ly) r be its gra- 
dient. We now define the second moment descriptor 1 
//'L : R2 ~ SPSD(2) of L by 

( ]Zll ~12 / ~ Eq ( L2 ZxZY~ 
IZL(q) = \/~21 /Z22/ \LxLy L } ] 

= Eq((VL)(VL)r), (1) 

where Eq denotes an averaging operator centered at 
q = (x, y) r  E IR 2. #L(q) has a number of convenient 
properties. Clearly, it is invariant to translations, and it 
can easily be shown that the trace and determinant of 
/Zc are also invariant to rotations. Moreover, uniform 
rescaling in the spatial domain and affine brightness 
transformations only affect /~L by a uniform scaling 
factor. 

We define the averaging operator Eq as the local 
weighted mean using a symmetric and normalized 
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window function w : ~2 __+ R. Hence, the compo- 
nents Izij of/zL(x, y) can be expressed as 

f f x  Lx, (x', y') Lxj (x', y') ~ij( x, Y) = "Y')E~ 2 

x w(x - x', y - y') dx' dy', (2) 

The invariance properties are preserved provided that 
w is rotationally symmetric (see below) and has a nice 
scaling behaviour. A natural choice of window func- 
tion is the Gaussian; in fact, as described in Section 3.1 
this is the only translationally invariant choice that leads 
to scale-space behaviour of/~/~. 

2.1.1. Spatial Frequency Interpretation. /~L can also 
be understood in terms of the spatial frequency distri- 
bution of L (x, y). Rename temporarily the coordinates 
(x, y)r to (xl, x2) r, andlet ~L : R 2 --+ ~ be the power 
spectrum of L, i.e., 

qSL(0)l, 0)2) = L(0)1,0)2) L*(0)I, 0)2), (3) 

where L : R 2 --+ C denotes the Fourier transform of L 

Z(0)l ,  0)2) 
/ .  

= [ L(Xl ,  x2) e-~'x~+°~X2)dxl dx2 (4) 
J~x j .x2)~I~2 

and L* its complex conjugate. Using Plancherel's re- 
lation it follows that 

f f(xl,x:)~2 Lxi dXl dx2 Lxj 

l 
--  (27/.) 2 1,w2)~ 2 0)i0)j (I)L(0)I, 0)2)d0)l d0)2. 

(5) 

Hence, if L c L2(]R2), the inner products of the first 
derivatives are proportional to the components of the 
second moment of the power spectrum. 

2.1.2. Visualization by Ellipses. Since the second 
moment matrix is positive semidefinite, it follows that 
the equation 

(~ - q)TIxL(q) (~ -- q) = 1 (~, q ~ ~2)  (6) 

defines an ellipse (possibly degenerated to a line) cen- 
tered at q. The semi-axes of this ellipse are the square 

Figure 1. The ellipse representation of the second moment matrix 
/xL. For simplicity, the ellipse is shown centered at the origin of the 
coordinate system. 

roots of the inverse of the eigenvalues (~-l,/~2) of 
/zL (q), while the orientations of the axes give the direc- 
tions of the corresponding eigenvectors (see figure 1). 
It is easily verified that the distance from the center to 
the perimeter of the ellipse in some direction is equal 
to the inverse of the average squared magnitude of the 
directional derivative of L(x, y) in that direction. 

2.2. Transformation Properties 

As mentioned in the beginning of this section, the (lin- 
ear) transformation properties of the local texture de- 
scriptor are crucial to the higher-level processes (shape- 
from-texture and shape-from-disparity-gradients) that 
are going to operate on the description. Because these 
processes attempt to recover the parameters of the 
transformation from the properties of the texture de- 
scriptors, the descriptors must be affected in a pre- 
dictable way by a linear transformation B : ~2 __> ~2, 
representing e.g. the linearized perspective mapping 
from the surface to the image in the shape-from-texture 
case, or the linearized projective mapping from the left 
to the right image in the shape-from-disparity-gradient 
case. 

For the windowed second moment matrix the re- 
lation is straightforward. Given a brightness pattern 
L, let R : R 2 --+ R represent the brightness pattern 
subjected to an invertible linear transformation of the 
spatial coordinates 0 = B~, i.e., 

L(~) = R(B~) (7) 

where ~, r /6  ~2.  Moreover, let/xR (p) ~ SPSD(2) be 
the local second moment of R at the point p = Bq 
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computed with respect to the "backprojected" normal- 
ized window function w' : ]~2 ._+ R defined by 

w'(rl - p) = (de tB)- tw(B- l ( t l  - p)) 

= (det B)- lw(~ - q). (8) 

It is then straightforward to show that (see Ap- 
pendix A. 1) 

/ZL(q) = B r / ze (p )  B. (9) 

In the rest of this section, the arguments p and q to/zL 
and/zR will be dropped to simplify the notation. 

It is easily verified that (9) also describes the effect 
of the coordinate transformation B to the ellipse (6) 
representing/zL(q). Hence, it is justifiable to think of 
/zL as analogous to an ellipse that is "painted" on the 
surface. This analogy often provides sufficient intu- 
ition to directly predict the behaviour of/zL in various 
situations. 

If/xL and/zR are known, then the linear transforma- 
tion B is clearly constrained by (9). However, it is not 
determined uniquely, since/zL and #R are symmetric 
and hence only contain three independent components, 
whereas B may contain four unknown parameters. It 
can be shown (G~rding, 1991) that the general solution 
to/zL = BrlxRB is 

• - I /2HrT  " 1/2 B = p ~ R  ~v ~L (10) 

where W is an arbitrary orthogonal matrix, and the 
notation p)/2 indicates some (e.g., the unique posi- 
tive semidefinite symmetric) solution to the equation 
X2 = / z .  

Fortunately, in the applications to shape estimation 
from texture and disparity gradients considered in this 
paper, the ambiguity represented by the rotation matrix 
W is eliminated by geometric constraints which reduce 
the degrees of freedom of the linear transformation B 
(see Sections 5.3 and 6.2). 

2.3. The Structure of the Second Moment Descriptor 

In this section we shall take a closer look at the structure 
of/zL(q), and define a number of derived entities that 
will turn out to be useful later on. 

For any two-dimensional second moment matrix 
#, the following entities can be defined from its 

components ~i j  : 

P = / / , 1 1 + / / , 2 2 ,  C ~-. ]Zll--/£22 , S = 2/~12. (11) 

Applied to /zL (with the argument q dropped), these 
definitions can be rewritten: 

e = E q ( Z  2 4- Z2y), C = E q ( Z  2 - Z2y), 

S = 2Eq(LxLy). (12) 

The first descriptor P : R 2 ~ R is a natural measure 
of the strength of operator response; it is the average of 
the square of the gradient magnitude in a region around 
q. The two other entities C, S : N 2 ~ IR contain 
directional information, and it is natural to treat them 
as a vector (C, S), the magnitude of which is 

Q = v / ~  + S 2. (13) 

We also define the normalized entities 

= C/P,  S = S /P,  Q. = Q/P.  (14) 

It can easily be shown that 0 c [0, 1]; it holds 
that ~) = 0 if and only if Eq(L 2) = Eu(L 2) 

and Eq(LxLy) = 0, while ~) = 1 if and only if 
(Eq(LxLy))2 2 2 = Eq(Lx)Eq(Ly). Q is a natural mea- 
sure of the anisotropy of/Zc (q); in terms of the ellipse 
representation, Q = 0 corresponds to a circle, and 
~) = 1 to a line. For example, a rotationally symmetric 
brightness pattern has 0 = 0, while a translationally 
symmetric pattern 2 has ~) = 1. Rotational symmetry 
is, however, not necessary in order to obtain 0 = 0. 
For example, any pattern with N _> 2 uniformly dis- 
tributed dominant (unsigned) directions also satisfies 
~) = 0. A second moment matrix with ~) = 0 will be 
referred to as weakly isotropie. 

Q and P are invariant under rotations of the coor- 
dinate system provided that the window function w is 
rotationally symmetric, and they allow the differential 
invariants of/XL to be succinctly expressed as follows: 

trace/x L = P, 

det/XL = l ( p 2 _  Q 2 ) =  1 p 2 ( l _  02), 
q. 14 

1 1 
~.1,2 = ~(P  -4- Q) = ~P(1 4- ~)), (15) 

where )~1 > Lz are the eigenvalues of/Xc. 



168 G&rding and Lindeberg 

The normalized components (6", ~)r  can also be un- 
derstood as representing the local statistics of unsigned 
gradient directions. A standard technique (Mardia, 
1972) for computing statistics of unsigned directions 
in R 2 is to map a direction angle ot to the point 
(cos 2ol, sin 2~) r on the unit circle. This mapping has 
the desired property that ot and ~ + Jr are mapped to the 
same point. Using this representation, map each gra- 
dient vector (Lx, Ly) T = p (cos ~, sin o0 r to the point 
(cos 2ot, sin 2o0 r ,  and give it a "mass" proportional to 
the squared gradient magnitude pz multiplied by the 
window function. It is then easily shown that the cen- 
ter of mass of this distribution is given by (C, ~)r. 
Hence, the average unsigned gradient direction is 
arg(C, S)/2, which is also the direction of the eigen- 
vector corresponding to the largest eigenvalue of/~L; 
see (Lindeberg and Ggtrding, 1993) for more details. 

3. Representing and Selecting Scale 

An intrinsic property of objects in the world and details 
in images is that they only exist as meaningful entities 
over certain ranges of scale. This issue is of crucial 
importance when using perspective distortion to derive 
shape cues; size variations of image structures can oc- 
cur both because a surface texture contains structures 
at different scales, and because of perspective effects in 
the image formation process. Analysing image struc- 
tures at wrong scales often leads to meaningless results. 
Concerning the computation of the windowed second 
moment matrix (or, indeed any other non-trivial tex- 
ture descriptor which involves integration of statistics 
of pointwise properties over finite-sized local image 
neighborhoods) there are two fundamental scale prob- 
lems, which manifest themselves as follows. 

First, the image statistics must be collected from a 
region large enough to be representative of the texture. 
Yet, the region must not be so large that the local linear 
approximation of the perspective mapping becomes in- 
valid. For example, for an ideal texture consisting of 
isolated blobs, a lower limit for the extent of the integra- 
tion region is determined by the size of the individual 
blobs, while an upper limit may be given by the curva- 
ture of the surface or interference with other nearby 
surface patches. This scale controlling the window 
function is referred to as integration scale (denoted s). 

Second, the image statistics must be based on de- 
scriptors computed at proper scales, so that noise and 
"irrelevant" image structures can be suppressed. The 
descriptor considered in this paper is based on first 

order spatial derivatives of the image brightness, and it 
is obvious that useful results hardly can be expected if 
the derivatives are computed directly from unsmoothed 
noisy data, although this problem disappears in ideal 
noise-free data if the sampling problems are handled 
properly. This scale determining the amount of ini- 
tial smoothing in the (traditional first-stage) multi-scale 
representation of the image is referred to as local scale 3 
(denoted t). 

3.1. The Multi-Scale Windowed Second Moment 
Matrix 

A general framework for handling image structures 
at different scales is provided by scale-space the- 
ory (Witkin, 1983; Koenderink, 1984; Babaud et al., 
1986; Yuille and Poggio, 1986; Lindeberg, 1990, 
1993b, 1994a; Koenderink and van Doom, 1990, 
1992; Florack et al., 1992). In summary, this the- 
ory basically states that the natural way to process a 
given two-dimensional continuous signal f : R 2 --+ R 
is by embedding it into the scale-space representation 
L : IR k x N+ -+ R defined as the solution to the diffu- 
sion equation 

1 V2 L = 1 atL -- ~ ~ (Oxx "~- Oyy) Z (16) 

with initial condition L(.; 0) = f( . ) .  Equivalently, 
this representation can be obtained by convolution with 
the Gaussian kernel L(.; t) = g(.; t) • f ( . ) ,  where 

1 g(x, y; t) = ~-~ e -(x2+y2)/(20. (17) 

Based on this framework, a formal definition of the 
multi-scale windowed second moment matrix can be 
stated as 

UL('; t, S) = W(.; S) * ((VL)(.; t) (VL)(.; t)r), 
(18) 

where s is the integration scale parameter associated 
with the window function w, and t is the local scale 
parameter in the scale-space representation of the orig- 
inal image. 

In Section 2.1, it was indicated that the Gaussian is a 
natural choice of window function in (2). This choice 
could, in principle, be motivated by the fact that this 
kernel is rotationally symmetric with a nice scaling be- 
haviour, which means that the invariance properties de- 
scribed in Section 2.1 are preserved. More importantly, 



Direct Computation of Shape Cues 169 

however, it holds that if and only if the window function 
is a Gaussian, then the components of IXL, [~ij, consti- 
tute scale-space representations of the components of 
(VL) (VL) r ,  Lx, Lxj, respectively (Lindeberg, 1994a). 
This is a direct consequence of the uniqueness of the 
Gaussian kernel for scale-space representation given 
natural front-end postulates (e.g. the causality con- 
dition introduced by Koenderink (1984), or the scale 
invariance used by Florack et al. (1992)). 

3.2. Scale Selection: Review 

The second moment matrix depends upon two scale 
parameters. In general, appropriate values for these pa- 
rameters can he expected to vary substantially between 
different images, and even between different locations 
in a single image, depending on the type of surface 
texture, the distance to the surface and the noise in the 
image formation process. It is thus highly desirable (or 
even necessary) to include some automatic and adap- 
tive mechanism for selecting appropriate scale levels. 

A general method for scale selection has been pro- 
posed by Lindeberg (1993c, 1994b). It is based on 
the idea of studying the evolution over scales of dif- 
ferential invariants expressed in terms of normalized 
scale-space derivatives defined by 

Of = v'70x (19) 

where ~ = x / 4 7  are normalized coordinates. More 
precisely, the method for scale selection states that 
scale levels for further processing should be selected 
from the scales where normalized differential entities 
assume maxima over scales, based on the following 
heuristic principle: 

In the absence of other evidence, a scale level at 
which some (possibly non-linear) combination of 
normalized derivatives assumes a local maximum 
can be treated as a characteristic dimension of a cor- 
responding structure contained in the data. 

This principle is similar although not equivalent to 
the method for scale selection described in Lindeberg 
(1993a), where scales were selected from from maxima 
over scales of a normalized measure of the strength of 
a blob response. This principle can be justified theo- 
retically for a general class of differential invariants as 
well as a number of specific local brightness models; 
see (Lindeberg, 1993e, 1994a) and Section 3.3, but its 

practical usefulness must be verified empirically. Here, 
we shall apply it for selecting scale levels for comput- 
ing second moment descriptors. 

Figure 2 illustrates the variation over scale of three 
differential entities related to the second moment de- 
scriptor. The graphs show from left to right the vari- 
ation over scales of (i) the normalized square of the 
gradientmagnitude II VnormL 112 2, (ii) the local average of 
the gradient magnitude using a Gaussian window func- 
tion with the integration scale proportional to the local 
scale (this is the trace of lzL(q)), and (iii) the determi- 
nant of/zL (q). These graphs are called the scale-space 
signatures of the entities considered. 

As can be seen, the maxima over scales in the top row 
of figure 2 are obtained at finer scales than in the bottom 
row. Moreover, the ratio between the scale values for 
which the graphs attain their maxima is roughly equal 
to the ratio of the sizes of the sunflowers in the centers 
of the two images respectively, in agreement with the 
heuristic principle. 

This principle for scale selection is not restricted to 
texture analysis; see (Lindeberg, 1993c, 1994b) for a 
more general treatment concerning other feature detec- 
tion tasks, such as junction detection, blob detection, 
edge detection and ridge detection. 

3.3. Properties of the Scale Selection Method 

This section lists some more specific properties of the 
heuristic principle for scale selection. A more exten- 
sive treatment can be found in the references cited 
above. 

For two parallel (two-dimensional) sine waves 

fpar(X, y) = sin 0)ix + sin 0)2x (20) 

(where 0)1 < o92) it is easy to show that for both 
II Vno~mL 112 and trace/zL there is a unique scale maxi- 
mum when co2/0)1 is close to one, while there are two 
scale maxima for sufficiently large o92/o)1 (0)bifurc ~ 
2.4). A similar result holds for two orthogonaI sine 
waves, 

forth(x, y) = sincolx + sin0)2y. (21) 

If the latter signal is interpreted as the orthographic 
projection of an isotropic pattern with foreshorten- 
ing E = o91/w2, then the interpretation is that the re- 
sponse changes from one to two peaks at slant %ifurc = 
arccos(1/0)bifurc) ~ 65 °. 
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Figure 2. Scale-space signatures of the pointwise and integrated normalized gradient magnitude (llVno~LII 2 and trace/zc respectively), as 
well as the determinant of the second moment matrix (det/ZL) for two details of a sunflower image; (left) grey-level image, (middle left) signature 
of IIVnc~rmLII 2, (middle right) signature of trace/zL, and (right) signature of det/zL. Observe that the maxima in the top row are assumed at 
finer scales than the maxima in the bottom row. (All entities are computed at the central point. The scaling of the horizontal axis is basically 
logarithmic, while the scaling of the vertical axis is linear.) 

The determinant of  the windowed second moment  
matrix, det/zL, behaves somewhat differently; it is 
identically zero for fv~r, while there is always a unique 

peak in forth" 
More generally, for an isotropic pattern (with 0 = 0, 

or equivalently, ~-i = )~2) the scale maxima of trace/Xz 
and det/zL coincide. This is easily proved from 
trace/zL = ~-1 -t- ~-2 = 2L1 and det/zL = )~1L2 = )~, 
which gives 0t det/ZL = 0 ¢~ Ot trace/ZL = 0. 

For a unidirectional pattern (with 0 = 1, or equiv- 
alently, L2 = 0) det/zL is identically zero, while 
trace/zc is non-zero. Hence, det/eL only responds 
when there are significant variations along both the 
coordinate directions, typically for blob-like signals. 

The behaviour of the normalized derivatives can 
be understood also in the context of signals having a 
dense Fourier spectrum. For a signal f with a (fractal) 
power spectrum qby = f f* = Iw1-2~ it follows from 
Plancherel 's relation that 

Pnorm( ' ;  t ) = t ( E ( L 2 ( ' ;  t))'q-E(L2y( "" t ) ) )  ~ t c ~ - 1 -  

(22) 

This expression is independent of  scale if and only if 
-- 1. In other words, in the two-dimensional case 

the normalized derivative model is neutral with respect 
to power spectra of the form Ico1-2, which commonly 
occur in natural imagery (Field, 1987 ). 

3.4. Scale Selection for Computing IZz 

Computation of the windowed second moment  matrix 
/ZL requires selection of suitable values for both the lo- 
cal scale parameter t and the integration scale parame- 
ter s. In its most general form, the adaptive scheme we 
propose for setting these scales can be summarized as 
follows. Given any point in the image; 

1. vary the two scale parameters, the local scale t and 
the integration scale s, according to some scheme; 

2. accumulate the scale-space signature for some (nor- 
malized) differential entity; 

3. detect some special property of  the signature, e.g., 
the global maximum, or all local extrema, etc; 

4. set the integration scale(s) used for computing /ZL 
proportional to the scale(s) where the above prop- 
erty is assumed; 

5. compute/ZL at the fixed integration scale while vary- 
ing the local scale between a minimum scale, e.g. 
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t = 0, and the integration scale, and then select the 
most appropriate local scale(s) according to some 
criterion. 

Our specific implementation of this general scheme is 
described below. 

Scale Variation. A completely general implementa- 
tion of Step 1 would involve a full two-parameter scale 
variation. Here, a simpler but quite useful approach 
will be used; the integration scale is set to a constant 
times the local scale, s = y2 t (typically Yl = ~/2). In 
light of the scale selection heuristic, this scale invari- 
ant choice means that the size of the integration region 
is proportional to the characteristic length of the local 
smoothing kernel. For example, in the case of periodic 
patterns, this implies that the size of the integration 
region at each local scale is proportional to the wave- 
length for which the normalized first derivative at that 
scale would give a maximum response. 

Selecting Integration Scales. Concerning Steps 2-3, 
we propose to set the integration scales from the scales, 
denoted Sdet~L, where the normalized strength of/ZL, 
represented by det/ZL, assumes a local or global maxi- 
mum. This choice is motivated by the observation that 
for both simple periodic and blob-like patterns, the sig- 
nature of det/zL has a single peak reflecting the char- 
acteristic size (area) of the two-dimensional pattern, 
while for the pointwise and integrated gradient magni- 
tude the response changes from one to two peaks with 
increasing (linear) distortion. 

Once Sdet/XL has been determined, it is advantageous 
to compute/XL at a slightly larger integration scale s = 
y2 Sdet~L = y~y2 ta~t~L (typically 2/2 = 2), in order to 
obtain a more stable descriptor. More formally, using 
Y2 > 1 can be motivated by the analysis in Lindeberg 
and Gfirding (1993), Lindeberg (1994a) which shows 
that the estimates of the directional information in/ZL 
are more sensitive to small window sizes than are the 
magnitude estimates. The factor y = Yl F2 is referred 
to as relative integration scale. 

Selecting Local Scales. The local scale at which/ZL 
is computed in Step 5 should be chosen to suppress 
noise and irrelevant fine-scale structure without intro- 
ducing excessive shape distortions due to smoothing. 
In simple situations it may be acceptable to set it to 
a fixed value reflecting the overall noise level in the 
image. A more general and adaptive principle is to set 
the local scale(s) at each point to the scales, denoted 

tQ, where the normalized anisotropy, Q, assumes a lo- 
cal maximum. This is motivated by the fact that in 
the absence of noise and interfering finer scale struc- 
tures, the main effect of the first stage scale-space 
smoothing is to decrease the anisotropy. For exam- 
pie, the aspect ratio of a non-uniform Gaussian blob 
f (x ,  y) = g(x; l~) g(y; l~) varies as (l~ +t)/(l~ +t), 
and clearly approaches one as t is increased. On the 
other hand, suppressing isotropic noise and interfering 
finer scale structures increases the anisotropy. Select- 
ing the maximum point gives a natural trade-off be- 
tween these two effects. 

Experiments. Figure 3 illustrates these effects for a 
synthetic image with different amounts of additive 
white Gaussian noise. Note that the scale-space signa- 
ture of det/XL has a unique maximum when the noise 
level, v, is small, and two maxima when v is increased. 
Table 1 gives numerical values obtained by using the 
proposed method for scale selection. Notice the stabil- 
ity of Sdet/z L with respect to noise. The selected local 
scale tQ increases with the noise level v, while Q de- 
creases at t = 04 . 

In Section 5.3 it is shown that under a certain as- 
sumption about the surface texture (weak isotropy), the 
estimate of surface orientation is directly related to the 
normalized anisotropy Q, and to the eigenvector of #L 
corresponding to the maximum eigenvalue. Table 1 
illustrates the accuracy in estimates of 0 and surface 
orientation computed in this way. The error in surface 
orientation is measured by the angle A~bn between the 
estimated and true surface normal. 

Figure 4 illustrates these results graphically, by el- 
lipses representing the second moment matrices, with 
the size rescaled to be proportional to saet~L. As a 
comparison, figure 5 displays a typical result of using 
non-adaptive (globally constant) scale selection. Here, 
useful shape descriptors are only obtained in a small 
part; the window size is too small in the lower part, 
while the first stage smoothing leads to severe shape 
distortions in the upper part. 

3.5. The Ellipse Representation Revisited 

The ellipse given by (6) graphically represents the local 
statistics of the first-order directional derivatives com- 
puted at the local scale t and the integration scale s. 
In particular, the area A = 1/~d-~tlzL of the ellipse 
reflects the average magnitude of these derivatives. A 
scaling of the image brightness by some factor k scales 
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Table 1. Numerical values of some characteristic entities obtained at the central point 
of the image in figure 3 using different amounts of additive Gaussian noise and automatic 
scale selection. Note the stability of the selected integration scale (proportional to 
sdettzL ) with respect to variations in the noise level v, and that the selected local scale 
t o increases with v. Observe also the increasing difference between the estimates of 
the normalized anisotropy Q computed at the selected local scale, and at zero local 
scale (true value 0.600). The last two columns show the error in surface orientation 
A~bn computed by monocular shape-from-texture under a specific assumption about 
the surface texture (weak isotropy). 

Noise level Sdet/z L tQ O.(tQ) O(t = O) A~b, (tQ) A~), (t = O) 

1.0 34.9 0.0 0.602 (0.602) 0.2 ° (0.2 ° ) 

10.0 34.4 2.0 0.579 (0.329) 1.1 ° (15.3 ° ) 

31.6 34.1 4.2 0.510 (0.033) 4.7 ° (45.3 ° ) 

100.0 31.4 8.5 0.456 (0.006) 7.8 ° (53.7 ° ) 
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Figure 3. Scale-space signatures of det/xL and ~) (accumulated at the central point) for a synthetic texture with added (white Gaussian) noise 
of standard deviation v = 1.0 (top row), 10.0 (middle row), and 100.0 (bottom row). The range of grey-levels is [0..255]. The columns show; 
(left) grey-level image with noise, (middle) signature of det tzL, and (right) signature of ~). 
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Figure 4. Ellipses representing/ZL computed at different spatial points using automatic scale selection of the local scale and the integration 
scale--note the stability with respect to variations of the noise level. 

noise 10.0 non-adaptive smoothed image 

Figure 5. Typical example of the result of using non-adaptive selection of the (here constant) local and integration scales--geometrically 
useful shape descriptors are obtained only in a small part of the image. 

A by 1/k 2, whereas the shape of the ellipse remains 
unchanged. Hence, ellipses computed in a dim region 
on average tend to be larger than those computed in 
areas of higher contrast. For this reason, the absolute 
magnitude of/zL is not used for shape estimation. 

Size information about characteristic image struc- 
tures is instead available from the scale selection pro- 
cedure, and for the purpose of graphically visualization 
we normalize/~L by scaling its components to make the 
area of the ellipse proportional 5 to the scale at which 
the maximum of det/zL is assumed. 

4. Spatial Selection and Blob Detection 

The previous sections treated the problem of selecting 
appropriate scales for local smoothing and regional in- 
tegration at a given image point. In this section, we 
shall consider the complementary problem of selecting 
where in the image to apply the multi-scale analysis. 
This problem is referred to as spatial selection. 

Spatial selection could in principle be avoided by 
computing a texture descriptor at every image point, 
but this is typically not an acceptable solution; it can 
lead to unnecessarily poor estimates since many image 
points often contain little or no useful image structure 6. 
In particular, many natural textures seem to consist of 
fairly similar texture elements randomly scattered on 
the surface. This is quite unlike the idealized case of 
a perfectly periodic texture, in which all image points 
provide more or less the same information provided that 
integration is performed over one period of the pattern. 

Here, we shall use the scale selection method for 
guiding spatial selection process as well. The resulting 
simultaneous selection of scale and spatial position can 
be interpreted as a form of multi-scale blob detector, 
where each detected blob is represented by its position, 
its detection scale, and a second moment matrix. This 
multi-scale blob detector has obvious limitations com- 
pared to more general approaches, e.g. (Blostein and 
Ahuja, 1989a; Lindeberg, 1993a), since it only rep- 
resents the shape of each blob by a second moment 
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Table 2. Closed-form expressions for the scale levels where the local maxima over scales are 
attained for a periodic model signal and a blob-like model signal. For the entities based on the 
trace of/ZL and 7-/normL respectively, only the results from the isotropic cases (COl = o~2 = too, and 
tl = t2 = to) are shown. For the periodic signal the trace based entities have two extrema when 
the foreshortening is sufficiently large, while the maximum is unique for determinant based entities. 
For the blob signal, the maximum is unique in all four cases. 

Model signal tlrace #L /det/z L ttrace 7-/norm L tdet 7-/norm L 

Periodic: sin ¢.OlX q- sin w2y 1#o 2 2/(co~ + co 2) 2/o~ 2 4/<w } + 0; 2) 

Blob: g(x; tl) g(y; t2) t o / ~  t47i~/~/1 + 2y 2 to fiT~ 

matrix. However, it is well suited as a pre-processing 
step for the shape estimation processes described in 
Sections 5 and 6, since it produces precisely the in- 
formation needed for estimating local linear distortion 
and size changes. 

4.1. Spatial Selection: Basic Principle 

In Section 3.4, scales were selected at a given image 
point from local maxima over scale of some (possibly 
non-linear) combination of normalized spatial deriva- 
tives. This principle can be applied to spatial selection 
as well, by selecting points (x, y)T and scales t that are 
simultaneously maxima with respect to scale and po- 
sition. Such points are called normalized scale-space 
maxima of the differential entity considered. 

The most straightforward implementation of this 
general principle is to use the same normalized en- 
tity for spatial selection as was used in the selection of 
integration scale, i.e., det/XL (see Section 3.4). This 
method has the advantage that spatial selection and 
scale selection are performed simultaneously. Alter- 
natively, the spatial selection can be performed inde- 
pendently of the scale selection. In particular, it may 
be desirable to use an operator based on second or- 
der derivatives (even operators), since such an operator 
typically gives rise to spatial maxima at the centers of 
high contrast blobs that stand out from the surrounding. 

Previous methods for blob detection have often been 
based on the Laplacian of the Gaussian, V2g; see 
e.g (Marr, 1982; Bolstein and Ahuja, 1989b, 1989a; 
Voorhees and Poggio, 1987). It is common for meth- 
ods utilizing VZg or similar operators to be combined 
with some thresholding operation in order to suppress 
false alarms, and also to contain a more or less com- 
plex spatial post-processing step, in which blobs may, 
e.g., be split or merged according to some geometric 
criterion. In contrast, the scheme we propose contains 
neither thresholding nor spatial post-processing. 

For the purpose of spatial selection, we have investi- 
gated the use of three different non-linear combinations 
of normalized derivatives, all of them well-defined in 
the sense that they do not depend on the choice of co- 
ordinate system: 

• The determinant of the second moment matrix, 
det/ZL, i.e., the same property as was favoured for 
scale selection previously. 

• The squared 7 Laplacian (L~  + L,0) 2, i.e., the 
squared trace of the normalized Hessian, trace 2 

7-/normL. 
• The determinant of the normalized Hessian matrix, 

detT-/nonnL = L ~ L ~  - L~.  

An analysis concerning the scales at which these 
entities assume local maxima over scales for a peri- 
odic and a blob-like pattern respectively is given in 
Lindeberg and G~ding (1993), Lindeberg (1994b); 
some results are summarized in Table 2. Note that 
the scales at which the maxima are assumed are related 
by constant factors. 

In practice, each of these entities is computed at an 
integration scale s = y2t proportional to the local scale 
t. In the first case, the integration is applied to/*r  be- 
fore the determinant is taken, since det/ZL is identically 
zero when considered pointwise. In contrast, the point- 
wise representations of the other two operators are not 
singular, so in these cases the integration step could in 
principle be omitted (i.e., Yl = 0). Nevertheless, such 
smoothing will be used here as a simple way of sup- 
pressing less significant responses, and hence reducing 
the computational load. 

4.2. Experimental Results 

The properties of the spatial selection process will 
now be illustrated using two synthetic test images. 
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Figure 6. (a) Synthetic image with dark elliptical blobs with varying sizes and aspect ratios on a brighter background, and additive Gaussian 
noise with a standard deviation equal to 20% of the brightness difference between the blobs and the background. (b)-(d) Normalized scale-space 
maxima detected using Yl = "v/~. From left to right, the operator used was det/ZL, det 7%orm L, and (trace 7-{norm L) 2. The size of each circle 
indicates the scale at which the maximum was assumed. 
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Figure 7. Multi-scale blob detection using normalized scale-space extrema of the square of the Laplacian of the Gaussian. (Left) Original 
image. (Middle) Detected ellipses. (Right) Ellipses representing the second moment matrix superimposed onto a bright copy of the original 
grey-level image. 

Additional experiments, using natural images, are 
given in Section 5. 

The result of the first experiment is shown in figure 6. 
The image to the left contains dark elliptical blobs 
with varying sizes and aspect ratios on a brighter back- 
ground, and additive Gaussian noise with a standard 
deviation equal to 20% of the brightness difference be- 
tween the blobs and the background. The blob posi- 
tions detected by each of the three operators in this 
image are shown to the right s . Since no shape infor- 
mation is computed at this stage, the detected blobs 
are displayed as circles, with the area of each circle 
proportional to the detection scale. 

The performance of all three operators is somewhat 
similar, but it is clear that they differ in the number 
of spurious maxima they generate, as well as in their 

tendency to generate multiple spatial maxima for elon- 
gated blobs. Clearly, det/ZL generates the largest num- 
ber of maxima, and (trace 7-/normL) 2, i.e., the squared 
normalized Laplacian, generates the fewest. Subse- 
quent experiments on spatial selection will therefore be 
based on the latter operator, but it should not be ruled 
out that the other two operators can be advantageous 
in some situations. 

Figure 7 shows the final blobs found by the method, 
using the squared Laplacian for spatial selection and 
det/ZL for computation of blob size and shape as ex- 
plained previously. In the scale selection step, the inte- 
gration scale parameter was coupled to the local scale 
parameter by s = g~t with ?/1 = V r~. Then, when 
computing the second moment matrices, the integra- 
tion scale was set to s = },2 SdetuL with 2/2 ---- 2, where 
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Figure 8. Multi-scale blob detection using normalized scale-space extrema of the square of the Laplacian of the Gaussian. (Left) Original 
image. (Middle) Detected ellipses before adaption of local scale. (Right) Detected ellipses after adaption of local scale. 

Sdet/zL denotes the integration scale for which the max- 
imum in det/ZL was assumed. Here, only the global 
maxima with respect to scale have been retained. 

The last example of this section demonstrates the 
importance of adapting the local scale in the compu- 
tation of/ZL. Figure 8 shows the blobs detected in an 
image at the local scale that maximizes det/ZL, as well 
as the final blobs obtained by adapting the local scale 
to maximize anisotropy. 

5. Shape from Texture 

This section shows how the proposed multi-scale tex- 
ture descriptor can be used for estimating the shape or 
orientation of three-dimensional surfaces in the scene 
from perspective distortion of surface texture observed 
in a monocular image. 

5.1. Background 

The image of a slanted textured surface contains several 
more or less independent cues that can be used to esti- 
mate the shape and orientation of the surface. Pioneer- 
ing work on this subject was done by Gibson (1950) 
who studied so-called texture gradients, i.e., systematic 
variations in the image texture due to perspective distor- 
tions. One example is the familiar "perspective effect" 
which makes the image of a near surface patch smaller 
than that of a far patch. Several algorithms for estima- 
tion of surface orientation from texture gradients have 
later been proposed, e.g. (Aloimonos, 1988; Blostein 
and Ahuja, 1989b; Kanatani and Chou, 1989; Blake 
and Marinos, 1990b). Witkin (1981) pointed out that 

the foreshortening effect, i.e., the systematic compres- 
sion of a slanted pattern in the direction of slant, can 
also be a cue to surface orientation. For example, the 
image of a slanted circle is an ellipse, and the degree 
and orientation of the elongation of the ellipse indi- 
cates the magnitude and direction of slant. Whereas 
texture gradients are primarily due to perspective ef- 
fects, the foreshortening effect can also be observed in 
orthographic projection of a planar pattern. Various ex- 
tensions of Witkin's method have later been described, 
e.g. (Davis et al., 1983; Kanatani, 1984; Blake and 
Marinos, 1990a; G~rding, 1993). Related methods in- 
clude (Pentland, 1986; Brown and Shvaytser, 1990). 

5.2. Review of Image Geometry 

In order to understand how a local texture description 
can be interpreted in terms of three-dimensional surface 
shape, it is necessary to take a closer look at the surface 
and viewing geometry. 

Consider a smooth surface S viewed in perspective 
projection. The local perspective distortion of the pro- 
jected surface pattern results from two factors; firstly, 
the distance and orientation of the surface with respect 
to the line of sight, and secondly, the angle between the 
line of sight and the image surface. The latter factor 
is often referred to as the "position effect". Since it 
only depends on the internal camera geometry, it can 
be eliminated by reprojection of the image from the fo- 
cal point. Hence, for analytical clarity we represent the 
image by a unit viewsphere E, and let it be understood 
that in practical computations with a planar image the 
coordinates on E are obtained by a local coordinate 
transformation. 
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Figure 9. Local surface geometry and imaging model. The tangent 
planes to the viewsphere E at p and to the surface S at F(p) are seen 
edge-on but are indicated by the tangent vectors [ and T. The tangent 
vectors b and/~ are not shown but are perpendicular to the plane of 
the drawing, into the drawing. (Adapted from G~rding (1992).) 

Fortunately, it can be shown that in order to esti- 
mate local surface orientation from texture, it suffices 
to consider the first-order (linear) terms of the perspec- 
tive projection at each image point. To give a more 
precise formulation of this statement, it is necessary to 
introduce a few definitions. Following (Ggtrding, 1992) 
and using standard notation from differential geometry 
(see e.g. (O'Neil, 1966)), consider a perspective map- 
ping of a smooth surface S onto a unit viewsphere E 
(see figure 9). At any point p on E let (/3,/-,/~) be a 
local orthonormal coordinate system defined such that 
the/3 direction is parallel to the view direction, [ is 
parallel to the direction of the gradient of the distance 
from the focal point, and/~ = /3  x ?. 

Denote by F : E --+ S the perspective backprojec- 
tion from E to S, and by F,p the derivative of this 
mapping at any point p on E. The mapping F,p, which 
constitutes a linear approximation of F at p, maps point 
in the tangent plane of ~ at p, denoted Tp (E), to points 
in the tangent plane of S at F(p), denoted TF(p) (S). In 
TF(p)(S), let T and/~ be the normalized images of [ 
and b respectively. In the bases ([,/~) and (i?,/~) the 
expression for F,p : Tp(E) ~ TF(p)(S) is 

F . p =  (r/Os~r 0 ) =  (1/0m I ? M ) '  (23) 

where r = II F(p)II is the distance along the visual ray 
from the center of projection to the surface (measured in 
units of the focal length) and ~r is the slant of the surface. 

Two characteristic (dimensionless) ratios (m, M) have 
been introduced here to simplify later expressions and 
because of their geometric significance. These entities 
are the inverse eigenvalues of F.p, and they basically 
describe how a unit circle in TF(p)(S) is transformed 
when mapped to Tp(]~) by F,~I; it becomes an ellipse 
with m as minor axis (parallel to the t direction) and 
M as major axis (parallel to the b direction). 

From F,p several useful relations between local per- 
spective distortion and surface shape can be derived. 
Firstly, surface orientation is directly related to (m, M) 
and the corresponding eigenvectors (t-,/~). The tilt di- 
rection, defined as the direction of the gradient of the 
distance from E to the surface, is parallel to the eigen- 
vector ? corresponding to the smaller inverse eigen- 
value m. Foreshortening is defined as the ratio m/M, 
and is directly related to surface slant a by the relation 
cos a = m/M. Together, tilt [ and slant o- determine 
the surface orientation (up to the sign of tilt; both [ and 
- [  are eigenvectors corresponding to the eigenvalue 
1/m). Secondly, "texture gradients" can be computed 
from the spatial rate of change of various measures de- 
rived from the eigenvalues/eigenvectors of F.p. For 
example, the local area ratio between the image and 
the surface is 1/det F.p = mM, and the normalized 
area gradient which contains information about sur- 
face shape and orientation is thus V(mM)/(mM). In 
Section 5.3 we will return to these relations, and show 
how they can be exploited in practice. 

Normally, the brightness pattern is provided in a pla- 
nar image I-I, rather than in the viewsphere Z. This is 
of little consequence, however, because the mapping 
G : I-I ~ E from a point q on the planar image to the 
corresponding point p on the viewsphere can be pre- 
computed as long as the internal camera geometry is 
known 9 . Hence, a representation of the brightness 
structure on E can always be obtained by applying G 
(or its derivative G.q) to the corresponding representa- 
tion in the planar image I-I. 

A more detailed discussion of the shape cues that 
can be derived from the components of F,p and its 
derivatives can be found in G~rding (1992). 

5.3. Deriving Shape Cues from the Second Moment 
Descriptor 

In order to use a texture description derived from a 
monocular image to infer properties of the surface ge- 
ometry, it is necessary to introduce some assumptions 
about the surface texture. These assumptions can have 
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many different forms. In this section two useful exam- 
ples are considered; firstly, weak isotropy, which allows 
estimation of "shape from foreshortening", and sec- 
ondly, constant size, which allows estimation of "shape 
from the area gradient". In both cases the general idea 
is to compute properties of the local surface geometry 
by combining estimates of various properties of the im- 
age brightness descriptor/ZL with assumptions about 
the corresponding properties of the surface reflectance 
descriptor/Zs. 

We first need to establish how the relation between 
/ZL and/Zs depends on the local geometry. The analysis 
is simplified by introducing an intermediary descriptor 
/~z (p), which is defined in the tangent plane Tp (E) to 
the unit viewsphere Z at the point p = G(q). tzz(p) 
describes the structure of the intensities transformed 
from the image to Tp(E) by the linearized mapping 
G.q, and weighted by the transformed window function 
w'(p) = w(G~p) .  By (9) we have 

P,t,(q) = G.~q lzx(p) G.q, (24) 

where G,q : Tq (rI) ~ Tp (•) is the derivative map be- 
tween (the tangent plane to) the planar image I7 at q and 
the tangent plane to the viewsphere at p. Hence, the 
practical procedure is first to estimate/ZL (q) in the im- 
age plane and then to compute/zz (p) by inverting (24). 

Analogously, Izs(F(p)) describes the structure of 
the intensities transformed from Tp(Z) by the lin- 
earized mapping F.p, and weighted by the window 
function transformed accordingly. Assuming that the 
image brightness is directly proportional to the surface 
reflectance, it holds that/z s (F (p)) describes the struc- 
ture of the linearized and windowed surface reflectance 
at the point F(p). 

In practice, the second moment matrices/Zz(p) and 
/Zs (_F (p)) cannot be directly expressed in terms of the 
(t, b) and (T,/~) bases respectively, since the orienta- 
tions of these bases are not known a priori. Introduce 
rotation angles 0 and ~o describing these orientations 
relative to some reference systems. (For/zz (p) we de- 
fine this reference as the gaze-transformed image coor- 
dinate frame, whereas the precise definition concerning 
Izs(F(p)) is left open.) Then, (9) gives that the second 
moment matrices in the reference systems are related 
by 

r ILs(F(p)) R~ F.p, (25) 

where 

cos 0 - sin 0"~ 
Ro = \sin 0 cos OJ 

gives the tilt direction relative to the gaze-transformed 
image coordinate frame and R~ represents a corre- 
sponding rotation relative to some coordinate system 
in the tangent plane to the surface. 

To simplify the notation, the arguments to/ZL, /ZX 
and/z s will be dropped in the remainder of this section. 

5.3.1. Shape from Foreshortening. If/Zs is known 
and if/zz can be computed from the image data, then 
(25) provides three equations for the four unknowns 
(m, M, 0, ~p). From this viewpoint, the problem is, in 
general, underdetermined. 

To compute surface orientation, however, it is only 
necessary to know the angle 0 (which gives the tilt 
direction) and the ratio m/M (which gives the slant 
angle). Moreover, if/Zs is weakly isotropic, i.e., if 

lZs = cI (26) 

for some (unknown) constant c > 0, then the orien- 
tation ambiguity concerning ~p disappears, since the 
representation of/Zs is in this case invariant under ro- 
tations. Such a distribution (for which Qs = 0) has 
the property that there is no single preferred direction 
in the surface texture, i.e., that the surface texture is not 
systematically elongated. Under this condition and as- 
suming that F.p is non-degenerate, (25) can be rewrit- 
ten as 

r R~ F,e Ro ~ Izz = c Ro Ffp R~o 

= c Ro F,.  R2 (27) 

It follows that the eigenvectors of /zz  are (/,/~) ex- 
pressed in the gaze-transformed image coordinate 
frame, and that the eigenvalues of F,e are proportional 
to the square roots of the eigenvalues (~q,)~2) of/zz; 

m ~ 1/V/L-~'1 ~ 1 / f f l  + Q, 

M ~ 1/.v/-~2 "~ 1 / v / l -  Q- (28) 

From the analysis in Section 5.2 we then obtain that 
the tilt direction, {, is (plus/minus) the eigenvector, Yl, 
corresponding to the maximum eigenvalue, LI, and the 
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slant is given by 

m h -  0 
t " "  

cos  = = V T + O "  (29) 

Hence, if the assumption of weak isotropy can be jus- 
tified, an easily computed estimate of local surface 
orientation is directly available. Unfortunately, many 
natural textures violate this assumption, and it is there- 
fore often necessary to exploit alternative assumptions. 

5.3.2. Shape from the Area Gradient. Assuming that 
the local "size" of the surface texture does not vary 
systematically, it is obvious that the gradient of size 
of the projected texture is an important cue to surface 
shape and orientation. 

Consider a point p in Tp (Z),  and let F.p be the local 
linear part of the perspective backprojection. The area 
ratio is then equal to det F ~  1 = mM, i.e., 

Ar~ = mMAs,  (30) 

where A~ is the area of a small surface patch on the 
viewsphere ~,  and As is the area of the corresponding 
patch in the surface S. Hence, assuming that As = c 
where c is some unknown constant, we can define the 
normalized area gradient 

VA~ V(mM) 
A~ mM 

(31) 

Note that the unknown scale constant c has been elim- 
inated. This means that no assumptions about the 
absolute scale of the surface texture are necessary. 
Moreover, no assumptions are made about the elon- 
gation of the surface texture (given by the ratio of the 
eigenvalues of/Zs). 

The area As can be computed from the correspond- 
ing area AL in the planar image I7 using At. = 
(det G.)AL, where G.  is the gaze transformation dis- 
cussed in Section 5.2. In our current .implementation 
AL is estimated from the scale at which det/ZL assumes 
its maximum, as described in Section 3.5. A more de- 
tailed description of how to estimate the normalized 
area gradient from AL is given in Appendix A.2. 

It has not yet been mentioned how the normalized 
area gradient should be interpreted in terms of sur- 
face shape and geometry. It turns out that its infor- 
mation content is considerably more complex than that 

of foreshortening; in G~ding (1992) it is shown that 

V(mM) _ _  _ _ tana  ( 3 + r~ct/ c°sa  ) 
mM rr ' 

(32) 

with respect to the (t-,/~) basis. Here, r is the distance 
from the viewer, a is the slant of the surface, tot is the 
normal curvature of the surface in the tilt direction, and 
v is the geodesic torsion, or "twist", of the surface in 
the tilt direction. 

Hence, the normalized area gradient can either be 
used to recover information about the surface curvature 
(scaled by distance) if the surface orientation is known, 
or to recover the surface orientation if the curvature is 
known or (assumed to be) small. In the latter case there 
is no ambiguity in the sign of the tilt direction, unlike 
the case of foreshortening. 

5.4. Estimating Surface Shape and Orientation: 
Basic Scheme 

Our method for computing monocular shape-from- 
texture cues from image data can be summarized as 
follows: 

1. Compute local texture descriptors/ZL as described 
in Section 3.4. This can either be done at selected 
spatial positions corresponding to normalized scale- 
space extrema as described in Section 4, or at a 
(uniform) grid of points generated by some default 
principle. 

2. Determine a set of points where estimates of surface 
orientation are to be computed. This set of points 
can be the same as that used for computing the tex- 
ture descriptors, or it can be a smaller set of points, 
e.g. a uniform grid. Associate with each point a 
(Gaussian) window that specifies the weighting of 
the texture descriptors in the neighborhood of the 
point. The scale of this window function will be 
referred to as the texel grouping scale. 

3. Estimate surface orientation: 

(a) Apply the assumption of weak isotropy as de: 
scribed in Section 5.3 to compute foreshorten- 
ing. This leads to a direct estimate of surface 
orientation up to the sign of tilt. 

(b) Apply the assumption of constant area as 
described in Section 5.3 to compute the 
normalized area gradient. This permits a 
unique estimate of surface orientation under the 
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additional assumption that the local curvature 
of the surface can be neglected in (32). 

(c) Optionally, apply other assumptions about the 
surface texture, e.g. compute the foreshortening 
gradient, and use these assumptions to estimate 
surface shape and/or orientation. 

5.5. The Texel Grouping Scale 

In order to compute an estimate of surface orientation 
at a specified point, the local texture descriptors in the 
neighbourhood of the point must somehow be com- 
bined. As was described in previous sections, the sec- 
ond moment descriptor computed by spatial and scale 
selection can be informally thought of as a single "tex- 
ture element". In the case of a perfectly regular surface 
texture, the shape of this texture element can be relied 
upon to provide information about local perspective 
distortion. Most natural textures, however, exhibit a 
considerable degree of randomness in their structure, 
and it is therefore necessary to consider more than one 
texture element in order to detect the systematic geo- 
metric distortions due to the perspective effects. At- 
tempts have been made at modeling such randomness 
statistically (Witkin, 1981; Kanatani and Chou, 1989; 
Blake and Marinos, 1990a, 1990b), but here such spe- 
cific models are replaced by the basic principle of re- 
ducing variance by integration. For this reason, the 
concept of texel grouping scale has been introduced in 
the scheme above; it refers to the scale used for com- 
bining texture descriptors computed at different spatial 
points into entities to be used for computing geometric 
shape descriptors. 

If the texture descriptors are combined by weighted 
averaging into a descriptor of the same type, as in 
the case of methods based on foreshortening, then the 
texel grouping scale is closely related (or even equiv- 
alent) to the relative integration scale. More precisely, 
from the semi-group property of Gaussian smoothing, 
g(.; s2) = g(.; s2 - sl) * g(.; Sl), it follows that, if 
the local smoothing scale t is held constant, then the 
second moment matrix at any coarse integration scale, 
~2, can be computed from the second moment matrices 
at any finer integration scale, sl, 

/zL(,; t, s2) = g(.; s2 - sl) */zL(.; t, Sl). (33) 

Hence, if the local scale parameter in the scale-space 
representation is constant (e.g. equal to the scale level in 
the input image), then in the basic version of the method 

of estimating surface orientation from foreshortening 
and weak isotropy, the texel grouping scale is equiva- 
lent to the relative integration scale. 

However, the cascade smoothing property (33) is not 
applicable when the texture descriptors are combined 
into a descriptor of a different type. For example, esti- 
mation of shape from texture gradients is based on the 
average rate of change of some property of the local 
texture descriptors, so in this case it is clearly not mean- 
ingful to compute an average texture descriptor for the 
whole region. Rather, the appropriate texture prop- 
erty (e.g. area) is estimated from each windowed sec- 
ond moment descriptor separately, and the correspond- 
ing texture gradient is then estimated using Gaussian 
weights given by the texel grouping scale. (The pro- 
cedure for the case of the area gradient is described in 
Appendix A.2.) 

So far no method for automatic selection of the texel 
grouping scale has been implemented. In the experi- 
ments presented below, the estimates are computed on 
sparse regular grids, and the size of the Gaussian group- 
ing window is proportional to the grid ceils. An alter- 
native approach is, of course, to let the texel grouping 
scale be proportional to the selected integration scale. 

5. 6. Experimental Results 

The examples shown in this section have been com- 
puted using the same parameters as in the previous 
sections, i.e., using 71 = ",/~, Y2 = 2. The surface 
orientation will be represented numerically by (~r, 0), 
where cr is the slant, i.e., the angle between the surface 
normal and the optical axis, and 0 is the angle between 
the tilt direction i and the horizontal axis of the image 
coordinate frame. 

Figure 10 shows results l° from two noisy synthetic 
images and one real image, all with known camera ge- 
ometry and surface orientation. From top to bottom, 
the rows show the grey-level image, the detected blobs, 
the true surface orientation, the surface orientation es- 
timated from foreshortening (only the first of the two 
estimates is shown), and the surface orientation esti- 
mated from the area gradient. 

The synthetic image in the left column (also shown in 
figure 7) shows a planar surface pattern consisting of the 
sum of two sine waves and 5% additive Gaussian noise. 
The true orientation of the surface is (or = 60 °, 0 = 
90°), and at the center the estimates from foreshorten- 
ing and the area gradient are (6" = 61.1 °, 0 = 90.0) 
and (6 = 62.3 °, 0 = 90.0), respectively. 
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#L (ellipses) 

true orientat ion 

weak isotropy 

constant area 

Figure 10. Estimating local surface orientation in a synthetic image of a planar surface with 5% noise (left), a synthetic image of a cylindrical 
surface with 25% noise (middle), and a real image of a planar surface with known orientation (right). The rows show from top to bottom; 
(a) the grey-level image, (b) elliptical blobs detected by the adaptive multi-scale method, (c) reference surface orientation, (d) surface orientation 
estimated from foreshortening, (e) surface orientation estimated from the area gradient. 
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#L (ellipses) weak isotropy constant area 

Figure 11. Estimation of foreshortening and the area gradient in real images from Blostein and Ahuja (1989b). (a) Real grey-level image. (b) 
Elliptical blobs detected by the adaptive multi-scale method. (c) Estimated foreshortening, here represented by weighted averages of the second 
moment descriptors associated with each blob. (d) Estimated area gradient, visualized by lines aligned with the tilt direction converging to a 
point on the horizon. 
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The middle column shows the same cylindrical sur- 
face image that was used in the first row in figure 4. 
Here, 25% white Gaussian noise has been added; a 
noise level high enough to ensure that direct computa- 
tions on unsmoothed data are bound to fail (compare 
with Table 1). It is quite obvious that the adaptive 
multi-scale blob detection technique is able to handle 
this noise level without much difficulty. At the center 
the true orientation is (~r = 55 °, 0 = 90°), the estimate 
from foreshortening is (6. = 54.1 °, 0 = 90.3°), and 
the estimate from the area gradient is (6. = 33.5 °, 0 = 
89.1°). The fact that the slant of this surface is un- 
derestimated by the area gradient is entirely in keeping 
with the theory; the estimate is based on the assumption 
that zt = 0 in (32), but here zt < 0 since the surface 
is concave rather than flat. In fact, by using (32) the 
scaled curvature rKt can be estimated from the differ- 
ence between the slant estimates from weak isotropy 
and the area gradient. At the central point the estimate 
obtained this way is rx'~t = -0.92,  which should be 
compared to the true value rKt : -0.87.  

The right column of figurel0 shows the results ob- 
tained with a real image of a planar surface with known 
surface orientation. The true surface orientation is 
(or = 50.8 °, 0 = 85.3°), and at the center the esti- 
mate from foreshortening is (6" = 48.7 °, g = 82.7°). 
Due to the narrow field of view the measurable ef- 
fects of the area gradient in this image are very small. 
This fact is reflected by a fairly inaccurate estimate 
(6. = 25.7 °, g = 86.2 °) obtained from the area gradi- 
ent in the whole image. On a 3 x 3 grid the estimates 
break down completely. 

Figure 11 shows the results obtained with five im- 
ages from Blostein and Ahuja (1989b). The camera 
geometry is unknown, and it is therefore impossible to 
compute absolute estimates of the surface orientation. 
To estimate surface orientation from foreshortening, 
the second moment matrix IzL(p) must first be trans- 
formed to Tp (I2), but the parameters of this transforma- 
tion depend on the camera geometry and are hence un- 
known. Foreshortening is therefore visualized directly 
by ellipses representing the weighted second moment 
matrices in the image on which the estimate would be 
based. To estimate surface orientation from the area 
gradient, the focal length must be known. However, 
the position of the horizon of the plane, i.e., the line 
where projected area is estimated to vanish, can still be 
determined. The estimated horizon typically lies out- 
side the image, but in the rightmost column of figure 11 
it is indirectly represented by a set of projected lines 
parallel to the tilt direction in the surface. 

It is interesting to note that the foreshortening in 
these examples often reflects the orientation of the indi- 
vidual texture elements (e.g., the sunflowers), whereas 
the area gradient corresponds to the orientation of the 
underlying surface. 

6. Shape from Disparity Gradients 

In this section we shall apply a similar methodol- 
ogy, based on multi-scale second moment descrip- 
tors, to shape estimation from binocular (stereo) vi- 
sion. A more detailed account of the geometric as- 
pects of this problem can be found in Gfirding and 
Lindeberg (1994). 

Traditionally, binocular stereopsis has often been 
associated with recovery of three-dimensional depth. 
Here, however, we shall be concerned with estimation 
of surface orientation, i.e., the rate of change of depth. 
Many computational models of stereopsis are based on 
sparse but salient features such as edges or corners (see 
e.g. fPollard et al., 1985)). This approach is often quite 
successful, but has the drawback that it only produces 
sparse depth estimates. If higher-order properties are 
needed, such as local surface orientation or curvature, 
they could in principle be estimated by first applying an 
additional stage that interpolates the surface between 
the data points to obtain a dense depth map and then 
differentiating this representation. 

An alternative approach, which we shall pursue here, 
is to derive higher-order surface properties directly 
from the properties of corresponding image patches, 
without using depth as an intermediate representation. 
This can be achieved either by first computing a dense 
disparity map and then estimating derivatives of the 
disparity field, or by directly using differences in local 
image properties, e.g. the local statistics of the orien- 
tation or curvature of contours. 

In both cases, the estimation of surface orientation 
can be formulated in terms of modelling the local trans- 
formation from the right eye's view of a small surface 
patch to the left eye's view of the same patch by an 
affine transformation, rather than a simple displace- 
ment. Analogously, surface curvature can be estimated 
from the second-order properties of the local left-to- 
right transformation. The local affine transformation 
gives rise to orientation disparity as well as spatial 
frequency disparity, and several computational models 
based more or less directly on these cues have been de- 
scribed in the literature (Blakemore, 1970; Koenderink 
and van Doorn, 1976; Tyler and Sutter, 1979; Rogers 
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Figure 12. Representation of the binocular viewing geometry. The 
plane of the drawing is the fixation plane. The primary direction 
(indicated by dashed lines) is defined as the direction in the fixation 
plane that is perpendicular to the interocular baseline. The dotted 
circle through the fixation point and the eyes indicates a part of the 
point horopter, i.e., the locus of points that yield zero horizontal and 
vertical disparity. 

and Cagenello, 1989; Wildes, 1981; Jones and Malik, 
1992). The methodology presented here builds on, and 
extends, several of these models. 

6.1. Viewing Geometry and Binocular Disparity 

A representation of the binocular viewing geometry is 
shown in figure 12. We represent visual space with 
respect to a virtual cyclopean eye, constructed such 
that the cyclopean visual axis (the Z axis) bisects the 
left and right visual axes. The X and Z axes as well as 
the centers of the eyes lie in a common plane, called 
the fixation plane. 

We define left and right coordinate systems 
(XL, YL, ZL) and (Xn, Yn, Zn) such that the origin 
of each system is at the center of projection, the ZL, 
Zn and Z axes intersect at the fixation point p with 
cyclopean coordinates (0, O, R), and the XL, XR and 
X axes are contained in the fixation plane Normalized 
cyciopean image coordinates are defined by x = X/Z, 
y = Y/Z; left and right image coordinates are defined 
analogously. These coordinates are related to the pixel 
coordinates through the intrinsic camera parameters, 

which are assumed to be known. 
This representation of the viewing geometry does not 

require p to be the actual fixation point of the viewing 
system, nor indeed that the eyes fixate any point at all, 
since a rotation of either eye around the optical center 
does not affect the information content of the image. 
Conceptually, we represent the eyes or cameras by the 
unit viewspheres I], EL and ER independently of the 
physical shape (e.g., spherical or planar) of the physical 
imaging surface. Left and right image coordinates are 
then defined in the tangent planes to the viewspheres at 
the images of any given point p in space. These image 
coordinates are related to the image coordinates defined 
with respect to some other fixation point q by a projec- 
tive transformation which is independent of the struc- 
ture of the scene. However, to simplify the presentation 
we shall continue to refer to p as the fixation point. 

6.1.1. Vergence and Version. Let ~oL and qgg be the 
angles between the primary (straight-ahead) direction 
and the left and right visual axes respectively. The 
vergence angle/z and the version (or gaze) angle y are 
then defined by 

1 1 
/z = =(~0L -- ~PR), g = a-(~PL + ~on). (34) 

Z Z 

As a consequence of this definition, the angle between 
the cyclopean visual axis and the primary direction is 
equal to y (see figure 12). 

6.1.2. Binocular Disparity. The retinal disparity of a 
point in the scene is defined as the difference in retinal 
position of the left and right projections of the point. 
Consequently, the retinal disparity of the fixation point 
is zero by definition. We define horizontal and vertical 
retinal disparity (h, v) by 

h = xn - XL, V = Yn -- YL, (35) 

where (XL, YL) and (xn, Yn) are the normalized left 
and right image coordinates corresponding to the same 
point in the scene. 

If the fixation point p lies on a smooth surface 
Z(X, Y), a differentiable mapping M is induced from 
points in the left image to points in the right image in 
some neighbourhood of the images of p. A Taylor ex- 
pansion to first order in (xn, Yn) can then be expressed 
as 

+ 
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In the following we shall denote the matrix in (36) by 
M, and refer to it as the derivative map. The compo- 
nents (hx, hy; Vx, Vy) constitute the disparity gradient. 

6.2. The Disparity Gradient 

The disparity gradient depends on the viewing geom- 
etry and the local surface orientation. Let M, be the 
derivative map from the left image to the right image. 
The disparity gradient is M, - I, where I is the unit 
matrix, and at the fixation point it holds that 

M, = ( l + hx hy ) 
Vx 1 -q- Oy 

cos(y - / z )  

cos(y +/z)  

f cos/z + Zx sin/.t 

x ~c-'~s#-Zxsin/z0 

2Zr___cos/z sin/z '~ 

cos/z - Z x  sin/.t) , 

(37) 

where (Zx, Zr) oz oz ~ )  a = (5-2, is gradient based 
parametrization of surface orientation relative to the 
cyclopean coordinate system. These parameters are 
related to the slant-tilt representation used in the pre- 
vious section by 

Zx = tan cr cos 0, Zr  = tan cr sin 0. (38) 

A derivation of (37) can be found in G&ding and Linde- 
berg (1994). The size of the region where M, provides 
a reasonably accurate approximation of the disparity 
field depends on the shape of the surface; for planar 
surfaces it is in fact valid over quite large visual angles. 

6.2.1. The Information Content of the Disparity 
Gradient. What do the non-vanishing components 
(hx, hy, Vy) of the disparity gradient at the fixation 
point tell us about the local scene structure and the 
viewing geometry? First, note that the disparity gradi- 
ent (37) depends on four parameters; two for the view- 
ing geometry (/z, y) and two for the surface orienta- 
tion (Zx, Zr). It is thus impossible to recover both 
the viewing geometry and the local surface orientation 
from a single measurement of the disparity gradient. If 
the viewing geometry is known, however, then surface 
orientation can be estimated and vice versa. 

Denote the components of M, by mij. Then, a few 
algebraic manipulations on (37) give 

(ml l  -- m22) COS/Z 
Zx = 

(roll + m22) sin/z ' 
m12 

Zy = 
(mll + m22) sin/z" 

(39) 

These expressions are homogeneous in the components 
of M,. Therefore, to estimate the surface orientation it 
suffices to estimate M, up to an arbitrary scale factor. 
In particular, there is no need to know the angle y of 
asymmetric gaze, since this parameter only affects M, 
by a uniform scaling factor (see (37)). 

6.2.2. Estimating the Disparity Gradient. Using the 
transformation property (9) of the second moment ma- 
trix (with B = M,), it is reasonably straightforward to 
derive explicit expressions for the disparity gradient in 
terms of second moment matrices in the left and right 
images respectively. The system of quadratic equations 

[£Lll [£L12 ~ 
~{LL 12 ~LL22 " ] 

= ( m21tARl' 
\mll(mlz/ZRlx + ]'LRI2) 

mll(m121ZR11 + IZR12) 
m22bt'Rli + 2m12/ZR12 +/ZR22// 

(4O) 

gives rise to two real solutions ll 

roll = t~(1 4- CL)/~R, 
m12 = ~(SL FR T SR FD, 
m22 = -4-oe(1 + CR) FL, 

(41) 

where 

= ( 1  - - ( 4 2 )  

/?R = V/1 - e 2 - ~2, (43) 

1 1 P/-~L, 
ce = #. ~ ~ V  ~ (44) 

and the '4-' and 'T '  signs are coupled. Notably, ot 
occurs as a common factor in all mij and cancels in 
(39). Hence, only the directional structure of/ZL and 
/zR (i.e. CL, SL, CR and SR) influences the surface ori- 
entation estimates, while any difference in magnitude 
(represented by PL and PR) is ignored. 
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Figure 13. Local surface orientation estimated from the gradient of horizontal disparity in three stereo pairs. The images in the two first rows 
are generated by texture mapping. The images in the bottom row are taken with a pair of CCD cameras. The columns show from left to fight; 
(a-b) Bright copies of the right and left images with computed texture descriptors superimposed. (c) estimated surface orientation, (d) reference 
surface orientation. 

By adding the natural requirement that det M.  > 0, 
i.e., that the left-to-right ordering is the same in both 
images, a unique solution is obtained (with mz2 > 0). 
This constraint is closely related to the disparity gra- 
dient limit used e.g. by Pollard et al. (1985). 

6.3. Experimental Results 

6.3.1. Procedure. In the experiments described be- 
low, estimation of  surface orientation from disparity 

gradients was performed as follows. The windowed 
second moment descriptors were computed as de- 
scribed in previous sections (using ?'t = 4 '2,  Ye = 2 
as usual) for the left and right images separately. To 
reduce clutter, a subset of  the descriptors for the left im- 
age was extracted by applying a threshold to the mag- 
nitude of the scale-space maximum of  the Laplacian 
(which was computed in the spatial selection stage). A 
very simple matching algorithm, based on the epipo- 
lar constraint and similarity of  detection scale, was 
then applied to find a corresponding descriptor from 
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the right image for each remaining descriptor from the 
left image. For each of the resulting left-right pairs of 
windowed second moment descriptors, the normalized 
horizontal disparity gradient was estimated using (41), 
and surface orientation was computed using (39). 

It is worth pointing out that the positional disparities 
which are obtained as a result of the matching process 
can be used to obtain a depth estimate for each de- 
scriptor pair. Hence, the left and right sets of second 
moment descriptors in fact contain two binocular cues, 
in addition to the texture cues which were discussed in 
the previous section. However, in the examples below 
the positional disparity is not used. 

6.3.2. Results. Three examples of results obtained 
with the method are shown in figure 13. 

The first two image pairs were created by perspective 
texture mapping onto a planar surface with orientation 
(or = 60 °, 0 = 50°). The visual angle across the 
diagonal of each image is 32 °. The first texture is a 
sinusoidal pattern with 5% additive Gaussian noise. 
In order to reduce cluttering of the graphical display, 
a subset of the matched descriptor pairs was selected 
manually. The second texture is a natural gray-level 
image of a pebble pattern. The gaze angle is y = - 5  ° 
for both image pairs, and the vergence half-angle is 
/z = 10 ° for the first pair and/z = 6.9 ° for the second 
pair. 

The third image pair was acquired with two CCD 
cameras and depicts a nursery wallpaper. The camera 
geometry was (/z = 5.6 °, y = -4.0°) .  

At the fixation point of the first image pair, the esti- 
mated surface orientation was (6 = 58.5 °, 0 = 52.2°). 
The error in the estimate, expressed as the angle be- 
tween the estimated and true surface normals, is 2.4 °. 
Similar results were obtained at the remaining sixteen 
points; the maximum error is 3.3 ° . 

The results obtained with the second and third image 
pairs were slightly more variable but still fully accept- 
able, as can be seen from the graphical representation. 
The two or three large errors in each image pair are due 
to incorrect matches, which could probably be elimi- 
nated by a more sophisticated matching algorithm. 

7. Summary and Discussion 

We have shown that a representation of local image 
structure computed by multi-scale bottom-up retino- 
topic processing can be directly used for deriving non- 
trivial cues to the local structure of three-dimensional 

surfaces in the scene, without iterations, search, or 
high-level knowledge. 

In the first part of the paper, we treated the problem 
of computing such a representation, and introduced the 
windowed second moment matrix to represent the local 
statistics of first order Gaussian normalized derivatives 
of image brightness. We showed that linear transfor- 
mations of the spatial coordinates affect this descriptor 
in a simple way, which allows the parameters of the 
transformation to be estimated from the properties of 
the descriptor. 

The computation of this descriptor involves two 
scale parameters; first, the smoothing scale at which 
derivatives of the image brightness are computed, and 
second, the scale of the window used to integrate statis- 
tics of nonlinear descriptors of the differential image 
structure. We proposed a systematic two-stage method 
for adaptively choosing these scale parameters. The 
characteristic dimensions of salient image structures at 
any given point are first estimated by detecting local 
maxima with respect to scale of certain differential in- 
variants derived from the windowed second moment 
matrix. The integration scale is then set proportional 
to the estimated characteristic dimensions, while the 
smoothing scale is adapted to obtain a trade-off be- 
tween suppression of noise and irrelevant fine-scale 
structures on the one hand, and distortion of the shape 
of local image structures due to smoothing on the 
other. 

The principle used to determine characteristic di- 
mension was also applied to guide the selection of 
where in the image to compute the texture descrip- 
tors. Whereas the second moment descriptor which 
describes local image "shape" is based on first deriva- 
tives, the entities used for spatial selection were based 
on second derivatives in order to favour centers ofblob- 
like structures. 

In the second part of the paper we treated the prob- 
lem of using the multi-scale second moment descriptor 
to derive cues to local three-dimensional surface shape 
and orientation. We first discussed estimation of shape 
from texture in a monocular image, based on two inde- 
pendent cues referred to as foreshortening and the area 
gradient, respectively. It was shown that these two 
cues can be reliably computed both in noisy synthetic 
images and natural images. 

We then showed that the same methodology can be 
used to recover local surface orientation by estimating 
the gradient of horizontal disparity in a binocular im- 
age pair. This method has the advantage that it does not 
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depend on any specific assumptions about the surface 
texture. Experimental results were shown for both syn- 
thetic and natural images. 

7.1. Relations to Biological Vision 

As mentioned in the introduction, we have not at- 
tempted to model biological vision. However, the gen- 
eral principles on which the methodology is based ap- 
pear to be compatible with current understanding of 
the structure of the first stages of the primate visual 
pathway. 

For example, it is worth noting that the computation 
of the windowed second moment descriptor follows 
the pattern "linear filtering--nonlinearity--spatial av- 
eraging". Processing sequences of this type have in re- 
cent years been proposed as models for human texture 
discrimination, e.g. (Caelli, 1985; Bergen and Adel- 
son, 1988; Malik and Perona, 1990). The initial lin- 
ear filtering stage in our model is based on directional 
Gaussian derivatives, which have been used to model 
the receptive fields of simple cells in the mammalian 
visual cortex (Young, 1985). Moreover, selection of 
scale levels and spatial positions by detection of local 
maxima could easily be implemented by lateral inhibi- 
tion between cells. 

The spatial detection process we discussed was 
based on rotationally symmetric operators such as the 
Laplacian, which limits the ability to detect very elon- 
gated blob-like structures based on the response of 
a single operator. However, in this context it is in- 
teresting to note that in a psychophysical study of 
the visibility of elliptical Gaussian blobs, Bijl and 
Koenderink (1993) found that their results can be pre- 
dicted by a model based on Pythagorean summation 
of the responses of rotationally symmetric receptive 
fields. 

7.2. Further Research 

Some issues not directly addressed by the present work 
are discussed below. 

Grouping. We have tacitly assumed that integration 
of local properties is always a meaningful operation, 
but in general situations it may be necessary to restrict 
the integration to some coherent subset of the descrip- 
tors in the window. This can have any of a number 
of reasons, e.g. that the image contains more than one 

surface, that a surface contains more than one type of 
texture, or that an image region contains textures re- 
suiting from more than one physical process. 

Furthermore, we have in most cases used only the 
most dominant scale at each spatial position; a more 
general approach would be to detect all local maxima, 
and then apply spatial grouping based on similarity of 
characteristic dimension. For example, a noisy im- 
age of a slanted pattern might give rise to maxima at 
small scales due to the noise, in addition to the maxima 
at coarser scales corresponding to the surface texture. 
Separate estimation of the area gradient for the fine- 
scale maxima would then correctly indicate a fronto- 
parallel surface corresponding to the noise in the image 
plane. 

Cue Combination. This paper has treated local esti- 
mation of surface shape and orientation, using three 
independent processes. Clearly, some mechanism is 
needed for unifying these independent estimates into 
hypotheses about coherent surfaces. 

Brightness Discontinuities. The linear transforma- 
tion property (9) is strictly valid only if the brightness 
pattern is differentiable. Non-differentiable structures 
such as sharp discontinuities may therefore invalidate 
(9) to a greater or lesser extent. For example, compres- 
sion of an ideal step edge in the direction perpendicular 
to the edge obviously does not affect the magnitude of 
derivatives estimated by finite differences at all, unlike 
the case of a smooth edge for which the compression 
would affect the slope of the edge. We plan to investi- 
gate this problem in more detail. 

Non-UniformSmoothing. The reason for adapting the 
local scale in the computation of the second moment 
descriptor was to obtain a reasonable trade-off between 
on the one hand suppression of noise and irrelevant fine- 
scale structures, and on the other hand distortion of 
the shape of the brightness pattern due to the isotropic 
Gaussian smoothing. 

However, if the shape estimation methods are based 
on an affine scale-space representation (Lindeberg, 
1994a) instead of the linear scale-space based on ro- 
tationally symmetric smoothing, then the shape of the 
smoothing kernel can be adapted to the local image 
structure and the shape distortion effects be reduced 
(Lindeberg and GSxding, 1994). This observation is 
related to the suggestion by Stone (1990) to adapt the 
local operators used in shape-from-texture estimation 
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to be isotropic when backprojected to the surface, rather 
than in the image. 

A. Appendix 

A.1. Transformation Property of the Second 
Moment Matrix 

The transformation property (9) of the windowed sec- 
ond moment matrix can be verified as follows. As- 
sume that L, R : ]I~ 2 ~ ]I~ are two intensity patterns 
related by L(~) = R(B~), where ~ c IR 2, and B is 
a non-singular linear transformation. Without loss Of 
generality assume det B > 0. Then, 

VL(~) = BTVR(B~), (45) 

which when substituted into the definition of the win- 
dowed second moment matrix yields 

lZL(q) = f f~2 w(q -- ~) (VL(~) ) (VL(~) )  r ds e 

= f f ~  w(q-~)BT(VR(B~)) 

× (VR(B~))  r B dse. (46) 

Substituting 0 = B~ (with p = Bq) we obtain 

 L(q) = Br { f w(B-i(P-O))(VR(o)) 

x (VR(0)) r (detB)-ldo}B. (47) 

The integral within brackets is the second moment of 
R at p computed with respect to the backprojected 
window function w'(o - p) = (det B)-lw(B -1 (7 - 
p)). This window function is normalized as long as 
the original window function is, because 

f fo~2 w( B-~ (7 - p))(det B) -1 do 

= {let0 = B~ withp = Bq} 

= f f ~  w(~-q)d~,  (48) 

which verifies (9). Note, however, that the win- 
dow function w' will not, in general, be rotationally 
symmetric. 

A.2. Estimating Simple Distortion Gradients 

In this appendix a practical procedure for estimation of 
surface orientation from the area gradient in the case 
of a locally planar surface will be described. A more 
detailed description is given in Lindeberg and GSrding 
(1993). The same procedure can with only minor mod- 
ifications be applied to estimation of surface orientation 
from any simple distortion gradient. 

Equation (32) relates the normalized gradient of 
projected texel area in the viewsphere I~ to surface 
orientation and curvature. If the curvature is as- 
sumed to be small, an estimate of the surface tilt 
is given by the negative direction of the area gra- 
dient, and an estimate of surface slant is given by 
tan -1 [I(VAz(p))/(3Ax(p))II. 

In principle, the area gradient can be estimated by ap- 
plying a central difference operator to the product m M 
obtained from the pointwise estimate of F.. However, 
for a planar surface the product A~ ----- mM is not a 
linear function of the image coordinates, and so a cen- 
tral difference estimate of the first derivate would be 
biased by the higher derivatives of Ax. A more consis- 
tent approach is to transform Ax to a form that is linear 
in the image before the central difference operator is 
applied, thereby eliminating the bias. This procedure 
can be simplified even further by transforming the im- 
age texel area AL, rather than the viewsphere texel area 
At ,  to linear form, thus bypassing the need to apply 
the gaze transformation G..  

For a planar surface with slant cr and tilt 0, it can be 
shown (Lindeberg and G&ding, 1993) that 

(AL(X, y))I/3 

= k(fcosa - (xcosO + ys in0)  s ina) ,  (49) 

where k is an unknown constant 12 . 
Hence, a practical procedure for estimating the lo- 

cal surface orientation from estimates of, for exam- 
ple, the area AL(X, y) in some region of the image 
can be described as follows. First, compute (samples 
of) h(x, y) = (AL(x, y))l/3. Then, estimate the pa- 
rameters (hx, hy, h(O, 0)), either by central differences 
or, more robustly, by a weighted least-squares fit of 
h(x, y) = hxx + hyy + h(0, 0). Finally, compute the 
estimated local surface orientation using (49) which 
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c a n  be  r e w r i t t e n  

=cos-' (( ], 
f Z h 2  q- f Z h 2  -k h2(0 ,  0 ) /  

= arg(hx, hy).  (51)  

N o t e  tha t  th i s  p r o c e d u r e  o n l y  r e q u i r e s  A L ( x ,  y)  to  be  

c o m p u t e d  up  to an  a rb i t r a ry  s c a l e  factor .  

Notes 

1. The notation SPSD(2) stands for the cone of symmetric positive 
semidefinite 2 x 2 matrices. 

2. A (two-dimensional) translationally symmetric brightness pat- 
tern f : /~2 _+ R can be written f (x ,  y) = h(ax + by) for 
some one-dimensional function h : R --+ R and some (scalar) 
constants a and b. 

3. This terminology refers to local operations (derivatives). Con- 
cerning the use of two scale parameters for texture analysis, see 
also (Casadei et al., 1992). 

4. In these curves there is also a minimum in the signature of 
at coarse scales. The reason why this occurs is that the higher- 
frequency sine component is suppressed much faster than the 
lower-frequency sine component. At a certain scale, the contri- 
butions to/ZL from these two components are equal (correspond- 
ing to Q = 0). Then, when the higher-frequency component is 
suppressed further, the local image structure asymptotically ap- 
proaches atranslationally symmetric pattern; see also (Lindeberg 
and Gfirding, 1993) for a theoretical analysis. 

5. The scale factor is selected such that for a circular binary blob 
the ellipse area is equal to the area of the blob. This only affects 
how ellipses are displayed; in the computations of various shape 
cues from/zL the scale factor always cancels out. 

6. When implementing the algorithm on a serial computer there are 
obviously efficiency considerations as well. 

7. The squaring is performed only in order to obtain uniform treat- 
ment of bright and dark blobs. The same effect could, of 
course, also be achieved by considering both normalized scale- 
space maxima and normalized scale-space minima of the ordi- 
nary Laplacian operator (although the effect of the second stage 
smoothing then would become somewhat different). 

8. The scale interval used was t E [1,256], with three samples per 
octave distributed in uniform logarithmic steps, and the image 
size was 512 x 512. The integration scale was s = y2t with 

9. The mapping G is often referred to as the gaze transformation. 
In practice it is usually very close to the identity mapping. 

10. In the examples in this section the surface orientation is indicated 
graphically by a dish with an attached needle parallel to the 
surface normal. In contrast to the previous illustrations of the 
second moment matrices, the dishes are from now on viewed 
in parallel projection along the visual ray through the image 
center. With this convention, the shape of each projected dish 
specifies the surface orientation regardless of the internal camera 
geometry and the position of the dish in the image. 

11. The indeterminacy with respect to rotations referred to at the end 
of Section 2.2 disappears in this case, since B = M. has only 
three degrees of freedom (b21 = m21 = 0). 

12. Similar expressions have been derived e.g. by Blostein and Ahuja 
(1989b), Kanatani and Chou (1989). 
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