
Journal of Elasticity 27:45-56, 1992. 45 
© 1992 Kluwer Academic Publishers. Printed in the Netherlands. 

Fermat's principle in elastodynamics 
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A~traet. In general anisotropic inhomogeneous elasticity, disturbances propagate along rays 
which are neither straight nor perpendicular to the wave fronts, but, as in optics, they are still 
characterized by their rendering the time of travel between two points stationary. 

O. Introduction 

The principle of  stationary time in optics was first formulated as a principle of  
least time by the great French mathematician Pierre de Fermat  (1601-1665). 
In modern notation the principle states 

f ds--0,  0.1) 
,~A v 

where ds is the length element along the path and v is the speed of  
propagation.  The generalization of  this principle to the propagat ion of  weak 
waves in an elastic solid is marred by the difficulty that in the general 
anisotropic and inhomogeneous case the rays are not necessarily straight or 
perpendicular to the wave fronts, but their directions, as well as the speed of 
propagation,  are only implicitly contained in the equations of  motion. To the 
best of  our knowledge, the validity of  the principle of  stationary time in 
elastodynamics has never been rigorously established for the general case. 
Hence this paper. 

In Section 1 we review the basic equations of  propagat ion and decay of the 
wave amplitude and we give a first definition of  the rays as characteristics of  
the decay equation. In Section 2 we show the equivalence of  this definition 
with the one derived from the bicharacteristics of  the equations of  motion, 
governed by a constrained Hamiltonian system. Such systems, first studied by 
Dirac, are the subject of  Section 3, where the general procedure for obtaining 
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the (homogeneous) Lagrangian associated with the given Hamiltonian,  is 
validated. Finally, in Section 4, this procedure is reinterpreted in terms that 
yield Fermat 's  principle in a straightforward manner.  Some intriguing new 
results relevant to the eventual expression of  the Lagrangian governing the 
rays in terms of  matrix invariants are presented, but not exploited, at the end 

of Section 2. 

1. P r e l i m i n a r i e s  on e las t i c  w a v e s  

The equations of  motion for a hyperelastic body can be written as 

D /' &o '~ .. 
- ~  ~u~.~)  -- pui = O (1.1) 

in a Cartesian reference coordinate system X i (i = l, 2, 3), where 

ui = displacement vector components,  

p = density in the reference configuration, 

¢o = ~o(ui,j; X k) = strain energy per unit reference volume, 

and where superimposed dots denote time derivatives and commas denote 
partial differentiation with respect to the Cartesian coordinates. 

Because of frame indifference, the dependence of  ~ on the displacement 
gradient cannot be arbitrary, but must rather be limited to (smooth) functions 

of  the f o ~  

~ = ~(e~ ; X~), (1.2) 

with 

eij = ~(ui, j + uj. i + uk,iuk,j). (1.3) 

A propagating wave-front is a smooth function of the f o ~  

~ ( ~ ' )  = t, (~.4) 

where t is time. An acceleration wave propagating on this front is a C ~ 
solution u~ = u~(X ~, t) of  (1.1) with discontinuous second derivatives on (1.4). 
Such a solution must satisfy a number  of  constraints both in t e ~ s  of  the 
wave-fronts and of  the relative strength of  the discontinuities. 
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With the change of variables X i, t -* X i, 4~(X") - t and using square brack- 
ets to denote the jump of  the quantity enclosed, the so-called compatibility 
conditions on the wave front, [1], are obtained as 

[u,.y~,] : [//i]~b.y~b.,, (1.5) 

[fl i , j]  = - -  [i~ i ]~) , j ,  (1.6)  

[~ ,+k]  = - [ / / , ] j 4 , . ,  - [//,],~,~ 

-- [//;]~b.j, - ['/f,]q~.y~b.,, (1.7) 

and 

[a,,~.] = [ / / ; ] , j  + [ ~ , , ] q ~ . j .  ( 1 . 8 )  

Returning to Eq. (1.1), we rewrite it explicitly as 

~.)kl i jUk,l j  "~- O)ij , j  - -  p i i  i : O, (1.9)  

where we have introduced the notation 

~ = ~ / O u ~ a ,  (1.10) 

WklO" : ~ i ; k l  : O 2 O / ( O U k , l O U i a ) '  (1.11)  

and where we have used the comma to mean 

02~ 
~O.k -- OX k 8ui.~' (1.12) 

rather than a " total"  derivative. 
Taking jumps of  Eq. (1.9) and using the compatibility conditions yields the 

propagation condition 

(~k~iy~,~a --  p6g~)[K,] = 0, (1.13) 

which shows that the wave-fronts must satisfy the de t e~ inan t a l  equation 

det(~,~o~.~a - p6g~) = 0. (1.14) 

In other words, the wave-fronts are characteristics of  the equations of  motion. 
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Taking the time derivative of Eq. (1.9) 

O')mnklijUk,lj~tm,n "~- ~Oklij~lk,lj "~- ('Oklij,j~k,l - -  P'~/ ' i  = 0 ( 1 . 1 5 )  

and assuming that the material is at rest before the arrival of the wave, we 
obtain for the jump of Eq. (1.15) 

--  ~O mnklO.~),l(~,j (~,n [/~k][/~m] 

- ( ~  + ~.)~,~[~],~ 

- -  (~klo.¢,lj  + ~kli j , j¢, l)[~k] 

- -  ( ~ , ~ ¢ , t ¢ , ~  - -  p6kg)['~'k] = 0,  ( 1 . 1 6 )  

where ~m,~Z~] denotes third derivatives of w in the style of Eq. (1.11). 
To a solution ¢ of the de te~ inan ta l  equation (1.2) there corresponds a 

vector field [ff~] on the wave-front satisfying Eq. (1.13). The direction of this 
vector field is de t e~ ined  by Eq. (1.13), but its magnitude will abide by a 
P.D.E. which we presently derive. Let 

[~] = a b e ,  ( 1 . 1 7 )  

where bg is a unit vector. Multiplying Eq. (1.16) by b~ and enforcing (1.13) and 
the symmetry of w~0, we obtain the 1st order P.D.E. 

Ataj + Ba z + Ca = 0, (1.18) 

with 

At = (~ ,~  + m~2~t)¢,ib~bi, (1.19) 

B = o~,kz~¢j¢j¢,,b~b~bg, (1.20) 

and 

C = ( ~  + w~u)¢jb~,tbg + (~ , i¢ ,o  + w~t~a¢,t)bkbi" (1.21) 

Given a solution of (1.14) and initial conditions for a, integration of (1.18) 
fully describes the decay or growth of the wave amplitude. The characteristics 



of  (1.18) are given by 

dX ~ dX 2 d X  3 
- -  

A1 A2 A3 
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(1.22) 

and, being the lines along which the disturbance naturally propagates, are 
called rays. 

2. Rays and bicharacteristics 

The rays can be obtained in a different, more illuminating, manner as 
projections of  the characteristic strips of  the non-linear first-order P.D.E. 
(1.14), also called bi-characteristics, for obvious reasons. To see this we start 
from Eq. (1.14) rewritten, after dividing by p3, as 

H ( p j ,  X i) =- det(Ekt~plpj - 6ki) = 0, (2.1) 

where 

p, = c~., (2.2) 

and 

1 
Eo.kt = -~ ~Oijk,. (2.3) 

Since the unknown function, 4~, does not appear explicitly in (2.1), the 
characteristic strips are given by the Hamiltonian system 

dX i OH 
ds Op,' (2.4) 

dp~ OH 
- -  

ds c3 X ~ ' (2.5) 

plus the equation 

dd~ d X  i 
d s - P ~  ds ' (2.6) 

which can be integrated after the system (2.4), (2.5) has been solved. 



50 M.  Epstein and  J. ~nia tyck i  

Let us denote by Zki the argument of  det in Eq. (2.1), namely, 

Z~i = E~ti~ptpj - 6~i. (2.7) 

Equations (2.4) and (2.5) can then be rewritten as 

dX ~ O det 
dS OZm~ n ( Emlni "]- Eminl)Pl' (2.8) 

dp~ 0 det 
ds dZ , . .  Emt.j,~p~p~. (2.9) 

The derivative of  the determinant with respect to an entry is the co-factor 
of  that entry. For a (symmetric) singular matrix, any row (or column) of  
cofactors is proportional to its eigenvector associated with the zero eigenvalue 
(assumed simple). It follows, then, in our case, that on the wave-front 

d det 
-- kbmbn, (2.10) 

~Zm, 

where k is a scalar. Introducing this result in (2.8), we obtain 

d X  i 
ds = k(Emt,,i + Emi,,z)ptbmb,,, (2.11) 

which is equivalent to (1.22). This shows that the rays are the projections of  
the bicharacteristics onto the X-space (see [2]). 

An interesting explicit result can be obtained for the extra equation (2.6). 
For  the case of  2 dimensions we obtain, after some manipulations of Eq. 
(2.8), the identity 

dX; 
P~-~s = 4 det(Z) + 2 tr(Z), (2.12) 

where tr is the trace. Since Eq. (2.1) is to be satisfied, we conclude that 

--~s = 2 tr(Z). (2.13) 

For  3 dimensions the corresponding results are 

dX ~ 
Pi ~ -  = 6 det(Z) + (tr(Z)) 2 _ tr(Z2), (2.14) 
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and 

thd 
-_~_~ = (tr(Z)) 2 - tr(Z2). 
ds 

(2.15) 

Equations (2.13) and (2.15) could have also been obtained directly from 
(2.11) by noting that the constant k in (2.10) is just the product of the 
non-zero eigenvalues of Z. 

These explicit forms of pi (dXi /ds)  in terms of the invariants of Z appear to 
be new results. Since, as shown in the following sections, with the appropriate 
change of variables, pi(dX~/ds) is the Lagrangian associated with the rays, 
Eqs. (2.13) and (2.15) may have some relevance for future investigations. 

3. Hamiltonian constraints and homogeneous Lagrangians 

The bicharacteristics satisfy Hamiltonian equations of motion, 

d X  i OH 
~ - -  

ds Opi (3.1) 

and 

d p i  O H  _ 

ds OX i' 
(3.2) 

where the Hamiltonian H is given by Eq. (2.1), and they also satisfy the 
constraint equation 

H = O, (3.3) 

which is equivalent to the original partial differential equation describing the 
propagation of waves in an elastic medium. Moreover, the Hamiltonian 
function H is not uniquely determined by the physics (geometry) of the 
situation. Only the zero level of H has a physical significance. In particular, 
Eq. (1.14) has the same physical content as Eqo (2.1). Their corresponding 
Hamiltonians, both equally valid, differ by a factor of p 3. Their corresponding 
characteristic strips are identical to each other, modulo a reparametrization. 

Constrained Hamiltonians were first studied by P.A.M. Dirac [3]. They 
arise from Lagrangian systems with infinite dimensional symmetry groups. In 
particular, the constraint given by the vanishing of the Hamiltonian, called a 
Hamiltonian constraint, appears for Lagrangians which are homogeneous 
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functions (of degree 1) of the velocity; such Lagrangians are invariant under 
the infinite dimensional group of transformations given by reparametrizations 
of the motions. If L(v, X) is a homogeneous Lagrangian, then, by Euler's 
formula, 

c~L 
- -  v i  - L = 0 ,  ( 3 . 4 )  
Ovi 

so that the Hamiltonian H corresponding to L vanishes identically. Hence, it 
is possible that the constrained Hamiltonian system describing the bicharac- 
teristics corresponds to a homogeneous Lagrangian. Our aim is to find this 
Lagrangian following the method given in [4], which is an extension of the 
method leading to Jacobi's principle of least action [5]. 

In the case of regular Lagrangians, the inverse Legendre transformation is 
obtained by solving Eq. (3.1) for p; in terms of 

dX i 
V i = (3.5) 

ds 

The Lagrangian corresponding to the Hamiltonian H is given by 

L(v, X) = pg(v, X)v ~ -  H(p(v, X), X). (3.6) 

In the case under consideration, the equation 

OH 
V i : - -  (3.7) 

ep; 

need not have a solution p(v,X) satisfying the constraint condition 
H(p(v, X), X) = 0. However, since the parametrization of the bicharacteristics 
is not yet fixed, and the change of parametrization corresponds to a rescaling 
of the velocity vector, given a vector v at X, we try to find p such that 

OH 

•Pi 

and 

- -  ( p ,  X )  = 2 v '  ( 3 . 8 )  

H(p, X) = 0, (3.9) 

where 2 is a nonzero factor of proportionality. In a neighbourhood of (p, X) 
satisfying Eq. (3.9) we can solve Eq. (3.8) for p in terms of v, obtaining 
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p = p(v, X), provided that 

02H 
det ~ # 0.* (3.10) 

Substituting p(v, X) in Eq. (3.6), and taking into account the constraint 
condition (3.9), we obtain the Lagrangian 

L(v, X) = pi(v, X)v( (3.1 l) 

Since the proportionality factor 2 in Eq. (3.8) is a homogeneous function of  
v of  degree - 1, 

2(av) = a ~2(v), (3.12) 

we have 

62 
- - v k  = --2. (3.13) 
~V k 

Hence, we obtain from Eq. (3.8) 

~32H t~pi u k  = 213i "~- l) i 6 2  k 
~pi dpj ~v k -~v~ V = 0 ,  (3.14) 

which implies that p(v, X) is a homogeneous function of  v of  degree 0. 
Therefore, the obtained Lagrangian is a homogeneous function of  v of  
degree 1. 

Consider now the variational principle 

6 f Z(v, X) ds =-6 f pi(v, X)v~ ds =O, (3.15) 

where p,.(v, X) is obtained by solving the system (3.8), (3.9). The Euler 
equation associated with this principle is 

d ( t3L) t3L (3.16) 
d-~ ~ = O X  i '  

* The danger that this determinant might be identically zero for all tensors Eq~,t is easily dispelled 
by checking a particular case, such as a two-dimensional isotropic material with non-vanishing 
Poisson's ratio. The general form of E~k ~ (and its connection to repeated eigenvalues) for which 
the determinant in (3.10) vanishes, merits further study. 
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but, by virtue of (3.14) and (3.10), and the symmetry of Opi/dv ~ implied by 
(3.8), 

Ov~i : vJ -[- Pi  : Pi ,  (3.17) 

and, using (3.8) and (3.3), 

OL =vj  Opj _ 2 _ I  O H  Opj ,,~-1 O H  (3.18) 
OX i ~ -  Opj OX i OX ~ i '  

so that (3.16) reads 

dp~ 0H 
- -  _ _  ds 2-1 (3.19) OX i" 

Hence, the equations of motion corresponding to the homogeneous Lagran- 
gian (3.11) are equivalent, up to a parametrization, to the original Hamilto- 
nian equations (3.1) and (3.2). 

4. Fermat's principle 

In this last section we elucidate the foregoing analysis in terms that corre- 
spond to our physical situation. We observe that, although Eqs. (1.4) and 
(2.6) imply that the Lagrangian (3.11) integrated along a ray does measure the 
time of travel, it does not follow that its integral over an arbitrary path can 
be interpreted as time of travel along that path. It would, therefore, be 
premature to conclude that the variational equation (3.15) is a statement of 
stationary time. To see that this is indeed the case, we first note that, at a 
given point P, to each possible direction of propagation of the wave front 
(i.e., to each unit vector n emanating from P) there corresponds a unique 
largest speed v of propagation along n and a unique ray direction t. 

The speed of propagation is obtained by setting 

~b,i =-,ni (4.1) 
t )  

as it follows from Eq. (1.4), and solving for v 2 from the determinantal equation 
(1.14), which can be seen now as the characteristic polynomial of the eigenvalue 
problem (1.13). The ray direction is obtained from Eq. (2.8) by setting 

p i = n l / v  (4.2) 
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b 

WAVE FRONT 

Fig. 1. 

and normalizing the result to a unit vector t. The three unit vectors n (normal  
to wave front), b (acceleration jump) and t (ray) are algebraically related by 
Eq. (2.11). This triad (Fig. 1), in general, gets distorted as n rotates, in 
accordance with the anisotropic properties of  the elasticity tensor ~ouk~. 

I f  we should follow the disturbance along t, rather than along n, its speed 
of  propagat ion would be 

v, = . (4.3) 
i I ' t  

Let us assume that the vector t is given. To find the corresponding n we 
observe that 

d X  i 
• 

ds =/~t ' ,  (4.4) 

where # is a scalar depending on the parameter  s. Therefore, according to Eq. 
(2.4), we may write 

OH(pk, X ~) 
/~t i - , (4.5) 

~p~ 

which is cubic in p. A solution of this equation will have the form 

Pi = Pi (#), (4.6) 

and the value of  # can now be adjusted so that the constraint (2.1) is satisfied, 
i.e., 

H(pj (#) ,  X i) = 0. (4.7) 

The p's so obtained are the only vectors to both satisfy the constraint and to 
produce derivatives of  H aligned with t. The procedure just described is 
equivalent to the one described mathematically in Section 3. 
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r 

gA 

Fig. 2. 

~'~B 

Let a curve F be given in E3 as a ray candidate. At each point P along F 
the unit tangent t gives rise, by the procedure outlined above, to a vector n and 
a speed v. The total time of travel T between two points A and B (Fig. 2) is 

T =  [ h a l ,  (4.8) 
,)A Vt 

where l measures length along F. Using Eqs. (4.3) and (4.2), we write 

; T = p" tdl ,  (4.9) 

or, for any parametrization s of F, 

['B dX' 
P i -  T = JA ds ds, (4.10) 

where p, has been obtained point by point along F by the elimination 
procedure described, and so it is a function of t, or, through #, of dXg/ds. 
Equation (4.10) is thus seen to correspond exactly to the Lagrangian (3.11), 
from which it follows that the time of travel between two points is made 
stationary by the rays. 
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