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Abstract. Many large engineering systems can be viewed (or imbedded) 
as a series system in time. In this paper, we introduce the structure of a 
repairable system and the reliabilities of these large systems are studied 
systematically by studying the ergodicities of certain non-homogeneous 
Markov chains. It shows that if the failure probabilities of components 
satisfy certain conditions, then the reliability of the large system is 
approximately exp ( - fl) for some fl > 0. In particular, we demonstrate 
how the repairable system can be used for studying the reliability of a 
large linearly connected system. Several practical examples of large 
consecutive-k-out-of-n:F systems are given to illustrate our results. The 
Weibull distribution is derived under our natural set-up. 

Key words and phrases: Reliability, Markov chain, transition probabili- 
ties, linear system, repair-system, consecutive-k-out-of-n:F system. 

1. In t roduct ion 

Today the public requires all engineering systems, such as atomic 
power plants, aircrafts, automobiles and computers,  to be highly reliable. 
In practice, to avoid deterioration or breakdown of a system, it is routinely 
checked, maintained and repaired on a regular basis, for example, monthly. 
As a first approximation to moni tor  such a repair-maintenance behavior in 
relation to its reliability, we introduce a model based on a non-homo- 
geneous Markov process as follows. 

Assume there are k + 1 levels of deterioration of the system, say 
(1 ,2 , . . . ,k ,  k + 1), where state 1 stands for the system in perfect condition 
and state k + 1 stands for the system breaking down or not being able to be 
repaired. The state k + 1 is an absorbing state. In addition to the above 
assumptions,  we assume that if the system is in the state i (1 _< i _< k) at the 
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time t, then the system can only  either deteriorate to the state (i + 1) or go 
to the state 1 (if the system is repaired) at the time t + 1. Mathematically,  
this system can be described by the following stochastic model. 

Let {X(t)} be a Markov process defined on a finite state space 
S = { 1 , 2 , . . . , k + l }  and a discrete index space J =  {0,1,..., n} with the 
transition matrix 

(1.1) Mr(n) = 

p l l ( t , n )  p i2( t ,n)  0 ... 0 0 

p21(t,n) 0 p23(t,n) ... 0 0 

: : : : : : 

pk l ( t ,n )  0 : ".. : pk, k+1(t,n) 

0 0 : "" 0 l 

where p~(t, n) is the transition probabili ty from state i moving to state j as 
the index moves from t - 1 to t; i.e., 

po(t ,n)  = P ( X ( t )  = j ] X ( t -  1) = i ) .  

For  convenience, the index space • can be viewed as a discrete time 
space. However ,  t is not restricted to an explanation as time. For  example, 
in a large series system, t can be easily interpreted as the t-th component.  

The transition matrix of the form (1.1) is deliberately over-simplified 
to emphasize the essence of the repair-deterioration behavior. Most  of our 
results can be extended to a more general transition matrix at the expense 
of more complicated calculations. In this paper, we shall concentrate on a 
model with a transition matrix having the form (1.1). When there is no 
essential loss of generality, we shall make more assumptions to simplify the 
calculations and to make our result more transparent. 

Let n0 = (hi ..... nk÷~), where h i=  P(X(O)= i), i =  1,. . . ,k + 1, be initial 
k + l  

probabilities at time t = 0 and ~ ni -- t. It follows that the reliability of  the 
i=1 

system (repair system) at time (index) n is 

(1.2) R,  = 1] 
t = l  

where U0 = (1,..., 1, 0) is a 1 × (k + 1) row vector. Hence, for large n the 
reliability Rn of a repairable system can be completely characterized by the 

ergodicity of the product lgI Mr(n). 
t = l  

I fpz. i+l(t ,n)  is greater than a constant 1 > d >  0 for all t and n, then 
the reliability Rn of a repairable system tends to zero as n --- 0% which is of 
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no practical interest. In this paper, we are mainly interested in the case 
where the reliability R,, tends to a non-zero constant as n -- ~.  

Even at its simple form (1.1), our model covers many well-known 
examples. A typical example of this kind is the so-called consecutive-k-out- 
of-n:F system (see Chiang and Niu (1981), Bollinger (1982), Tong (1985) 
and Hwang (1986)), which contains n components  linearly connected and 
fails if and only if k consecutive components fail. The reliability of the 
system has been studied by, for example, Bollinger (1982), Aki (1985), Fu 
(1985, 1986) and Hwang (1986). For the case where all the components 
have the same failure probability l / n  ~/k, Fu (1986) had imbedded this 
system into a Markov chain defined on the state space ~ - -  {1,..., k + 1 } 
and the index space O ' =  {0, 1,..., n} with the transition matrix 

(1.3) M,(n) = 

2 2 
1 - n~/k n~/k 0 "" 0 0 

2 2 
1 -- n~/k 0 n~/k "" 0 0 

2 2 
1 nl/k 0 0 "" 0 

0 0 0 "" 0 1 

for every 1 < t_< n, where n is the total number of components of the 
system. Chao and Lin (1984), Fu (1985) and Papastavridis (1987), under 
different methods, have shown that the reliability of a large consecutive-k- 
out-of-n:F system converges to a non-zero constant exp ( - 2 k ) .  Their 
techniques are indirect. However, in this paper we shall take a more 
general and direct approach to this problem. 

There are many systems other than the one mentioned above which 
can be imbedded into this type of Markov chain, especially linearly 
connected systems. Since the transition probabilities given in (1.1) are 
allowed to depend on the index (time) t and the final index n (or the total 
number of components of the system), the Markov chain is non-homo- 

geneous. Therefore, the ergodicity of the product  l~I Mr(n) becomes a 
t=l 

convergence problem for a double-array. The standard method (see Seneta 
(1981)) to study the ergodicity of homogeneous Markov chains is usually 
based on the concept of Birkoff's coefficient of contraction. A transition 
matrix similar to (1.3), in the context of demography, is called a Leslie 
matrix (or more generally a "Renewal-type matrix"): 
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(1.4) L = 

pl ql 0 0 -.. 0 

p2 0 q2 0 ... 0 

p,  0 : : .-. 0 

pk+l 0 : : "" 0 

0 

0 

qk 

0 

whose ergodicity had been studied, for example,  by Lopez (1961) and 
Seneta (1981). Unlike the transition probabilities pi and qi in the Leslie 
matrix (1.4), the transition probabilities in the matrix M~(n) of (1.1) depend 
on the indexes t and n. The techniques used in Lopez (1961) and Seneta 
(1981) cannot be directly carried over to study the ergodicity of the product 

11 M,(n). 
/=1 

In this paper, the ergodicity of the product 1~I M,(n) of a non- 
/ = l  

h o m o g e n e o u s  M a r k o v  chain will be s tudied direct ly via C h a p m a n -  
Kolmogorov equations and exponential bounds. Our results provide a 
general method for studying the reliabilities of certain large engineering 
systems, particularly large, linearly connected systems. 

2. Main results 

For given initial probability ~r0 = (rc~,..., rC,+l) and i = 1,2 .... , n, let 

i 
(2.1) a(i)  = 7to FI M , ( n )  = (re(n,  i ) , . . . ,  ak+~(n, i)) , 

t= l  

where aj(n, i) is the probabil i ty of  the system in the state j at the time (or 
index) t = i and it can be written as 

i 
(2.2) aj(n, i ) =  P ( X ( i ) = j ) =  fro FI M t ( n ) U j ' ,  

t = l  

j =  1 .... , k +  l, where U s = ( 0 , . . . , 0 , 1 , 0  .... ,0) i s a l × ( k +  1) row unit vector 
with 1 at the j - th  coordinate.  It follows from (1.2) that the reliability of  the 
system is 

k 

(2.3) R,  = 7to leI Mt(n)U6  = E a j ( n , n ) .  
t=0 j = l  

The most general version of our result is presented in Corollary 2.2. 
For  convenience, we consider the following simple model that Pi~ (n, t) = pn 
and Ps.J+ ~(n, t) = q,  = 1 - p ,  which are independent of index t but depend 
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on n. Then  the t ransi t ion probabi l i ty  mat r ix  (1.1) of  the process  is reduced 
to 

(2.4) Mr(n) = M ( n )  = 

for every 1 _< t _< n. 

p ,  qn 0 . . . . . .  

p ,  0 qn • . . . . .  

p ,  0 : ... 0 

0 : : --- 0 

0 

0 

q~ 

1 

It fol lows f rom C h a p m a n - K o l m o g o r o v  equat ions  that  the fol lowing 
recursive equat ions  hold: for 1 _< i _< n, 

al(n, i)  = p n ( a l ( n , i -  1) + ... + a k ( n , i -  1)),  

a2(n,i) = q n a l ( n , i -  1),  

(2.5) 

ak(n,i) = q~a~ l ( n , i -  1) , 

a~+l(n,i) = qnak(n , i -  1 ) + a k + l ( n , i -  1). 

To prove  our  main  results we need the fol lowing lemmas.  

LEMMA 2.1. 
(i) m(n)Ug = Ug - q,U~ = (Ug - U~) + p ,  Ug, 

(ii) m(n)  U{ = p~ Ug, 
(iii) M(n) U/= q~ Uj'-,, j = 2 .... , k. 

PROOF. The above  results fo l low directly f rom the s tructure of  M(n) 
and definit ions of  U/, j = 0, 1,..., k. 

LEMMA 2.2. 
(i) a(i)U~ = a ( i -  I)U~ - q , a ( i -  1)Uk', 

(ii) a(i) Ug <_ a( j )  U~ for  all n >_ i >_ j >_ O, 
(iii) a(i - k + 1)U{ <_ a(i)Ud for  all i >_ k. 

PROOF. Resul t  (i) of  this l emma  is a direct conclus ion  of  L e m m a  
2.10) and the defini t ion of  a(i) given by (2.1). Since q , a ( i -  1)Uk'_> 0, the 
result (ii) fol lows direct ly f rom the first par t  of  result  (i). Finally,  result (iii) 
fol lows f rom 
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(2.6) 

a ( i ) U d =  a ( i -  1)(U0'- U[) + p , a ( i -  l)Uk' 

>_ a ( i -  1)(U0'- U~) 

= a ( i -  2)(U0' - U[ - U.[-1) + p n a ( i -  2)Uk'-i 

>_ a(i - 2)( U~ - Uk' - Uk'-i) 

= a(i - k + l)(Ud - U[ . . . . .  U~) + p , a ( i  - k + 1)Uz' 

>_ a ( i -  k + 1)U{ . 

This completes the proof• 

The inequalities (ii) and (iii) are very critical to prove our main results. 
We would like to give the intuitive implications for these two fundamental  
inequalities: 

(A) The inequality of Lemma 2.2(ii) implies that the reliability R, of 
the system is a decreasing function of the time (index). 

(B) The inequality of Lemma 2.2(iii) shows that the reliability of the 
system at time i is at least greater than or equal to the probability that the 
system is at the state 1 at the time (i - k + 1). 

LEMMA 2.3. For  n >_ i >_ k,  

(2•7) k -  p , q ,  la(i)Ud < a( i )U[  <_ k-i . . . . . .  
_ q,  a~z)uo .  

PROOF• Since 

k - 1  . 
a(i)U~ = qn a ( l -  k + I)U{ = p n q ~ - ~ a ( i -  k)U~ , 

the inequalities follow immediately from the inequalities of Lemma 2.2(ii) 
and (iii), respectively. 

THEOREM 2.1. For  any  g iven  fro satisfies 7~o Ud =- 1 a n d  i f  q,  = 21 n~lk, 

2 > O, then 

(i) l i m R , = e  , 
n ~ o o  

and  

e , /f  j = l ,  
(ii) ~ima(n) U f =  O, i f  j = 2 , . . . , k .  

PROOF• Without loss of generality, we assume ~0 = (1,0,.. . ,0). It 
follows that we have the initial conditions a(i)Ud---- 1 and ak(n, i)Ud = 0 for 

k - I  all n > k > i = 0 and ak(n, k)  = qn . Lemma 2. l(i) yields that the reliability 
of the system is 
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R ,  = r toMn(n)U6 = a (n )U6  = a ( n  - 1)U6 - q , a ( n  - 1)U[ 

q , a ( n -  1)U~' 

= i=,~I 1 -  -ff(-ff---i)--U-~ a (O)US .  

Note that a(0) = r~0 and a(O)Ud = 1. Hence 

q , a ( n  - i)U~ ) 
(2.8) Rn= ~=1 l~I I -  -a-~nT}~-U~ . 

Since q, = 1 / n  l/k, it follows from the initial conditions, Lemma 2.3 and 
equation (2.8) that 

( (2.9) 1 - <_ R,, <_ 1 - --n + n Ik+~l/k " 

The result (i) follows immediately from the above inequalities by taking the 
limit. 

Note, that by Lemmas 2.1 and 2.2, the following inequalities hold: 

(2.10) pnR.-1  < a ( n ) U {  < R .  , 

(2.11) q ~ p , a ( n - j - 1 ) U d  <_a(n )U;  < _ q , a ( n - j ) U d ,  j =  l , . . . , k .  

Since q,, = 2 / n  l/k the result (ii) immediately follows from result (i) and 
inequalities (2.10) and (2.11). This completes the proof• 

The condition qn - -2 In  t/k is vital to our results. In other words, to 
have non-trivial reliability for a large system, the failure probabilities of 
components in the system should be inversely proportional to the k-th root 
of the size of the system. Furthermore,  if the condition is satisfied, then the 
large system is either at state 1 with probability exp { -  2 k} or at state 
(k + 1) with probability 1 - exp { - 2k}. 

THEOREM 2.2. 

(2.12) 

I f  q ,  = 2 / n  '/k, t hen  

_ j k  

e 0 

• . 

lim M " ( n )  = _~ 
n-,,~ e 0 

0 0 

• "" 0 1 - e  -~' 

• .. 0 1 - e -~  

• .. 0 1 
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PROOF• Since the state k + 1 is an absorbing state, this theorem 
follows directly f rom the fact  tha t  Theorem 2.1(ii) holds for  all zro which 
satisfies re0 U~; =- I. 

For  a slightly more general case, we assume the t ransi t ion probabili t ies 
pj.j+~(t,n) defined in (1.1) are independent  of  t but  depend on n and the 
state j given as follows 

(2.13) pj.i+~(t,n)=2fln ]/~, 2 j > 0 ,  j =  1 , 2 , . . . , k .  

COROLLARY 2.1. I f  the transition probabilities pj4+~(t,n) defined in 
(1.1) satisfy (2.13), then 

(2.14) lim Rn = e , 
n ~ o ~  

(2.15) lira M"(n) 

where 

2* 
e 0 

;~* 
e 0 

0 0 

k 
2* = H ~,  and 

j = l  

• -• 0 1 - e  ~* 

• .. 0 l - e  -j* 

• -. 0 1 

PROOF. The results (2•14) and (2.15) immedia te ly  fol low f rom the 
proofs of Theorems  2• 1 and 2.2 with some trivial modifications• Hence,  we 
omit  the detailed p roof  here. 

This model  covers the results of  Papastavridis  and Lambiris  (1987), 
and Fu and Hu (1987) on the large consecutive-k-out-of-n:F system, with 
failure probabili t ies of  components  being Markov  dependent• 

For  more general  cases, we assume that  the t rans i t ion probabili t ies 
pjj+l(t,n) defined in (1.1) depend on t, n and j ,  and satisfy 

(2.16) PJ4+ ](t, n) = 2tj/n Ilk, 2~j > 0 ,  

for t = 1,..., n and j = 1 ... . .  k. The following general results also hold. 

COROLLARY 2.2. l f  the conditions (2.16) and 

(2.17) = - -  Z 2 t  < o o ,  
n ~ o o j = l  j /=I 

k 
where 2t = H 2tj, are satisfied then 

j = 1 

(i) lim R.  = e -~, and 



A LIMIT THEOREM OF CERTAIN REPAIRABLE SYSTEMS 817 

n 

(ii) l im H Mt (n )  = 
n--oo t =  [ 

e -~ 0 .-- 0 l - e  -a 

e -~ 0 ... 0 l - e  -a 

0 0 ..- 0 1 

This corollary can be proved by the same method  used in Theorems 
2.1 and 2.2 together with the following well-known lemma. 

LEMMA 2.4. (i) I f  0 < U,,, < 1 f o r  all n a n d  1 <<_ t <_ n, then the 
?1 

p r o d u c t  t_rll__ (1 - u,,,) and  the sum t--x ~ U,,, bo th  converge or diverge together. 

(ii) I fO < U,,~ < 1 f o r  all n a n d  1 <_ t <- n, a n d  

(2.18) lim ~, I ~ U~. = 0 < oo 
n - o o  j = l  j t = l  

then 

(2.19) ,~=lim rOl(1 - Ui,,) = e -° 

Condi t ion (2.18), the Cesaro summabil i ty  condition,  is satisfied if, for 
example,  2tj are bounded.  This model  does cover many large linear systems, 
in particular,  the large consecu t i ve -k -ou t -o f -n :F  systems studied by Chao 
and Lin (1984), Fu (1985, 1986), Papastavridis  (1987) and Chrysaphinou 
and Papastavridis (1988). 

Chrysaphinou  and Papastavridis  (1988) proved that  the lifetime of a 
large consecu t ive -k -ou t -o f -n :F  system has a Weibull distribution. Their 
result can also be immediately deduced f rom our  main result. 

Let Tn be the lifetime of a large consecu t ive -k -ou t -o f -n :F  system. 
Assume all the componen ts  are independent  and have the same failure 
probabilities. Further ,  we assume that  the probability of the component  
failure time no longer than 0 is 

(2.20) q, = 2 0 / n  1/k + O(1/nVk) . 

In other  words, the above assumption says that,  for fixed 0, the failure 
probabil i ty of a componen t  depends on the size of the system and tends to 
zero with a rate 20In  l/k. It follows immediately f rom the Theorem 2.1 that  
f o r 0 < 0 < ~ ,  

(2.21) !im P ( T ,  < O) = 1 - e -{ae)  ̀. 
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This  yields the result  o f  Bar low and  P r o s c h a n  ((1975), p. 230) for  k = 1 and  

also the genera l  result  o f  C h r y s a p h i n o u  and  Papas t av r id i s  (1988). We 

would  like to po in t  out  tha t  the scale of  the l i fet ime of  sys tem Tn in ou r  

case differs f r o m  the scale used by  C h r y s a p h i n o u  and  Papas t av r id i s  by a 

f ac to r  of  n 1/k. The  scale of  Tn is the same  as the fai lure  t ime 0 of  the 

c o m p o n e n t  in ou r  case,  bu t  thei r  scale of  Tn differs f r o m  the fa i lure  t ime  of  
the c o m p o n e n t  by a f ac to r  of  n Ilk. 

REFERENCES 

Aki, S. (1985). Discrete distributions of order k on a binary sequence, Ann. Inst. Statist. 
Math., 37, 205-224. 

Barlow, R. E. and Proschan, F. (1975). Statistical Theory o f  Reliability and Life Testing, 
Holt, Reinhard and Winston, New York. 

Bollinger, R. C. (1982). Direct computation for consecutive-k-out-of-n:F system, IEEE 
Trans. Reliability, R-31,444-446. 

Chao, M. T. and Lin, G. D. (1984). Economical design of large consecutive-k-out-of-n:F 
system, IEEE Trans. Reliability, R-33, 411 413. 

Chiang, D. T. and Niu, S. C. (1981). Reliability of consecutive-k-out-of-n:F system, IEEE 
Trans. Reliability, R-33, 411-413. 

Chrysaphinou, O. and Papastavridis, S. (1988). Asymptotic distribution of a consecutive-k- 
out-of-n:F system, Tech. Report, University of Athens, Greece. 

Fu, J. C. (1985). Reliability of a large consecutive-k-out-of-n:F system, IEEE Trans. 
Reliability, R-34, 127-130. 

Fu, J. C. (1986). Reliability of consecutive-k-out-of-n:F system with (k - l)-step Markov 
dependence, IEEE Trans. Relmbility, R-35, 602-606. 

Fu, J. C. and Hu, B. (1987). On reliability of a large consecutive-k-out-of-n:F system with 
(k - 1)-step Markov dependence, IEEE Trans. Reliability, R-36, 75-77. 

Hwang, F. K. (1986). Simplified reliabilities for consecutive-k-out-of-n:F system, S I A M  J. 
Algebraic Discrete Methods, 7, 258 264. 

Lopez, A. (1961). Problems in stable population theory, Tech. Report, Office of Populations 
Research, Princeton University, Princeton. 

Papastavridis, S. (1987). A limit theorem for the reliability of a consecutive-k-out-of-n:F 
system, Adv. in Appl. Probab., 19, 746-748. 

Papastavridis, S. and Lambiris, M. (1987). Reliability of a consecutive-k-out-of-n:F system 
for Markov-dependent components, IEEE Trans. Reliability, R-36, 78-80. 

Seneta, E. (1981). Non-Negative Matrices and Markov Chains, 2nd ed., Springer, New 
York-Berlin. 

Tong, Y. L. (1985). A rearrangement inequality for the longest run with an application to 
network reliability, J. Appl. Probab., 22, 386-393. 


