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Abstract 
The method described here for recovering the shape of a surface from a shaded image can deal with complex, 
wrinkled surfaces. Integrability can be enforced easily because both surface height and gradient are represented. 
(A gradient field is integrable if it is the gradient of some surface height function.) The robustness of the method 
stems in part from linearization of the reflectance map about the current estimate of the surface orientation at 
each picture cell. (The reflectance map gives the dependence of scene radiance on surface orientation.) The new 
scheme can find an exact solution of a given shape-from-shading problem even though a regularizing term is in- 
cluded. The reason is that the penalty term is needed only to stabilize the iterative scheme when it is far from 
the correct solution; it can be turned off as the solution is approached. This is a reflection of the fact that shape- 
from-shading problems are not ill posed when boundary conditions are available, or when the image contains singular 
points. 

This article includes a review of previous work on shape from shading and photoclinometry. Novel features 
of the new scheme are introduced one at a time to make it easier to see what each contributes. Included is a discus- 
sion of implementation details that are important if exact algebraic solutions of synthetic shape-from-shading prob- 
lems are to be obtained. The hope is that better performance on synthetic data will lead to better performance 
on real data. 

1 Background 

The first method developed for solving a shape-from- 
shading problem was restricted to surfaces with special 
reflecting properties (Rindfleisch 1966). For the sur- 
faces that Rindfleisch considered, profiles of the solu- 
tion can be obtained by integrating along predetermined 
straight lines in the image. The general problem was 
formulated and solved later (Horn 1970, 1975), using 
the method of characteristic strip expansion (Garabe- 
dian 1964; John 1978) applied to the nonlinear first- 
order partial differential image irradiance equation. 
When the light sources and the viewer are far away from 
the scene being viewed, use of the reflectance map 
makes the analysis of shape-from-shading algorithms 
much easier (Horn 1977; Horn and Sjoberg 1979). 
Several iterative schemes, mostly based on minimiza- 
tion of some functional containing an integral of the 
brightness error, arose later (Woodham 1977; Strat 1979; 
Ikeuchi and Horn 1981; Kirk 1984, 1987; Brooks and 
Horn 1985; Horn and Brooks 1986; Frankot and 
Chellappa 1988). 

The new method presented here was developed in 
part as a response to recent attention to the question 
of integrability I (Horn and Brooks 1986; Frankot and 
Chellappa 1988) and exploits the idea of a coupled 
system of equations for depth and slope (Harris 1986, 
1987; Horn 1988). It borrows from well-known varia- 
tional approaches to the problem (Ikeuchi and Horn 
1981; Brooks and Horn 1985) and an existing least- 
squares method for estimating surface shape given a 
needle diagram (see Ikeuchi 1984; Horn 1986, ch. 11; 
and Horn and Brooks 1986). For one choice of 
parameters, the new method becomes similar to one 
of the first iterative methods ever developed for shape 
from shading on a regular grid (Strat 1979), while it 
degenerates into another well-known method (Ikeuchi 
and Horn 1981) for a different choice of parameters. 
If the brightness error term is dropped, then it becomes 
a surface interpolation method (Harris 1986, 1987). The 
computational effort grows rapidly with image size, so 
the new method can benefit from proper multigrid im- 
plementation (Brandt 1977, 1980, 1984; Brandt and 
Dinar 1979; Hackbush 1985; Hackbush and Trottenberg 
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1982), as can existing iterative shape-from-shading 
schemes (Terzopolous 1983, 1984; Kirk 1984, 1987). 
Alternatively, one can apply so-called direct methods 
for solving Poisson's equations (Simchony, Chellappa 
and Shao 1989). 

Experiments indicate that linear expansion of the 
reflectance map about the current estimate of the sur- 
face gradient leads to more rapid convergence. More 
importantly, this modification often allows the scheme 
to converge when simpler schemes diverge, or get stuck 
in local minima of the functional. Most existing iterative 
shape-from-shading methods handle only relatively 
simple surfaces and so could benefit from a retrofit of 
this idea. 

The new scheme was tested on a number of synthetic 
images of increasing complexity, including some 
generated from digital terrain models of steep, wrinkled 
surfaces, such as a glacial cirque with numerous gullies. 
Shown in figure l(a) is a shaded view of a digital ter- 
rain model, with lighting from the Northwest. This is 
the input provided to the algorithm. The underlying 
231x178 digital terrain model was constructed from a 
detailed contour map, shown in figure 2, of Hunting- 
ton ravine on the eastern slopes of Mount Washington 
in the White Mountains of New Hampshire. 2 Shown 
in figure l(b) is a shaded view of the same digital ter- 
rain model with lighting from the northeast. This is 
n o t  available to the algorithm, but is shown here to make 

Fig. 1. Reconstruction of surface from shaded image. See text. 
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Fig. 2. Contour map from which the digital terrain model used to 
synthesize figures l(a) and (b) was interpolated. The surface was 
modeled as a thin plate constrained to pass through the contours at 
the specified elevations. The interpolating surface was found by solv- 
ing the biharmonic equation, as described at the end of section 5.4. 

apparent features of the surface that may not stand out 
as well in the other shaded view. Figure l(c) shows a 
shaded view of the surface reconstructed by the 
algorithm, with lighting from the northwest--it matches 
Figure l(a) exactly. More importantly, the shaded view 
of the reconstructed surface with lighting from the 
northeast, shown in figure l(d), matches figure l(b) 
exactly also) 

With proper boundary conditions, the new scheme 
recovers surface orientation exactly when presented 
with noise-free synthetic scenes 4. Previous iterative 
schemes do not find the exact solution, and in thct 
wander away from the correct solution when it is used 
as the initial guess. To obtain exact algebraic solutions, 
several details of the implementation have to be care- 
fully thought through, as discussed in section 6. Sim- 
ple surfaces are easier to process--with good results 
even when several of the implementation choices are 

not made in an optimal way. Similarly, these details may 
perhaps be of lesser importance for real images, where 
other error sources could dominate. 

In the next few sections we review image formation 
and other elementary ideas underlying the usual for- 
mulation of the shape-from-shading problem. 
Photoclinometry is also briefly reviewed for the benefit 
of researchers in machine vision who may not be 
familiar with this field. We then discuss both the 
original and the variational approach to the shape-from- 
shading problem. Readers familiar with the basic con- 
cepts may wish to skip over this material and go directly 
to section 5, where the new scheme is derived. For addi- 
tional details see chapters 10 and 11 in Robot Vision 
(Horn 1986) and the collection of papers, Shape from 
Shading (Horn and Brooks 1989). 

2 Review of  Problem Formulation 

2.1 Image Projection and Image lrradiance 

For many problems in machine vision it is convenient 
to use a camera-centered coordinate system with the 
origin at the center of projection and the Z-axis aligned 
with the optical axis (the perpendicular from the center 
of projection to the image plane) 5. We can align the X- 
and Y-axes with the image plane x- and y-axes. Let the 
principal distance (that is, the perpendicular distance 
from the center of projection to the image plane) be 
J; and let the image plane be reflected through the center 
of projection so as to avoid sign reversal of the coor- 
dinates. Then the perspective projection equations are 

X Y 
x = f ~  and y = f ~  (1) 

The shape-from-shading problem is simplified if we 
assume that the depth range is small compared with 
the distance of the scene from the viewer (which is often 
the case when we have a narrow field of view, that is, 
when we use a telephoto lens). Then we have 

f X and y = f x Z Y (2) 

for some constant Zo, so that the projection is approx- 
imately orthographic. In this case it is convenient to 
rescale the image coordinates so that we can write x 
= X and y = Y. For work on shape from shading it 
is also convenient to use z, height above some reference 
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plane perpendicular to the optical axis, rather than the 
distance measured along the optical axis from the center 
of projection. 

If we ignore vignetting and other imaging system 
defects, then image irradiance E at the point (x, y) is 
related to scene radiance L at the corresponding point 
in the scene by (Horn 1986). 

E = L ~ cos 4 t~, (3) 

where d is the diameter of the lens aperture, f is the 
principal distance, and the off-axis angle ot is given by 

1 y2 tan a = ~ v~x 2 + (4) 

Accordingly, image irradiance 6 is a multiple of the scene 
radiance, with the factor of proportionality depending 
inversely on the square of the f-number7 If we have a 
narrow field of view, the dependence on the off-axis 
angle a can be neglected. Alternatively, we can nor- 
malize the image by dividing the observed image irra- 
diance by cos 4 ot (or whatever the actual vignetting func- 
tion happens to be). 

We conclude from the above that what we measure 
in the image is directly proportional to scene radiance, 
which in turn depends on (a) the strength and distribu- 
tion of illumination sources, (b) the surface micro- 
structure, and (c) surface orientation. 

In order to be able to solve the shape-from-shading 
problem from a single image we must assume that the 
surface is uniform in its reflecting properties. If we also 
assume that the light sources are far away, then the irra- 
diance of different parts of the scene will be approx- 
imately the same and the incident direction may be 
taken as constant. Finally, if we assume that the viewer 
is far away, then the direction to the viewer will be 
roughly the same for all points in the scene. Given the 
above, we find that the scene radiance does not depend 
on the position in space of a surface patch, only on its 
orientation. 

2.2 Specifying Surface Orientation 

Methods for recovering shape from shading depend on 
assumptions about the continuity of surface height and 
its partial derivatives. First of all, since shading depends 
only on surface orientation, we must assume that the 
surface is continuous and that its first partial derivatives 
exist. Most formulations implicitly also require that the 

first partial derivatives be continuous, and some even 
require that second partial derivatives exist. The exis- 
tence and continuity of derivatives lends a certain 
"smoothness" to the surface and allows us to construct 
local tangent planes. We can then talk about the local 
surface orientation in terms of the orientation of these 
tangent planes. 

There are several commonly used ways of specify- 
ing the orientation of a planar surface patch, including: 

• Unit surface normal fi (Horn and Brooks 1986) 
• Point on the Gaussian sphere (Horn 1984) 
• Surface gradient (p, q) (Horn 1977) 
• Stereographic coordinates (f, g) (Ikeuchi and Horn 

1981) 
• Dip and strike (as defined in geology) s 
• Luminance longitude and latitude (as defined in 

astrogeology) 9 
• Incident and emittance angles (i and e) ~° 

For our purposes here, the components of the surface 
gradient 

Oz Oz 
P = ~x and q - Oy (5) 

will be most directly useful for specifying surface 
orientation. 

We can convert between different representations 
easily. For example, suppose that we are to determine 
the unit surface normal given the gradient components. 
We know that if we move a small distance fix in x, then 
the change in height is 6z = p fix (since p is the slope 
of the surface in the x direction). Thus (1, 0, p)r  is a 
tangent to the surface. If we move a small distance 5y 
in y, then the change in height is ~z = q ~y (since q 
is the slope of the surface in the y direction). Thus (0, 
1, q)r is also a tangent to the surface. The normal is 
perpendicular to all tangents, thus parallel to the cross- 
product of these particular tangents, that is parallel to 
( -p ,  - q ,  1) r. Hence a unit normal can be written in 
the form 

fi = 1 ( - p ,  - q ,  1) r (6) 
~/1 + p2 + q2 

Note that this assumes that the z-component of the sur- 
face normal is positive. This is not a problem since we 
can only see surface elements whose normal vectors 
point within 7r/2 of the direction toward the viewer-- 
other surface elements are turned away from the viewer. 
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We can use the same notation to specify the direc- 
tion to a collimated light source or a small portion of 
an extended source. We simply give the orientation of 
a surface element that lies perpendicular to the inci- 
dent light rays. So we can write n 

= 1 ( - P s ,  - q ~ ,  1) T (7) 
~/1 + ps 2 + q2 

for some Ps and q~. 

2.3 Reflectance Map 

We can show the dependence of scene radiance on sur- 
face orientation in the form of a reflectance map R(p, 
q). The reflectance map can be depicted graphically 
in gradient space as a series of nested contours of con- 
stant brightness (Horn 1977, 1986). 

The reflectance map may be determined experimen- 
tally by mounting a sample of the surface on a 
goniometer stage and measuring its brightness under 
the given illuminating conditions for various orienta- 
tions. Alternatively, one may use the image of a calibra- 
tion object (such as a sphere) for which surface orien- 
tation is easily calculated at every point. Finally, a 
reflectance map may be derived from a phenomeno- 
logical model, such as that of a Lambertian surface. 
In this case one can integrate the product of the bidirec- 
tional reflectance distribution function (BRDF) and the 
given distribution of source brightness as a function 
of incident angle (Horn and Sjoberg 1979). 

An ideal Lambertian surface illuminated by a single 
point source provides a convenient example of a reflec- 
tance map t3. Here the scene radiance is given by R(p, 
q) = (Eohr) cos i, where i is the incident angle (the 
angle between the surface normal and the direction 
toward the source), while Eo is the irradiance from the 
source on a surface oriented perpendicular to the inci- 
dent rays. (The above formula only applies when i _< 
7r/2; the scene radiance is, of course, zero for i > 7r/2.) 
Now cos i  = f i ' f f ,  so 

R(p, q) = E__~o 1 + PsP + qsq (8) 
7r x/1 + p 2  + q2x/1 +p2+q2s  

as long as the numerator is positive, otherwise R(p, q) 
= 0 .  

2.4 Image Irmdiance Equation 

We are now ready to write the image irradiance 
equation 

E(x, y) = /3R(p(x, y), q(x, y)) (9) 

where E(x, y) is the irradiance at the point (x, y) in 
the image, while R(p, q) is the radiance at the cor- 
responding point in the scene, at which p = p(x, y) 
and q = q(x, y). The proportionality factor/3 depends 
on the f-number of the imaging system (and may in- 
clude a scaling factor that depends on the units in which 
the instrument measures brightness). It is customary 
to rescale image irradiance so that this proportionality 
factor may be dropped. If the reflectance map has a 
unique global extremum, for example, then the image 
can be normalized in this fashion, provided that a point 
can be located that has the corresponding surface often- 
tation. 14 

Scene radiance also depends on the irradiance of 
the scene and a reflectance factor (loosely called albedo 
here). These factors of proportionality can be combined 
into one that can be taken care of by normalization of 
image brightness. Then only the geometric dependence 
of image brightness on surface orientation remains in 
R(p, q), and we can write the image irradiance equa- 
tion in the simple form 

E(x, y) = R(p(x, y), q(x, y)) (1o) 

o r  

E(x, y) = R(zx(X, y), Zy(X, y)) (11) 

where p = Zx and q = Zy are the first partial 
derivatives of z with respect to x and y. This is a first- 
order partial differential equation; one that is typically 
nonlinear, because the reflectance map in most cases 
depends nonlinearly on the gradient. 

2.5 Reflectance Map Linear in Gradient 

Viewed from a sufficiently great distance, the material 
in the maria of the moon has the interesting property 
that its brightness depends only on luminance longitude, 
being independent of luminance latitude (Hapke 1963, 
1965). When luminance longitude and latitude are 
related to the incident and emittance angles, it is found 
that longitude is a function of (cos//cos e). From the 
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above we see that cos i = fi • 2, while cos e = fi • f, 
where ~ = (0, 0, 1) r is a unit vector in the direction 
toward the viewer. Consequently, 

cos i fi" ~ 1 
. . . .  (1 + PsP + qsq) (12) 
c o s e  f i ' v  ~/1 +pZs+q2 s 

Thus (cos//cos e) depends linearly on the gradient com- 
ponents p and q, and we can write 

R(p, q) = f ( cp  + sq) (13) 

for some functionfand some coefficients c and s. Both 
Lommel-Seeliger's and Hapke's functions fit this mold 
(Minnaert 1961; Hapke 1963, 1965). [For a few other 
papers on the reflecting properties of surfaces, see 
(Hapke 1981, 1984; Hapke and Wells 1981) and the 
bibliography in (Horn and Brooks 1989).] We can, 
without loss of generality, arrange for c z + s 2 = 1) 5 

I f  the funct ionf i s  continuous and monotonic) 6 we 
can find an inverse 

cp + sq = f - l (E (x ,  y)) (14) 

The slope in the image direction (c, s) is 

m -  cp + sq _ ~ 1  _ 
~/C 2 + S 2 X/C2 + S 2 f  

l(E(x, Y)) (15) 

We can integrate ~7 out this slope along the line 

x(~) = Xo + c~ and Y(~) = Yo + s~ (16) 

to obtain 

z(~) = Zo + ~ 1  f ~  f -~  [E(xOl),yOl))]d~ (17) 

An extension of the above approach allows one to take 
into account perspective projection as well as finite 
distance to the light source (Rindfleisch 1966). Two 
changes need to be made; one is that the reflectance 
map now is no longer independent of image position 
(since the directions to the viewer and the source vary 
significantly); and the other is that the integral is for 
the logarithm of the radial distance from the center of 
projection, as opposed to distance measured parallel 
to the optical axis. 

The above was the first shape-from-shading or 
photoclinometric problem ever solved in other than a 
heuristic fashion. The original formulation was con- 
siderably more complex than described above, as the 
result of the use of  full perspective projection, the lack 
of the notion of anything like the reflectance map, and 
the use of an object-centered coordinate system (Rind- 
fleisch 1966). 

Note that we obtain profiles of the surface by inte- 
grating along predetermined straight lines in the im- 
age. Each profile has its own unknown constant of in- 
tegration, so there is a great deal of ambiguity in the 
recovery of surface shape. In fact, if z(x, y) is a solu- 
tion, so is 

z(x, y) = z(x, y) + g(sx - cy) (18) 

for an arbitrary function g! This is true because 

zx = Zx + sg'(sx - cy) 

~v = Zy - cg'(sx - cy), (19) 

SO 

c/3 + S?l = cp + sq (20) 

where/3 = ~ and ~ = Zy. It follows that R(fi, q) = 
R(p, q). This ambiguity can be removed if an initial 
curve is given from which the profiles can be started. 
Such an initial curve is typically not available in prac- 
tice. Ambiguity is not restricted to the special case of 
a reflectance map that is linear in the gradient: Without 
additional constraint shape-from-shading problems 
typically do not have a unique solution. 

2.6 Low Gradient Terrain and Oblique Illumination 

I f  we are looking at a surface where the gradient (p, 
q) is small, we can approximate the reflectance map 
using series expansion: 

R(p, q) = R(O, O) + pRp(O, O) + qRq(O, 0) (21) 

This approach does not work when the reflectance map 
is rotationally symmetric, since the first-order terms 
then drop ou0 s. If  the illumination is oblique, however, 
we can apply the method in the previous section to get 
a first estimate of the surface. Letting c = Rp(O, 0), 
S = gq(O, O) and 

f - 1  (E(x, y)) = E(x, y) - R(0, 0) (22) 

we find that 
1 

z(~) = Zo + 
4 R~(0, 0) + R,~(0, 0) 

f~(E(x(~),  - R(0, 0)) dr/ (23) y(~)) 

(For a related frequency domain approach see (Pentland 
1988.) 
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One might imagine that the above would provide a 
good way to get initial conditions for an iterative shape- 
from-shading method. Unfortunately, this is not very 
helpful, because of the remaining ambiguity in the 
direction at right angles to that of profile integration. 
Iterative methods already rapidly get adequate varia- 
tions in height along "down-sun profiles," but then 
struggle for a long time to try to get these profiles tied 
together in the direction at right angles. 

The above also suggests that errors in gradients of 
a computed solution are likely to be small in the direc- 
tion toward or "away from" the source and large in the 
direction at right angles. It should also be clear that 
it is relatively easy to find solutions for slowly un- 
dulating surfaces (where p and q remain small) with 
oblique illumination (as in Kirk 1987). It is harder to 
deal with cases where the surface gradient varies 
widely, and with cases where the source is near the 
viewer (see also the discussion in section 7.3). 

3 Brief Review of Photoclinometry 

Photoclinometry is the recovery of surface slopes from 
images (Wilhelms 1964; Rindfleisch 1966; Lambiotte 
and Taylor 1967; Watson 1968; Lucchitta and Gambell 
1970; Tyler, Simpson, and Moore 1971; Rowan, 
McCauley, and Holm 1971; Bonner and Schmall 1973; 
Wildey 1975; Squyres 1981; Howard, Blasius, and Cutt 
1982). Many papers and abstracts relating to this sub- 
ject appear in places that may seem inaccessible to 
someone working in machine vision (Davis, Soder- 
blom, and Eliason 1982; Passey and Shoemaker 1982; 
Davis and McEwen 1984; Davis and Soderblom 1983, 
1984; Malin and Danielson 1984; Wilson et al. 1983; 
McEwen 1985; Wilson, Hampton, and Balen 1985). 
(For additional references see Horn and Brooks 1989.) 
Superficially, photoclinometry may appear to be just 
another name for shape from shading. Two different 
groups of researchers independently tackled the prob- 
lem of recovering surface shape from spatial brightness 
variations in single images. Astrogeologists and workers 
in machine vision became aware of each other's interests 
only a few years ago. The underlying goals of the two 
groups are related, but there are some differences in 
approach that may be worthy of a brief discussion. 

3.1 Photoclinometry versus Shape from Shading 

• First, photoclinometry has focused mostly on pro- 
file methods (photoclinometrists now rcfcr to existing 

shape-from-shading methods as area-based photo- 
clinometry, as opposed to profile-based). This came 
about in large part because several of the surfaces 
of interest to the astrogeologist have reflecting pro- 
perties that allow numerical integration along 
predetermined lines in the image, as discussed above 
in section 2.5 (Rindfleisch 1966). Later, a similar 
profile integration approach was applied to other 
kinds of surfaces by using strong assumptions about 
local surface geometry instead. The assumption that 
the surface is locally cylindrical leads to such a pro- 
file integration scheme (Wildey 1986), for example. 
More commonly, however, it has been assumed that 
the cross-track slope is zero, in a suitable object- 
centered coordinate system (Squyres 1981). This may 
be reasonable when one is considering a cross-section 
of a linearly extended feature, like a ridge, a graben, 
or a central section of a rotationally symmetric feature 
like a crater. 
The introduction of constraints that are easiest to ex- 
press in an object-centered coordinate system leads 
away from use of a camera-centered coordinate 
system and to complex coordinate transformations 
that tend to obscure the underlying problem. A 
classic paper on photoclinometry (Rindfleisch 1966) 
is difficult to read for this reason, and as a result had 
little impact on the field. On the other hand, it must 
be acknowledged that this paper dealt properly with 
perspective projection, which is important when the 
field of view is large. In all but the earliest work on 
shape from shading (Horn 1970, 1975), the assump- 
tion is made that the projection is approximately or- 
thographic. This simplifies the equations and allows 
introduction of the reflectance map. 
The inherent ambiguity of the problem does not stand 
out as obviously when one works with profiles, as 
it does when one tries to fully reconstruct surfaces. 
This is perhaps why workers on shape from shading 
have been more concerned with ambiguity, and why 
they have emphasized the importance of singular 
points and occluding boundaries (Bruss 1982; Deift 
and Sylvester 1981; Brooks 1983; Blake, Zisserman, 
and Knowles 1985; Saxberg 1988). 
The recovery of shape is more complex than the com- 
putation of a set of profiles. Consequently much of 
the work in shape from shading has been restricted 
to simple shapes. At the same time, there has been 
extensive testing of shape from shading algorithms 
on synthetic data. This is something that is impor- 
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tant for work on shape from shading, but makes little 
sense for the study of simple profile methods, except 
to test for errors in the procedures used for inverting 
the photometric function. 

• Shape-from-shading methods easily deal with arbi- 
trary collections of collimated light sources and 
extended sources, since these can be accommodated 
in the reflectance map by integrating the BRDF and 
the source distribution. In astrogeology there is only 
one source of light (if we ignore mutual illumina- 
tion or interflection between surfaces), so methods 
for dealing with multiple sources or extended sources 
were not developed. 

• Calibration objects are used both in photoclinometry 
and shape from shading. In photoclinometry the data 
derived is used to fit parameters to phenomenological 
models such as those of Minnaert, Lommel and 
Seeliger, Hapke, and Lambert. In work on shape from 
shading the numerical data is at times used directly 
without further curve fitting. The parameterized models 
have the advantage that they permit extrapolation of 
observations to situations not encountered on the cali- 
bration object. This is not an issue if the calibration 
object contains surface elements with all possible 
orientations, as it will if it is smooth and convex. 

• Normalization of brightness measurements is treated 
slightly differently too. If the imaging device is linear, 
one is looking for a single overall scale factor. In 
photoclinometry this factor is often estimated by look- 
ing for a region that is more or less flat and has 
known orientation in the object-centered coordinate 
system. In shape from shading the brightness of 
singular points is often used to normalize brightness 
measurements instead. The choice depends in part 
on what is known about the scene, what the shapes 
of the objects are (that is, are singular points or 
occluding boundaries imaged) and how the surface 
reflects light (that is, is there a unique global 
extremum in brightness). 

• Finally, simple profiling methods usually only require 
continuity of the surface and existence of the first 
derivative (unless there is an ambiguity in the inver- 
sion of the photometric function whose resolution re- 
quires that neighboring derivatives are similar). Most 
shape-from-shading methods require continuous first 
derivatives and the existence of second derivatives. 
(In some cases use is made of the equality of the sec- 
ond cross-derivatives taken in different order, that 
is, Zxy = Zyx). This means that these methods do not 

work well on scenes composed of objects that are 
only piecewise smooth, unless appropriately 
modified--but see (Malik and Maydan 1989). t9 

3.2 Profiling Methods 

We have seen in section 2.5 how special photometric 
properties sometimes allow one to calculate a profile 
by integration along predetermined straight lines in the 
image. The other approach commonly used in 
photoclinometry to permit simple integration is to make 
strong assumptions about the surface shape, most com- 
monly that, in a suitable object-centered coordinate 
system, the slope of the surface is zero in a direction 
at right angles to the direction in which the profile is 
being computed. Local surface orientation has two 
degrees of freedom. The measured brightness provides 
one constraint. A second constraint is needed to ob- 
tain a solution for surface orientation. A known tangent 
of the surface can provide the needed information. Two 
common cases are treated in astrogeology: 
(a) features that appear to be linearly extended (such 

as some ridges and grabens), in a direction pre- 
sumed to be "horizontal" (that is, in the average 
local tangent plane); 

(b) features that appear to be rotationally symmetric 
(like craters), with symmetry axis presumed to be 
"vertical" (that is, perpendicular to the average 
local tangent plane). 

In each case, the profile is taken "across" the feature, 
that is, in a direction perpendicular to the intersection 
of the surface with the average local tangent plane. 
Equivalently, it is assumed that the cross-track slope 
is zero in the object-centered coordinate system. 

One problem with this approach is that we obtain 
a profile in a plane containing the viewer and the light 
source, not a "vertical" profile, one that is perpen- 
dicular to the average local tangent plane. One way to 
deal with this is to iteratively adjust for the image 
displacement resulting from fluctuations in height on 
the surface, using first a scan that really is just a straight 
line in the image, then using the estimated profile to 
introduce appropriate lateral displacements into the scan 
line, and so on (Davis and Soderblom 1984). 

It turns out that the standard photoclinometric pro- 
file approach can be easily generalized to arbitrary 
tangent directions, ones that need not be perpendicular 
to the profile, and also to nonzero slopes. All that we 
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need to assume is that the surface can locally be ap- 
proximated by a (general) cylinder, that is, a surface 
generated by sweeping a line, the generator, along a 
curve in space. Suppose the direction of the generator 
is given by the vector t = (a, b, c) r. Note that at each 
point on the surface, a line parallel to the generator is 
tangent to the surface. Then, since the normal is perpen- 
dicular to any tangent, we have t" n = 0 at every point 
on the surface, or just 

ap + bq --- c (24) 

This, together with the equation E --- R(p, q), con- 
stitutes a pair of equations in the two unknowns p and 
q. There may, however, be more than one solution (or 
perhaps none) since one of the equations is nonlinear. 
Other means must be found to remove possible am- 
biguity arising from this circumstance. Under appro- 
priate oblique lighting conditions, there will usually on- 
ly be one solution for most observed brightness values. 

From the above we conclude that we can recover 
surface orientation locally if we assume that the sur- 
face is cylindrical, with known direction of the 
generator. We can integrate out the resulting gradient 
in any direction we please, not necessarily across the 
feature. Also, the generator need not lie in the average 
local tangent plane; we can deal with other situations, 
as long as we know the direction of the generator in 
the camera-centered coordinate system. Further 
generalizations are possible, since any means of pro- 
viding one more constraint on p and q will do. 

In machine vision too, some workers have used 
strong local assumptions about the surface to allow 
direct recovery of surface orientation. For example, if 
the surface is assumed to be locally spherical, the first 
two partial derivatives of brightness allow one to recover 
the surface orientation (Pentland 1984; Lee and 
Rosenfeld 1985). Alternatively, one may assume that 
the surface is locally cylindrical (Wildey 1984, 1986) 
to resolve the ambiguity present locally in the general 
case. 

4 Review of Shape-from-Shading Schemes 

4.1 Characteristic Strips 

The original solution of the general shape from shading 
problem (Horn 1970, 1975) uses the method of 
characteristic strip expansion for first order partial dif- 
ferential equations (Garabedian 1964; John 1978). The 

basic idea is quite easy to explain using the reflectance 
map (Horn 1977, 1986). Suppose that we are at a point 
(x, y, z) T on the surface and we wish to extend the 
solution a small distance in some direction by taking 
a step 6x in x and by in y. We need to compute the 
change in height 6z. This we can do if we know the 
components of the gradient, p = zx and q = Zy, 
because 

6z = p t x  + q t y  (25) 

So, as we explore the surface, we need to keep track 
of p and q in addition to x, y, and z. This means that 
we also need to be able to compute the changes in p 
and q when we take the step. This can be done using 

6p = r t x  + s by and 6q = s t x  + t t y  (26) 

where r = Zxx, s = Zxy = Zyx, and t = Zyy are the sec- 
ond partial derivatives of the height. It seems that we 
need to now keep track of the second derivatives also, 
and in order to do that we need the third partial 
derivatives, and so on. 

To avoid this infinite recurrence, we take another 
tack. Note that we have not yet used the image irra- 
diance equation E(x, y) = R(p, q). To find the 
brightness gradient we differentiate this equation with 
respect to x and y and so obtain 

Ex = rRp + sRq and Ev = sRp + tRq (27) 

At this point we exploit the fact that we are free to 
choose the direction of the step (bx, 6y). Suppose that 
we pick 

bX = Rp b~ and by = Rq b~ ( 2 8 )  

then, from equations (26) and (27) we have 

bp = E x b~ and 6q = Ey 6~ (29) 

This is the whole "trick" We can summarize the above 
in the set of ordinary differential equations 

.~ = Rp,  5~ = Rq, ~=pRp+qRq 
P = Ex, q = Ev (30) 

where the dot denotes differentiation with respect to 
~, a parameter that varies along a particular solution 
curve (the equations can be rescaled to make this 
parameter be arc length). Note that we actually have 
more than a mere characteristic curve, since we also 
know the orientation of the surface at all points in this 
curve. This is why a particular solution is called a 
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characteristic strip. The projection of a characteristic 
curve into the image plane is called a base characteristic 
(Garabedian 1964; John 1978). 

The base characteristics are predetermined straight 
lines in the image only when the ratio 3c : ~ = Rp : Rq 
is fixed, that is when the reflectance map is linear in 
p and q. In general, one cannot integrate along arbitrary 
curves in the image. Also, an initial curve is needed 
from which to sprout the characteristics strips. 

It turns out that direct numerical implementations 
of the above equations do not yield particularly good 
results, since the paths of the characteristics are affected 
by noise in the image brightness measurements and 
errors tend to accumulate along their length. In partic- 
ularly bad cases, the base characteristics may even 
cross, which does not make any sense in terms of sur- 
face shape. It is possible, however, to grow character- 
istic strips in parallel and use a so-called sharpening 
process to keep neighboring characteristics consistent 
by enforcing the conditions zt = P xt + q Yt and E(x, 
y) = R(p, q) along curves connecting the tips of 
characteristics advancing in parallel (Horn 1970, 1975). 
This greatly improves the accuracy of the solution, since 
the computation of surface orientation is tied more 
closely to image brightness itself rather than to the 
brightness gradient. This also makes it possible to inter- 
polate new characteristic strips when existing ones 
spread too far apart, and to remove some when they 
approach each other too closely. 

4.2 RotationaUy Symmetric Reflectance Maps 

One can get some idea of how the characteristics ex- 
plore a surface by considering the special case of a rota- 
tionally symmetric reflectance map, as might apply 
when the light source is at the viewer (or when deal- 
ing with scanning electron microscope (SEM) images). 
Suppose that 

R(p, q) = f(p2 + q2) (31) 

then 

Rp = 2pf'(p 2 + q2) and Rq = 2qf'(p 2 + q2) (32) 

and so the directions in which the base characteristics 
grow are given by 

k = kp and ~ = kq (33) 

for some k. That is, in this case the characteristics are 
curves of steepest ascent or descent on the surface. The 
extrema of surface height are sources and sinks of char- 
acteristic curves. In this case, these are the points where 
the surface has maxima in brightness. 

This example illustrates the importance of so-called 
singular points. At most image points, as we have seen, 
the gradient is not fully constrained by image bright- 
ness. Now suppose that R(p, q) has a unique global 
maximum, 2° that is 

R(p, q) < R(po, qo) 

A singular point (x0, 

E(xo, Yo) = 

for all (p, q) ~ (Po, qo) (34) 

Yo) in the image is a point where 

R(po, q0) (35) 

At such a point we may conclude that (p, q) = (Po, 
qo). Singular points in general are sources and sinks 
of characteristic curves. Singular points provide strong 
constraint on possible solutions (Horn 1970, 1975; Bruss 
1982; Brooks 1983; Saxberg 1988). 

The occluding boundary is the set of points where 
the local tangent plane contains the direction toward 
the viewer. It has been suggested that occluding boun- 
daries provide strong constraint on possible solutions 
(Ikeuchi and Horn 1981); Bruss 1982). As a conse- 
quence there has been interest in representations for 
surface orientation that behave well near the occluding 
boundary, unlike the gradient which becomes infinite 
(Ikeuchi and Horn 1981; Horn and Brooks 1986). 
Recently there has been some question as to how much 
constraint occluding boundaries really provide, given 
that singular points appear to already strongly constrain 
the solution (Brooks 1983; Saxberg 1988). 

4.3 Existence and Uniqueness 

Questions of existence and uniqueness of solutions of 
the shape-from-shading problem have still not been 
resolved entirely satisfactorily. With an initial curve, 
however, the method of characteristic strips does yield 
a unique solution, assuming only continuity of the first 
derivatives of surface height (see Haar's theorem on 
pg. 145 in Courant and Hilbert 1962 or Bruss 1982). 
The question of uniqueness is more difficult to a'~swer 
when an initial curve is not available. One problem is 
that it is hard to say anything completely general that 
will apply to all possible reflectance maps. More can 
be said when specific reflectance maps are chosen, such 
as ones that are linear in the gradient (Rindfleisch 1966) 
or those that are rotationally symmetric (Bruss 1982). 
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It has recently been shown that there exist impossi- 
ble shaded images, that is, images that do not corres- 
pond to any surface illuminated in the specified way 
(Horn, Szeliski, and Yuille 1989). It may turn out that 
almost all images with multiple singular points are im- 
possible in this sense (Saxberg 1988). This is an impor- 
tant issue, because it may help explain how our visual 
system sometimes determines that the surface being 
viewed cannot possibly be uniform in its reflecting pro- 
perties. One can easily come up with smoothly shaded 
images, for example, that do not yield an impression 
of shape, instead appearing as fiat surfaces with 
spatially varying reflectance or surface "albedo." (See 
also figure 10 in section 7.2.) 

4.4 Variational Formulations 

As discussed above in section 2.4, in the case of a sur- 
face with constant albedo, when both the observer and 
the light sources are far away, surface radiance depends 
only on surface orientation and not on position in space 
and the image projection can be considered to be or- 
thographic. 2~ In this case the image irradiance equa- 
tion becomes just 

E(x, y) = R(p(x, y), q(x, y)) (36) 

where E(x, y) is the image irradiance at the point (x, 
y), while R(p, q), the reflectance map, is the (normal- 
ized) scene radiance of a surface patch with orienta- 
tion specified by the partial derivatives 

Oz Oz 
p - and q = - -  (37) 

Ox Oy 

of surface height z(x, y) above some reference plane 
perpendicular to the optical axis. 

The task is to find z(x, y) given the image E(x, y) 
and the reflectance map R(p, q). Additional constraints, 
such as boundary conditions and singular points, are 
needed to ensure that there is a unique solution (Bruss 
1982; Deift and Sylvester 1981; Blake, Zisserman, and 
Knowles 1985; Saxberg 1988). If we ignore integrabil- 
ity? 2 some versions of the problem of shape from 
shading may be considered to be ill posed, 23 that is, 
there is not a unique solution {p(x, y), q(x, y)} that 
minimizes the brightness error 

In fact, the error can be made equal to zero for an in- 
finite number of choices for {p(x, y), q(x, y)}. We can 
pick out one of these solutions by finding the one that 
minimizes some functional such as a measure of 
"departure from smoothness," 

f f (p2 x + p~. + q~ + q2) dx dy (39) 

while satisfying the constraint E(x, y) = R(p, q). Intro- 
ducing a Lagrange multiplier X(x, y) to enforce the con- 
straint, we find that we have to minimize 

f f  ((p2 x + + q2 + + h(x, (E - R)) dx P~ q~) Y) dy (40) 

The Euler equations are 

Ap + X(x, y)Rp = 0 

Aq + h(x, y)Rq = 0 (41) 

After elimination of the Lagrange multiplier X(x, y), 
we are left with the pair of equations 

RqAp = Rp Aq and E(x, y) = R(p, q) (42) 

Unfortunately, no convergent iterative scheme has been 
found for this constrained variational problem (Horn 
and Brooks 1986); (compare Wildey 1975). 

We can approach this problem in a quite different 
way using the "departure from smoothness" measure 
in a penalty term (Ikeuchi and Horn 1981), looking in- 
stead for a minimum of 24 

f [(E(x, y) - R(p, q))2 

+ X(px2 + P~ + qx z + q0] dx dy (43) 

It should be pointed out that a solution of this 
"regularized" problem is not a solution of the original 
problem, although it may be close to some solution of 
the original problem (Brooks 1985). In any case, this 
variational problem leads to the following coupled pair 
of second-order partial differential equations: 

XAp = -(E(x,  y) - R(p, q)) Rp(p, q) 

XAq = -(E(x,  y) - R(p, q)) Rq(p, q) (44) 

Using a discrete approximation of the Laplacian 
operator 2s 

f f  K (E(x, y) - R(p, q))2 dx dy (38) {Af}kl = ~S (~l -- J~l) (45) 
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where fis a local average off, and e is the spacing be- 
tween picture cells, 26 we arrive at the set of equations 

KX 'Pu = rX'flu + (E(x, y) - R(p, q)) Rp(p, q) 

Kk' qu = Kk ' qkl + (E(x, y) - R(p, q) ) Rq(p, q) (46) 

where k'  = k/e 2 This immediately suggests the 
iterative scheme 

1 

(E(x, y) - R(p (n), qtn)))Rp(p("), q(n)) 

1 
qi7 +1) = 5i7 ) + KX---7 

(E(x, y) - R(p ('), q(')))Rq(p in), q(')) (47) 

where the superscript denotes the iteration number. 27 
From the above it may appear that R(p, q), Rp(p, 

q), and Re(p, q) should be evaluated using the "old" 
values ofp and q. It turns out that the numerical stability 
of the scheme is somewhat enhanced if they are 
evaluated instead at the local average values, 15 and 
(Ikeuchi and Horn 1981). 

One might hope that the correct solution of the 
original shape-from-shading problem provides a fixed 
point for the iterative scheme. This is not too likely, 
however, since we are solving a modified problem that 
includes a penalty term. Consequently, an interesting 
question one might ask about an algorithm such as this, 
is whether it will "walk away" from the correct solu- 
tion of the original image irradiance equation E(x, y) 
= R(p, q) when this solution is provided as an initial 
condition (Brooks 1985). The algorithm described here 
does just that, since it can trade off a small amount of 
brightness error against an increase in surface 
smoothness. At the solution, we have E(x, y) = R(P, 
q), so that the right-hand sides of the two coupled par- 
tial differential equations (equations (44)) are zero. This 
implies that if the solution of the modified problem is 
to be equal the solution of the original problem then 
the Laplacians ofp  and q must be equal to zero. This 
is the case for very few surfaces, just those for which 

Az(x, y) = k (48) 

for some constant k. While this includes all harmonic 
functions, it excludes most real surfaces, for which ad- 
justments away from the correct shape are needed to 
assure equality of the left and right sides of equations 
(44) describing the solution of the modified problem. 

In general, this approach produces solutions that are 
too smooth, with the amount of distortion depending 
on the choice of the parameter k. For related reasons, 
this algorithm does well only on simple smooth shapes, 
and does not perform well on complex, wrinkled 
surfaces. 

4.5 Recovering Height from Gradient 

In any case, we are also still faced with the problem 
of dealing with the lack of integrability, that is the lack 
of a surface z(x, y) such that p(x, y) = Zx(X, y) and 
q(x, y) = Zy(X, y).28 At the very least, we should try 
to find the surface z(x, y) that has partial derivatives 
Zx and Zy that come closest to matching the computed 
p(x, y) and q(x, y), by minimizing 

f f ((Zx - p)2 + _ q)2) dx dy (49) (Zy 

This leads to the Poisson equation 

Az = Px q- qy (50) 

Using the discrete approximation of the Laplacian given 
above (equation (45)) yields 

K K - 
E2 Zkl -'~ Zkl (Px -t- qy), ( 5 1 )  

a set of equations that suggests the following iterative 
scheme: 

z~7 +1) = ~7 ) - e2 ({px}~7) + {qy}~7 )) (52) 
x 

where the terms in braces are numerical estimates of 
the indicated derivatives at the picture cell (k, /). 

The so-called natural boundary conditions here are 
just 

CZx + SZy = cp + sq (53) 

where (c, s) is a normal to the boundary. 29 
Another way of dealing with the integrability issue 

is to try and directly minimize 

f f t (E(x, y) - R(p, q))2 + _ qx)2] dr  dy (54) MPy 

This leads to the coupled partial differential equations 
(Horn and Brooks 1986) 

k(pyy - qxy) = - (E(x, y) - R(p, q))Rp 

k(qx~ - Pyx) = - (E(x, y) - R(p, q))Rq (55) 
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This set of equations can also be discretized by intro- 
ducing appropriate finite difference approximations for 
the second partial derivatives pyy, qxx and the cross 
derivatives o fp  and q. An iterative scheme is suggested 
once one isolates the center terms of the discrete ap- 
proximations ofpyy and qxx- This is very similar to the 
method developed by Strat, although he arrived at his 
scheme directly in the discrete domain (SWat 1979). His 
iterative scheme avoids the excessive smoothing of the 
one described earlier, but appears to be less stable, in 
the sense that it diverges under a wider set of 
circumstances. 

5 New Coupled Height and Gradient Scheme 

The new shape-from-shading scheme will be presented 
through a series of increasingly more robust variational 
methods. We start with the simplest, which grows 
naturally out of what was discussed in the previous 
section. 

5.1 Fusing Height and Gradient Recovery 

One way of fusing the recovery of gradient from shading 
with the recovery of height from gradient, is to repre- 
sent both gradient (p, q) and height z in one variational 
scheme and to minimize the functional 

f f t(e(x, y) - R(p, q))2 

+ g((Zx - p)2 + (Zy  - q)2)] dx dy (56) 

Note that, as far as p(x, y) and q(x, y) are concerned, 
this is an ordinary calculus problem (since no partial 
derivatives of p and q appear in the integrand). Dif- 
ferentiating the integrand with respect to p(x, y) and 
q(x, y) and setting the result equal to zero leads to 

1 
p = Zx + - ( E  - R ) R p  

# 

1 
q = Zy + - (E - R)Rq (57) 

# 

Now z(x, y) does not occur directly in (E(x, y) - R(p, 
q)) so we actually just need to minimize 

f f  ((zx - p)2 + - q)2) dx dy (58) (Zy 

and we know from the previous section that the Euler 
equation for this variational problem is just 

Az = P x  + qy (59) 

We now have one equation for each of p, q, and z. 
These three equations are clearly satisfied when p 

= zx, q = zy and E = R. That is, if a solution of the 
original shape-from-shading problem exists, then it 
satisfies this system of equations exactly (which is more 
than can be said for some other systems of equations 
obtained using a variational approach, as pointed out 
in section 4.4). It is instructive to substitute the expres- 
sions obtained for p and q in Px + qy: 

px + qy = Zxx + Zyy 

+ 1 [(E - R)(Rpppx + Rpq(py + qx) 
g 

+ Rqqq r) - (R~px + RvRq(p r + qx) 

+ R~qy) + (ExRp + EyRq)] (60) 

Since AZ = (p~ + qy), we note that the three equations 
above are satisfied when 

(e~p x + epgq(py + qx) + e~qy) 

- ( E x R  p + E r i  e) 

= (E - R)(epppx + epq(py -[- qx) -[- gqqqy) (61) 

This is exactly the equation obtained at the end of sec- 
tion 4.2 in (Horn and Brooks 1986), where an attempt 
was made to directly impose integrability using the con- 
straint py = qx. It was stated there that no convergent 
iterative scheme had been found for directly solving 
this complicated nonlinear partial differential equation. 
The method presented in this section provides an in- 
direct way of solving this equation. 

Note that the natural boundary conditions for z are 
once again 

czx + sz r = cp + sq (62) 

where (c, s) is a normal to the boundary. 
The coupled system of equations above for p, q 

(equation (57)) and z (equation (59)) immediately sug- 
gests an iterative scheme 

= {Zx} 7 + 1 ( e  - R)R, 

q~7 +l) = {Zy}~7)+ L (E - e)Rq 
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Z~ +1) = ~7) _ £2 ({p~}~7+l) + {qy}~7+l)) (63) 
K 

where we have used the discrete approximation of the 
Laplaeian for z introduced in equation (45). This new 
iterative scheme works well when the initial values 
given for p, q, and z are close to the solution. It will 
converge to the exact solution if it exists; that is, if there 
exists a discrete set of values {Zkl} such that {Pkt} and 
{q~} are the discrete estimate of the first partial 
derivatives of z with respect to x and y respectively and 

Ekt = R(Pkl, qkl)" 
In this case the functional we wish to minimize can 

actually be reduced to zero. It should be apparent that 
for this to happen, the discrete estimator used for the 
Laplacian must match the sum of the convolution of 
the discrete estimator of the x derivative with itself and 
the convolution of the discrete estimator of the y 
derivative with itself. (This and related matters are taken 
up again in section 6.2). 

The algorithm can easily be tested using synthetic 
height data zkl. One merely estimates the partial 
derivatives using suitable discrete difference formulas, 
and then uses the resulting values Pkt and qgl to com- 
pute the synthetic image Ekl = R(Pkl, qkt). This con- 
struction guarantees that there will be an exact solu- 
tion. If a real image is used, there is no guarantee that 
there is an exact solution, and the algorithm can at best 
find a good discrete approximation of the solution of 
the underlying continuous problem. In this case the 
functional will in fact not be reduced exactly to zero. 
In some cases the residue may be quite large. This may 
be the result of aliasing introduced when sampling the 
image, as discussed in section 6.5, or because in fact 
the image given could not have arisen from shading on 
a homogeneous surface with the reflectance properties 
and lighting as encoded in the reflectance map--that 
is, it is an impossible shaded  image (Horn, Szeliski, 
and Yuille 1989). 

The iterative algorithm described in this section, 
while simple, is not very stable, and has a tendency 
to get stuck in local minima, unless one is close to the 
exact solution, particularly when the surface is com- 
plex and the reflectance map is not close to linear in 
the gradient. It has been found that the performance 
of this algorithm can be improved greatly by lineariz- 
ing the reflectance map. It can also be stabilized by add- 
ing a penalty term for departure from smoothness. This 
allows one to come close to the correct solution, at 

which point the penalty term is removed in order to 
prevent it from distorting the solution. We first treat 
the linearization of the reflectance map. 

5.2 l_a'nearization o f  Reflectance Map 

We can develop a better scheme than the one described 
in the previous section, while preserving the apparent 
linearity of the equations, by approximating the reflec- 
tance map R(p, q) locally by a linear function ofp  and 
q. There are several options for choice of reference gra- 
dient for the series expansion, so let us keep it general 
tbr now at (P0, q0) .3° We have 

R(p, q) = R(Po, qo) + (t9 -Po)Rp(Po ,  qo) 

+ (q - qo)Rq(Po, qo) + . . .  (64) 

Again, gathering all of the terms in Pkt and qkl on the 
left-hand sides of the equations, we now obtain 

(~ + R~,) pk~ + R ~ q q e  = .zx 

+ (E -- g + poRp + qoRq)Rp 

RqRppkt + (# + R~) qkt = #Zy 

+ (E - R + poRp + qoRq)Rq 
(65) 

while the equation for z remains unchanged. (Note that 
now R, Rp, and Rq denote quantities evaluated at the 
reference gradient (Po, qo).) 

It is convenient to rewrite these equations in terms 
of quantities relative to the reference gradient (Po, qo). 
Let 

~Pkl = P~l -- Po and 6qkl = qkt - qo 

6Zx = zx - Po and 6Zy = Zy - qo (66) 

This leads to 

(iz + g~) ~Pkl + epRq 6qkl = tz 6Zx + (E - R)Rp 

Rpgq ~Pkl + (# + e~) ~qkl = I ~ (]Zy + (E - e )Rq  (67) 

(The equations clearly simplify somewhat if we choose 
(Zx, Zy) for the reference gradient (Po, q0).) We can 
view the above as a pair of linear equations for 6pkt 
and ~qkt. The determinant of the 2×2 coefficient 
matrix, 

D = ~(~, + R~ + R,~) (68) 
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is always positive, so there is no problem with 
singularities. The solution is given by 

O 6pk I = (Iz + R~)A - RpRqB 

D 6qkl = (~ + R~,)B - RqRpA (69) 

where 

A = ~, ~Zx + ( E  - R)Rp  

B = I~ ~Zy -F (E - R)Rq (7O) 

This leads to a convenient iterative scheme where the 
new values are given by 

p~,]+l) = p(on) + 6p~,]) and q,~7+l)= q(o n) + 6q~)(71) 

in terms of the old reference gradient and the increments 
computed above. The new version of the iterative 
scheme does not require a great deal more computa- 
tion than the simpler scheme introduced in section 4.5, 
since the partial derivatives Rp and Rq a r e  already 
needed there. 

5.3 Incorporating Departure  f rom Smoothness  Term 

We now introduce a penalty term for departure from 
smoothness, effectively combining the iterative method 
of (Ikeuchi and Horn 1981) for recovering p and q from 
E(x,  y) and R(p, q), with the scheme for recovering z 
given p and q discussed in section 4.5. (For the mo- 
ment we do not linearize the reflectance map; this will 
be addressed in section 5.6.) We look directly for a 
minimum of 

f f [(E(x, y) - R(p,  q))2 

+ X(px 2 + p:~ + qx 2 + q~) 

+ l~((Zx - p ) Z  + (Zy - q)2)] dx dy (72) 

The Euler equations of this calculus of variations prob- 
lem lead to the following coupled system of second- 
order partial differential equations: 

XAp = - ( E  - R)Rp - #(Zx - P )  

XAq = - ( E  - R)Rq - I~(Zy - q) 

z k z = p x + q y  (73) 

A discrete approximation of these equations can be 
obtained using the discrete approximation of the Lapla- 
cian operator introduced in equation (45): 

-~(Pkt -- Pkl) = - - (E  - R)Rp - IX(Zx - Pkt) 

x X -  
-~(qkt - qkt) = - ( E  - R)Rq - [~(Zy - qkl) 

K 
--~ (Zkt - Zkt) = Px + qy (74) 

where E, R, R e, and Rq are the corresponding values 
at the picture cell (k, /), while Zx, Zy, Px, and qy are 
discrete estimates of the partial derivative of z, p, and 
q there. We can collect the terms in Pkt, qkt, and zkt on 
one side to obtain 

(xX'  + t~)Pkl = (xX ~kt + IZZx) + (E - R)Rp 

(rX '  + t~)qkl = (rX'Clkt + ]~Zy) -F (E -- R)Rq 

K K -  
~ Z k l  = -~Zkl  - -  (Px  + qy)  (75) 

where k'  = ~e2. These equations immediately suggest 
an iterative scheme, where the right-hand sides are 
computed using the current values of the Zkl, Pkl, and 
qu, with the results then used to supply new values for 
the unknowns appearing on the left-hand sides. 

From the above it may appear that R(p, q), Rp(p, 
q), and Rq(p, q) should be evaluated using the "old" 
values ofp and q. One might, on the other hand, argue 
that the local average values/~ and ~, or perhaps even 
the gradient estimates Zx and Zy, are more appropriate. 
Experimentation suggests that the scheme is most stable 
when the local averages/~ and ~ are used. 

The above scheme contains a penalty term for depar- 
ture from smoothness, so it may appear that it cannot 
converge to the exact solution. Indeed, it appears as 
if the iterative scheme will "walk away" from the cor- 
rect solution when it is presented with it as initial con- 
ditions, as discussed in section 4.4. It turns out, 
however, that the penalty term is needed only to pre- 
vent instability when far from the solution. When we 
come close to the solution, X' can be reduced to zero, 
and so the penalty term drops out. It is tempting to leave 
the penalty term out right from the start, since this 
simplifies the equations a great deal, as shown in sec- 
tion 5.1. The contribution from the penalty term does, 
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however, help damp out instabilities when far from the 
solution and so should be included. This is particularly 
important with real data, where one cannot expect to 
find an exact solution. 

Note, by the way, that the coupled second-order par- 
tial differential equations above (equation (76)) are 
eminently suited for solution by coupled resistive grids 
(Horn 1988). 

5.4 Relationship to Existing Techniques 

• Recently, new methods have been developed that 
combine the iterative scheme discussed in section 4.4 
for recovering surface orientation from shading with 
a projection onto the subspace of integrable gradients 
(Frankot and Chellappa 1988; Shao, Simchony, and 
Chellappa 1988). The approach there is to alternately 
take one step of the iterative scheme (Ikeuchi and 
Horn 1988) and to find the "nearest" integrable 
gradient. This gradient is then provided as initial 
conditions for the next step of the iterative scheme, 
ensuring that the gradient field never departs far from 
integrability. The integrable gradient closest to a 
given gradient field can be found using orthonormal 
series expansion and the fact that differentiation in 
the spatial domain corresponds to multiplication by 
frequency in the transform domain (Frankot and 
CheUappa 1988). 

• Similar results can be obtained by using instead the 
method described in section 4.5 for recovering the 
height z(x, y) that best matches a given gradient. The 
resulting surface can then be (numerically) differen- 
tiated to obtain initial values for p(x, y) and q(x, y) 
for the next step of the iterative scheme (Shao, Sim- 
chony, and Chellappa 1988). 

• Next, note that we obtain the scheme of (Ikeuchi and 
Horn 1981) (who ignored the integrability problem) 
discussed in section 4.4, if we drop the departure 
from integrability term in the integrand--that is, 
when # = 0. If we instead remove the departure from 
smoothness term in the integrand--that is, when k 
= 0--we obtain something reminiscent of the 
iterative scheme of (Strat 1979), although Strat dealt 
with the integrability issue in a different way. 

• Finally, if we drop the brightness error term in the 
integrand, we obtain the scheme of (Harris 1986, 
1987) for interpolating from depth and slope. He 
minimizes 

f f  [X~Px ~ + p~ + qx ~ + q~) 

+ ((zx - p ) 2  + (Zy - q)2)] dx dy (76) 

and arrives at the Euler equations 

X ~Xp = -(Zx - p) 

kAq = - ( Z y -  q) 

~z =Px + qy (77) 

Now consider that 

A(AZ) = Zl(p x + %) (78) 

Since application of the Laplacian operator and dif- 
ferentiation commute we have 

A(Az) = (Ap) x + (Aq)y  (79) 

or 

XA(~z) = --(Zxx - - P x )  -- (Zyy -- qy) (80) 

and so 

XA(z~Z) = --z~tZ + (fix + qy) = 0 (81) 

So his method solves the biharmonic equation for z, 
by solving a coupled set of second-order partial dif- 
ferential equations. It does it in an elegant, stable way 
that permits introduction of constraints on both height 
z and gradient (p, q). This is a good method for in- 
terpolating from sparse depth and surface orienta- 
tion data. 

The biharmonic equation has been employed to inter- 
polate digital terrain models (DTMs) from contour 
maps. Such DTMs were used, for example, in (Horn 
1981; Sjoberg and Horn 1983). The obvious implemen- 
tations of finite difference approximations of the bihar- 
monic operator, however, tend to be unstable because 
some of the weights are negative, and because the cor- 
responding coefficient matrix lacks diagonal 
dominance. Also, the treatment of boundary conditions 
is complicated by the fact that the support of the bihar- 
monic operator is so large. The scheme described above 
circumvents both of these difficulties--it was used to 
interpolate the digital terrain model used for the ex- 
ample illustrated by figure 171 

5.5 Boundary Conditions and Nonlinearity of 
Reflectance Map 

So far we have assumed that suitable boundary condi- 
tions are available, that is, the gradient is known on 



the boundary of the image region to which the com- 
putation is to be applied. If this is not the case, the solu- 
tion is likely not to be unique. We may nevertheless 
try to find some solution by imposing so-called natural 
boundary conditions (Courant and Hilbert 1953). The 
natural boundary conditions for the variational problem 
described here can be shown to be 

cpx + sp~. = 0 and cqx + Sqv = 0 (82) 

and 

cz.~ + szy = cp + sq (83) 

where (c, s) is a normal to the boundary. That is, the 
normal derivative of the gradient is zero and the nor- 
mal derivative of the height has to match the slope in 
the normal direction computed from the gradient. 

In the above we have approximated the original par- 
tial differential equations by a set of discrete equations, 
three for every picture cell (one each for p, q, and z). 
If these equations were linear, we could directly apply 
all the existing theory relating to convergence of various 
iterative schemes and how one solves such equations 
efficiently, given that the corresponding coefficient 
matrixes are sparse? 2 Unfortunately, the equations are 
in general not linear, because of the nonlinear 
dependence of the reflectance map R(p, q) on the gra- 
dient. In fact, in deriving the above simple iterative 
scheme, we have treated R(p, q), and its derivatives, 
as constant (independent of p and q) during any par- 
ticular iterative adjustment of p and q. 

5.6 Local  L inear  Approximation o f  Reflectance Map 

In section 5.2 we linearized the reflectance map in order 
to counteract the tendency of the simple iterative scheme 
developed in section 5.1 to get stuck in local minima. 
We now do the same for the more complex scheme 
described in section 5.3. We again use 

R(p,  q) = R(po, qo) + (P - po)Rp(po, qo) 

+ (q - qo)Rq(Po, qo) + . . .  (84) 

Gathering all of the terms in Pkt and qkt on the left- 
hand sides of the equations, we now obtain 

(X" + R~)pk l + RpRqqkl 

= (t~X'fikl + IzZ~) + (E - R + poRp + qoRq)Rp 

RqRppkz + (X" + R~)q~z 

= (K~k'qkl + IZZy) + ( E -  R + p o g p  + qogq)Rq (85) 
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while the equation for z remains unchanged. (Note that 
here R, Rp, and Rq again denote quantities evaluated 
at the reference gradient (Po, qo)). In the above we have 
abbreviated X" = rX' + #. 

It is convenient to rewrite these equations in terms 
of quantities defined relative to the reference gradient: 

6Pkl = Pkz - Po and 8qk t = qkz - qo 

~/5kt =/skt - P o  and 6~lkt = ?lkt - qo 

8zx = zx - Po and 8Zy = Zy - qo(86)  

This yields 

(X" + e~)~Pkl + e p R q ~ q k l  = K)k'~/skl 

+ . ~ z ,  + ( e  - R)Rp 

RpRq~qk I + (~k " + R~)fiqk l = K~'30k l 

+ # 6Zv + ( E -  R)Rq (87) 

(The equations clearly simplify somewhat if we choose 
either 15 and ~ or z~ and Zy for the reference gradient 
Po and qo.) We can view the above as a pair of linear 
equations for 6pkt and 8qk t. The determinant of the 
2×2 coefficient matrix 

O = X"(X" + R} + R}) (88) 

is always positive, so there is no problem with 
singularities. The solution is given by 

D 8pkz = (X" + R~)A - RpRqB 

D 8qk I = (X" + R~)B - RqRpA (89) 

where 

A = ~)~' 6/skt + # 8zx + (E - R)Rp 

B = ~)~'6qkl + #6Zy  + ( E -  R)Rq (90) 

This leads to a convenient iterative scheme where the 
new values are given by 

p~+l) = p~n) + ~p~) 

q(k~+l) = q~n) + 8q~) 

in terms of the old reference gradient and the increments 
computed above. It has been determined empirically 
that this scheme converges under a far wider set of cir- 
cumstances than the one presented in the previous 
section. 

Experimentation with different reference gradients, 
including the old values o fp  and q, the local average 
/5 and ~, as well as zx and zy showed that the accuracy 
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of the solution and the convergence is affected by this 
choice. It became apparent that if we do not want the 
scheme to "walk away" from the correct solution, then 
we should use the old value ofp and q for the reference 

Po and qo. 

6 Some Implementation Details 

61 Derivative Estimators and Staggered Grids 

In one dimension, it is well-known from numerical 
analysis that the best finite difference estimators of even 
derivatives have odd support, while the best estimators 
of odd derivatives have even support. These estimators 
are "best" in the sense that their lowest-order error 
terms have a small coefficient and that they do not at- 
tenuate the higher frequencies as much as the alternative 
ones. A good estimator of the second derivative of z, 
for example, is 

1 
{Zxx}k ~ ~'~ (Zk-1 -- 2Zk ÷ Zk+l) (92)  

while a good estimator of the first derivative of z is just 

{Z~}k ~ 1 (Zk+1 -- Zk) (93) 

Note that the latter, like other estimators with even sup- 
port for odd derivatives, gives an estimate valid at the 
point midway between samples. 

This suggests that one should use staggered grids. 
That is, the arrays containing sampled values o fp  and 
q (and hence image brightness E) should be offset by 
1/2 picture cell in both x and y from those for z (see 
figure 3). This also means that if the image is rectangu- 
lar and contains n x m picture cells, then the array of 
heights should be of size (n + 1) x (m + 1). Appropri- 
ate two-dimensional estimators for the first partial de- 
rivatives of z then are (see also Horn and Schunck 1981). 

1 
{Zx}k,t = ~ (Zk,l÷l -- Zk,l + Zk÷~,l÷~ -- Zk÷~,i) 

1 
{Zy}k,t ~- -~e (Zk+Lt -- Zk.Z + Zk+l,t+l -- Zk, l+l) (94) 

These can be conveniently shown graphically in the 
form of the stencils 

I 

1 - 1  +1 and 1 +1 +1 

2e - 1  +1 2e - 1  - 1  

Z20 Z21 Z22 Z23 

p l0  P l l  P12 

ZlO Z l l  Z12 Z13  

poo POl P02 

ZOO Z01 Z02 Z03 

Fig. 3. It is convenient to have the discrete grid for p, q (and hence 
for the image E itself) offset by 1/2 picture cell in x and 1/2 picture 
cell in y from the grid for z. 

The results obtained apply to the point (k + 1/2, l + 
1/2) in the grid of discrete values of z; or the point (k, 
/) in the (offset) discrete grid of values of p and q. 
Similar schemes can be developed for the first partial 
derivatives o fp  and q needed in the algorithms intro- 
duced here, with the offsets now acting in the opposite 
direction. 

62  Discrete Estimators o f  the Laplacian 

We also need to obtain local averages based on discrete 
approximations of the Laplacian operators. We could 
simply use one of the stencils 

1 1 

4 1 -- 1 1 or 2 
62 4 4 ~2 

1 1 
4 4 

- 1  

The second, diagonal, form has a higher coefficient on 
the lowest-order error term than the first, edge-adjacent 
form, and so is usually not used by itself. The diagonal 
form is also typically not favored in iterative schemes 
for solving Poisson's equations, since it does not sup- 
press certain high-frequency components. We can write 
a stencil for a linear combination of the edge-adjacent 
and the diagonal versions in the form 
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(a + 1)e 2 

a 1 -a  a 
4 4 4 

1 -a  --1 1 -a  
4 4 

J 

A judiciously chosen weighted average, namely one for 
which a --- 1, is normally preferred, since this corn- 

5 
bination cancels the lowest-order error term. 

If  we wish to prevent the iterative scheme from 
"walking away" from the solution, however, we need 
to make our estimate of the Laplacian consistent with 
repeated application of our estimators for the first par- 
tial derivatives. That is, we want our discrete estimate 
of Az to be as close as possible to our discrete estimate 
of 

(Zx)x + (Zy)y (95) 

It is easy to see that the sum of the convolution of the 
discrete estimator for the x-derivative with itself and 
the convolution of the discrete estimator for the y- 
derivative with itself yields the diagonal pattern. So, 
while the diagonal pattern is usually not favored because 
it leads to less stable iterative schemes, it appears to 
be desirable here to avoid inconsistencies between 
discrete estimators of the first and second partial 
derivatives. Experimentation with various linear com- 
binations bears this out. The edge-adjacent stencil is 
very stable and permits over-relaxation (SOR) with a 
= 2 (see next section), but leads to some errors in the 
solution with noisefree input data. The diagonal form 
is less stable and requires a reduced value for ~, but 
allows the scheme to converge to the exact algebraic 
solution to problems that have exact solutions. 

The incipient instability inherent in use of the 
diagonal form is a reflection of the fact that if we think 
of the discrete grid as a checkerboard, then the "red" 
and the "black" squares are decoupled? 3 That is, up- 
dates of red squares are based only on existing values 
on red squares, while updates of black squares are based 
only on existing values on black squares. Equivalently, 
note that there is no change in the incremental update 
equations when we add a discrete function of the form 

~z~ = ( - 1 )  * +t (96) 

to the current values of the height. The reason is that 
the estimators of the first derivatives and the diagonal 

form of the Laplacian estimator are completely insen- 
sitive to components of this specific (high) spatial fre- 
quency. 34 Fortunately, the iterative update cannot inject 
components of this frequency either, so that if the 
average of the values of the "red" cells initially matches 
the average of the values of the "black" cells, then it 
will continue to do so. The above has not turned out 
to be an important issue, since the iteration appears to 
be stable with the diagonal form of the average, that 
is, for a = 1, when the natural boundary conditions 
are implemented with care. 

6 3  Boundary Conditions 

The boundary conditions have also to be dealt with 
properly to assure consistency between first- and 
second-order derivative estimators. In a simple rec- 
tangular image region, the natural boundary conditions 
for z could be implemented by simply taking the average 
of the two nearest values of the appropriate gradient 
component and multiplying by e to obtain an offset from 
the nearest value of z in the interior of the grid. That 
is, for 1 _< k < n a n d  1 -< 1 < m, wecou lduse  

F_ 
Zk,o = Zk,1 -- ~ (Pk-l.O + Pk,0) 

Zk,m : Zk ,m-I  -J- "~ ( P k - l , m - 1  -I- Pk,m-l) 

z0,1 = Zl,t - ~ (q0.t-1 + q0.t) 

z,,t = zn- l,t + ~ (qn- l,t- 1 + q~- 1,/) (97) 

on the left, right, bottom, and top border of a rec- 
tangular image region (the corners are extrapolated 
diagonally from the nearest point in the interior using 
both components of the gradient). But this introduces 
a connection between the "red" and the "black" cells, 
and so must be in conflict with the underlying discrete 
estimators of the derivatives that are being used. 

One can do better using offsets from cells in the in- 
terior that lie in diagonal direction from the ones on 
the boundary. That is, for 2 _ k < n - 1 and 2 < 
l < m - 1, we use 

1 
Zk,o = ~ (Z,-I,I -- c(Pk-l,O -- qk-l,O) 

-J- Zk+l,l -- ~'(Pk,o + qk,o)) 
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1 
Zk,m : "~ (Zk-l,m-1 "1- ~(Pk-l ,m-1 "[- qk- l ,m-1)  

"[- Zk+l,m-1 "~ 6(Pk,m-I  -- qk,m-1)) 

1 
ZO, I : ~ (Zl,/-1 at- C(P0,1-1 -- q0,t-l) 

+ zl,l+~ - E(P0,I + qo, l)) 

1 
Zn,l = -~ (Zn-l , l -I  "~- e(Pn- l , l -1  -t- qn-l , l -1)  

"q- Zn-l,l+l -- 6(Pn-l , I  -- qn-l ,I))  (98) 

on the left, right, bottom, and top border of a rec- 
tangular image region. The corners are again ex- 
trapolated diagonally from the nearest point in the in- 
terior using both components of the gradient. Note that, 
in this scheme, one point on each side of the corner 
has to be similarly interpolated, because only one of 
the two values needed by the above diagonal template 
lies in the interior of the region. 

I f  the surface gradient is not given on the image 
boundary, then natural boundary conditions must be 
used for p and q as well. The natural boundary condi- 
tion is that the normal derivatives o fp  and q are zero. 
The simplest implementation is perhaps, for 1 _< k < 
n - l a n d l  _< l <  m - 1, 

Pk,o = Pk, 1 

Pk ,m- I  = Pk,m-2 

Po,z = Pkt 

P n -  l,l = P n -  2,1 (99) 

and similarly for q (points in the comer are copied from 
the nearest neighbor diagonally in the interior of the 
region). It may be better to again use a different im- 
plementation, where the values for points on the boun- 
dary are computed from values at interior cells that have 
the same "color." That is, for 2 < k < n - 2 and 
2 _ 1 < m - 2 ,  

1 
Pk,o = ~ (Pk- l ,1  + Pk+l,1) 

1 
Pk,m-1 :- ~ ( P k - l , m - 2  -}- Pk+l,m-2) 

1 
Po.l = ~ (P l , / - I  "~ Pl,t+l) 

1 
Pn-l,l = ~ (Pn-2,I-I + Pn-2,t+l) (100) 

and similarly for q. As before, the corner points, and 
one point on each side of the corner have to be copied 
diagonally, without averaging, since only one of the two 
values needed lies in the interior of the region. 

64 Iterative Schemes and Parallelism 

There are numerous iterative schemes for solution of 
large sparse sets of equations, among them: 

• Gauss-Seidel--with replacement--sequential update; 
• Jacobi--without replacement--parallel update; 
• Successive Over-Relaxation (SOR); 
• Kazmarz relaxation; 
• Line relaxation. 

Successive over-relaxation (SOR) makes an adjustment 
from the old value that is c~ times the correction com- 
puted from the basic equations. That is, for example, 

Z~7+ 1) = Z~7) -I- Ot (Z~7) -- Z~7 )) (101) 

where ~']) is the "new" value calculated by the ordin- 
ary scheme without over-relaxation. When c~ > 1, this 
amounts to moving further in the direction of the ad- 
justment than suggested by the basic equations. This 
can speed up convergence, but also may lead to in- 
stability? 5 The Gauss-Seidel method typically can be 
sped up in this fashion by choosing a value for t~ close 
to two--the scheme becomes unstable for c~ > 2. Un- 
fortunately the Gauss-Seidel method does not lend itself 
to parallel implementation. 

The Jacobi method is suited for parallel implemen- 
tation, but successive over-relaxation cannot be applied 
directly--the scheme diverges for c¢ > 1. This greatly 
reduces the speed of convergence. Some intuition may 
be gained into why successive over-relaxation cannot 
be used in this case, when it is noted that the neighbors 
of a particular cell, the ones on which the future value 
of the cell is based, are changed in the same iterative 
step as the cell itself. This does not happen if we use 
the Gauss-Seidel method, which accounts for its stabil- 
ity. This also suggests a modification of the Jacobi 
method, where the parallel update of the cells is divided 
into sequential updates of subsets of the cells. Imagine 
coloring the cells in such a way that the neighbors of 
a given cell used in computing its new value have a dif- 
ferent color from the cell itself. Now it is "safe" to up- 
date all the cells of one color in parallel (for an 
analogous solution to a problem in binary image pro- 
cessing, see chapter 4 of Horn 1986). 
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Successive over-relaxation can be used with this 
modified Jacobi method. If local averages are computed 
using only the four edge-adjacent neighbors of a cell, 
then only two colors are needed (where the colors are 
assigned according to whether i + j is even or odd-- 
see figure 4). Each step of the iteration is carried out 
in two sub-steps, one for each of the cells of one color. 
The above shows that the improved convergence rates 
of successive over-relaxation can be made accessible 
to parallel implementations. 

• , ' . ' " . ' ~ . .  , .  '6": ;~"i ~, . . . . . .  , . , ,  
Z40 ,,Z.4.1~" Z42 "Z,43":1 Z44 .' Z45- Z46 

• .Z36:: Z31 ;Z32'. Z33 gZ34"., Z35 .Z~6": 
m ~ "~ ° • ° l  ' ' ' ' ' ¢ ' ' % ~  " " ° " " . * "  

. ~ . . . . ,  • i 
~ , ' t  * ~ , .  ° I  

Z20 : 21"." Z22 :Z23,." Z24 '.'.Z25~ Z26 
"i'2~." ",':'." ":"-':.'. 

'.ZlO. Z l l  ".Z][2,, Z13 '~14. '  Z15 ~.Z16:" 
• - , ~ ' .  

• : ' " :  " " " "  ~ "  ",r " '  " " "  I i  " " " d *  

ZOO "gO1 : gO2 ~ 03., Z04 " Z05~' Z06 

Fig. 4. The modified Jacobi method operates on subsets of cells with 
different "colors" at different times. In the simplest case, there are 
only two colors, one for the cells where the sum of the indexes is 
even, the other for the cells where the sum of the indexes is odd. 

When the illumination of the surface is oblique (light 
source away from the viewer), R(p, q) will tend to be 
locally approximately linear. This means that the gra- 
dient of R(p, q) will point in more or less the same 
direction over some region of the image. The effect of 
this is that influences on the adjustments of the 
estimated gradient tend to be much smaller along a 
direction at right angles to the direction "away from 
the light source," than they are along other directions. 
This can be seen most easily when the coordinate 
system is aligned with the direction toward a single light 
source in such a way that the reflectance map has 
bilateral symmetry with respect to the axis q = 0. Then 
Rq will be small, at least for gradients near the p-axis. 
In this case the coefficients on the diagonal of the 2 ×2 
matrix may be very different in magnitude. This is 
analogous to a system of equations being much stiffer 
in one direction than another, and suggests that the con- 
vergence rate may be lower in this case. A possible 
response to this difficulty is the use of line relaxation. 

6 5 Aliasing, and How to Avoid It 

Discrete samples can represent a continuous waveform 
uniquely only if the continuous waveform does not con- 
tain frequency components above the Nyquist rate (O~o 
= 7r/e, where e is the spacing between samples). If  a 
waveform is sampled that contains higher frequency 
components, these make contributions to the sampled 
result that are not distinguishable from low-frequency 
components. If, for example, we have a component at 
frequency % < o~ < 2wo, it will make the same con- 
tributions as a component at frequency 2~0o - ~0. This 
is what is meant by aliasing. Ideally, the continuous 
function to be sampled should first be lowpass filtered. 
Filtering after sampling can only suppress desirable 
signal components along with aliased information. 

Numerical estimation of derivatives is weakly ill- 
posed. The continuous derivative operator multiplies 
the amplitude of each spatial frequency component by 
the frequency, thus suppressing low frequencies and ac- 
centuating higher frequencies. Any corruption of the 
higher frequencies is noticeable, particularly if most 
of the signal itself is concentrated at lower frequencies. 
This means that we have to be careful how we estimate 
derivatives and how we sample the image. 

Suppose, for example, that we have an image of a 
certain size, but that we would like to run our shape- 
from-shading algorithm on a smaller version, perhaps 
to obtain a result in a reasonable amount of time, or 
to cheaply provide useful initial values for iteration on 
the finer grid. It would be quite wrong to simply sub- 
sample the original image. Simple block-averaging is 
better, although frequency analysis shows that the 
response of a block-averaging filter first drops to zero 
only at twice the Nyquist frequency. It is better to use 
a cubic spline approximation of the ideal 

sin(Trx/E) 

(rx /O 
(102) 

response for filtering before subsampling (Rifman and 
McKinnon 1974; Bernstein 1976; Keys 1981; Abdou and 
Young 1982). There is nothing specific in the above 
relating to shape-from-shading; these are considerations 
that apply generally to machine vision. 

Similar notions apply to processing of the surface 
itself. If  we have a digital terrain model of a certain 
resolution and want to generate a lower-resolution 
shaded image from it, we need to first filter and sam- 
ple the digital terrain model. Otherwise the result will 
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be subject to aliasing, and some features of the shaded 
image will not relate in a recognizable way to features 
of the surface. 

Finally, in creating synthetic data it is not advisable 
to compute the surface gradient on a regular discrete 
set of points and then use the reflectance map to 
calculate the expected brightness values. At the very 
least, one should perform this computation on a grid 
that is much finer than the final image, and then com- 
pute block averages of the result to simulate the effect 
of finite sensing element areas--just as is done in com- 
puter graphics to reduce aliasing effects, an 

(This hints at an interesting problem, by the way, 
since the brightness associated with the average sur- 
face orientation of a patch is typically not quite equal 
to the average brightness of the surface, since the reflec- 
tance map is not linear in the gradient. This means that 
one has to use a reflectance map appropriate to the 
resolution one is working at--the reflectance map 
depends on the optical properties of the microstructure 
of the surface, and what is microstructure depends on 
at what scale one is viewing the surface.) 

66 Measuring the Quality of Reconstruction 

There are many ways of accessing the quality of the 
solution surface generated. Not all are useful: 

1. In the case of a synthetic image obtained from a sur- 
face model, the best test of the output of a shape- 
from-shading algorithm is comparison of the sur- 
face orientations of the computed result with those 
of the underlying surface. One can either compute 
the root-mean-square deviation of the directions of 
the computed surface normals from the true surface 
normals, or just the root-mean-square difference in 
the gradients themselves. 

2. Shading is a function of the surface gradient and 
thus most sensitive to higher spatial frequencies. 
Conversely, in the presence of noise and recon- 
struction errors, we expect that the lower spatial fre- 
quencies will not be recovered as well. This makes 
pointwise comparison of the heights of the computed 
surface with that of the original surface somewhat 
less useful, since errors in the lower spatial frequen- 
cies will affect this result strongly. Also, errors in 
height will be a function of the width of the region 
over which one has attempted to recover height from 
gradient. 

3. Also, comparison of an "image" obtained by mak- 
ing brightness a function of height with a similar 
"image" obtained from the original surface is 
usually not very useful, since such a representation 
is not sensitive to surface orientation errors, only 
gross errors in surface height. Also, people gener- 
ally find such displays quite hard to interpret. 

4. Oblique views of "wire-meshes" or "block- 
diagrams" defined by the discrete known points on 
the surface may be helpful to get a qualitative idea 
of surface shape, but can be misleading and are dif- 
ficult to compare. If the shape-from-shading scheme 
is working anything like it is supposed to, the dif- 
ferences between the solution and the true surface 
are likely to be too small to be apparent using this 
mode of presentation. 

5. Comparing the original image with an image ob- 
tained under the same lighting conditions from the 
solution for the gradient (p, q) is not useful, since 
the brightness error is reduced very quickly with 
most iterative schemes. Also, a "solution" can have 
gradient field {P~a,qkt} that yields exactly the cor- 
rect image when illuminated appropriately, yet it 
may not even be integrable. In fact, the "surface" 
may yield an arbitrary second image when illumin- 
ated from a different direction unless p and q are 
forced to be consistent (that is, unless py = qx) as 
discussed at the end of section 7.3. 

6. Slightly better is comparison of the original image 
with an image obtained under the same lighting con- 
ditions using numerical estimates of (Zx, Zy). But, 
unless the image is corrupted, or the assumptions 
about the reflecting properties of the surface and 
the lighting are incorrect, this synthetic image too 
will soon be very close to the original image. 

7. If the underlying surface is known, shaded views 
of the solution and the original surface, produced 
under lighting conditions different from those used 
to generate the input to the algorithm, are worth 
comparing. This is a useful test that immediately 
shows up shortcomings of the solution method. It 
also is a graphic way of portraying the progress of 
the iteration--one that is easier to interpret than a 
set of numbers representing the state of the 
computation. 

8. Various measures of departure from integrability 
may be computed. Perhaps most useful are com- 
parisons of numerical estimates of (zx, Zy) with (p, 
q). Slightly less useful is the difference (py - qx) 



of the solution, since the height z may still not have 
converged to the best fit to p and q, even when the 
gradient itself is almost integrable. 

6 7 When to Stop Iterating 

As is the case with many iterative processes, it is dif- 
ficult to decide when to stop iterating. If we knew what 
the underlying surface was, we could just wait for the 
gradient of the solution to approach that of the surface. 
But, other than when we test the algorithm on synthetic 
images, we do not know what the surface is, otherwise 
we would probably not be using a shape-from-shading 
method in the first place! Some other test quantities 
include: 
1. The brightness error 

f f  (e(x, y) - R(p, q))2 dr dy (103) 

should be small. Unfortunately this error becomes 
small after just a few iterations, so it does not yield 
a useful stopping criterion. 

2. A slightly different brightness error measure 

f f  (e(x, y) - R(zx, dr dy (104) Zy)) 2 

is a bit more useful, for while it approaches the 
above when an exact solution is obtained, it lags 
behind until the gradient of z equals (p, q). When 
an exact solution is not possible, there will continue 
to be small differences between the gradient of z and 
(p, q), which means that this error measure does 
not tend to zero. 

3. The departure from smoothness 

ff ~x + + q2x + q~) dr dy (105) 

often drops as the solution is approached, but does 
not constitute a particularly good indicator of ap- 
proach to the solution. In particular, when one 
comes close to the solution, one may wish to reduce 
the parameter h, perhaps even to zero, in which case 
further iterations may actually reduce smoothness 
in order to better satisfy the remaining criteria. 

4. One of the measures of lack of integrability 

ff - qx) 2 dr dy (106) 
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is also not too useful, since it can at times become 
small, or stop changing significantly, even when z 
is still inconsistent with p and q. 

5. Another measure of lack of integrability 

f f ( z x  - p)2 + _ q)2) dr dy (107) % 

does appear to be very useful, since it drops slowly 
and often keeps on changing until the iteration has 
converged. 

6. One can also keep track of the rate of change of the 
solution with iterations 

f f  IdP~ 2 {dq] 2 -~ + ~ dr dy (108) 

One should not stop until this has become small. 
In most cases it helps to continue for a while after 
the above measures stop changing rapidly since the 
solution often continues to adjust a bit. 

Some of the implementation details given above may 
appear to be extraneous. However, when all of these 
matters are attended to, then the iterative algorithm will 
not "walk away" from the solution, and it will find the 
solution, to machine precision, given exact data (and 
assuming that boundary conditions for p and q are 
given, and that h '  is reduced to zero as the solution 
is approached). Convergence to the exact solution will 
not occur when something is amiss, such as a mismatch 
between the discrete estimators of the first derivative 
and the discrete estimator of the Laplacian. It is not 
yet clear how significant all of this is when one works 
with real image data, where there is no exact solution, 
and where the error introduced by incorrect implemen- 
tation detail may be swamped by errors from other 
sources. 

7 Some Experimental Results 

The new algorithm has been applied to a number of 
synthetic images of simple shapes (such as an asym- 
metrical Gaussian, a sum of Gaussian blobs, and a sum 
of low-frequency sinusoidal gratings) generated with a 
number of different reflectance maps (including one 
linear in p and q, Lambertian with oblique illumina- 
tion, and a rotationally symmetric one). These synthetic 
images were small (usually 64×64 picture cells) in 
order to keep the computational time manageable. 
Typically the surface normals would be within a degree 
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or two of the correct direction after a few hundred item- 
tions. With appropriate boundary conditions, the com- 
puted shape would eventually be the same (to machine 
precison) as the shape used to generate the synthetic 
image. In each case, the brightness error decreased 
rapidly, while the integrability of the estimated gradient 
decreased much more slowly. 

7.1 Graphical Depiction of Solution Process 

For help in debugging the algorithm, and for purposes 
of determining a good schedule for adjusting the 

parameters # and )~', it is useful to print out the 
diagnostic measurements discussed in sections 6.6 and 
6.7. But it is hard to tell exactly what is going on just 
by looking at a large table of numbers such as that 
shown in figure 5. It is important to also provide some 
graphic depiction of the evolving shape as it is com- 
puted. To make shaded images of the reconstructed sur- 
face useful, however, they must be illuminated from 
a direction different from the direction of illumination 
used for the original input image. 37 Shown in figure 6, 
is such a sequence of shaded images generated during 
the reconstruction of the surface of a polyhedral object, 
starting from a random field of surface orientations. 

(run-schedule 2) 
Lanbda: 1.8888 Hu: 0.1008 Ea$; 
1get: G Grad E: 2.09619 Er~Ght 
I ¢ a r |  4 Gr~K~ Ef eo69~6 ~ra~J~t 
I t e r :  8 9 r i d  E: 9.2~103 9rtGh~ 
kanbda: 0.5988 ~u: 9.19G8 Ep~: 
Z ter :  14 Grad E: 8.21348 3 r t9h t  
1 ta r :  28 Grad E: 8.28982 Br t9ht  
I te r :  26 grld E: 0.20821 Bright 
~ e r :  32 grad E: 8.29792 Br|Gh~ 
Lanbda: 9.2899 ~u: 0.1G99 Epe: 
I teP :  49 Grad E: G.18785 Brtght  
I t e r :  49 grad E: 9.19496 ErtGht 
I t e r :  56 grad E: 9.18334 Gr~Ght 
~t~r :  64 grad E: G.19226 9 r t9h t  
La~bda= 0.1888 ~u: 8.1888 Eps: 
I te r :  98 Grad E: 8.16694 Brf9ht  
I te r :  96 grad E: G.16446 GP19ht 
I ter :  112 grad E: G,16391 Br19ht 
I ta r :  128 grad E: 8.16195 Bright 
Lanbda: 9.9599 Mu: G.1899 Epa: 
I t e r :  169 Grad E: G.14655 BrtGht 
I t e r :  192 grad E: 9°14411 8rtGht 
I t e r :  224 Grad E: 9.14252 Br49ht 
I t e r :  256 Grad E: 0.14139 9rtGh~ 
Lanbda: o,e2oo ~u: 8.9999 Ep,, 
I t e r :  329 grad E: 0,12432 9rtGh~ 
1 ta r :  384 grad E: 0.11074 Er t9ht  

1,0888 Rl~ha-oq; 1.7808 ~lphe-~: 1,7888 Cor-oa 0.2589 Cor-z 1.8988 (64 ~ 64) 
E: 0.52579 I n t - z  E: 0,9909g ( In t -pq  E: 8.09909) Unsnoogh: 3.24685 
E: 9,27914 I n ~ - I  E: 1.38119 (Zn¢-pq E: 9.47459) UniPaxith: 0.66932 dpq:l ,991998 dz:2.173221 
E: 9.97;~3 Znt-~ E: 8,32173 (~n¢-pq E: 9.89847) Unsnooth: 8.19669 dpq:Q.292296 dz:8.522765 
1,8898 Rlpha-~q: 1.7989 Rlpha-z: 1.7888 Gor-pq 9.2598 Gor-z 1,8998 (64 Z 64) 
E: 8,03485 I n t - z  E: 9.0928? ( I n t i p q  E: 0.02512) Unsnoo~h: 8.9624G daq:9.944399 dz:0.878357 
E: G.83317 I n t - z  E: 0.86189 ( In t -pq  E= 8.91987) Unsnoo¢h: 8.85529 dpq:8.gG6952 d~:9.924819 
E: G.93287 I n t - z  E: 8,85496 ( In t -pq  E: 8.81918) Uni~ooah: 9.85598 daq:9.G92919 d~:9.916154 
E: 0.93268 I n t - z  E: 0.9597? ( In t -pq  E: 8.91096) Unsnooth: 9.85519 daq:9,991293 dz:9.012275 
1.0009 Rlpha-pq: 1,7999 Rlpha-z: 1.7999 Cor-pq 8.2589 Cor-z 1.9899 (64 ~ 64) 
E: G.82212 I n t - ~  E: 8.04226 (Zn~-dq E! 0.02146) UnaRooth: G.86969 dGq:G.G92513 dx:9.011g44 
E: 0.92183 I n t - ~  E: 0.03885 (Znt-pq E: 0.02111) Unsnooth: 0.07909 dpq:3.GG9822 d~:9.987575 
E: 0.92174 In~-z  E: 0.03689 ( In t -pq  E: 9.92991) Unsnooth: g.97919 daq:9.889691 dz:8.886881 
E: 0.92169 I n t - ~  E: 0.03562 (~nt-pq E: 9.f12877) Unsnooth: 0.97922 d~q:9.099405 dz:9.GGSGOG 
1.8889 Rlpha-pq: l l  ?~00 ~ lpha l l :  1.7899 Cor-Dq 0.2509 Cor-~ 1.8008 (64 ~ 64) 
E: G.f11523 I n t - z  E: 9.82934 ( I n t - pq  E: 9.fl2169) Unsnooth: 9.99152 dpq:3.888535 dz:9.984817 
E: 9.81516 I n t - z  E: G.G2GG1 ( I n t -pq  E: 8.~2143) Unsnooth: 9.99167 daq:9.Gf19324 dz:8.g82881 
E= 8.81514 I n t - z  E: 8.82?38 ( In t -pq  E: 8.82136) Unsnoo¢h: 8,99178 daq:fl.888252 dz:9.882385 
E: 8.91513 I n t - =  E: 8.82696 ( In t -~q  E: 8.82131) Uns~ooah: 9.88179 daq:8,888284 dz:9.881928 
1.0809 Rlpha-~q: 117999 Rlpha-=: 1.7090 Cor-gq 8.2599 CoP-I 1.9099 (6~ X 64) 
E: 8.G1922 In¢-z  E: 8.82194 (Znt-pq E: 9,fl2862) Unsnooth: 0.89233 dpq:GlGG8219 dz:9.881581 
E: 8 .91821Znt -~  E: 8.92155 ( I n t -~a  E: 9.82956) Unsnooth: 8.89246 daq:9.Gg8142 dz:9.881874 
E: 9 . 9 1 8 2 1 1 n t - z  E: 9.92138 (In~-pq E: 3.82952) Unsnooth: 8.89253 dpq:fl.Gg8197 dE:9.889839 
E: 9 . f l18211n¢-z  E= 8.82128 ( In¢-pq E: 9.fl2849) Unsnooth: 8.98257 d~q:9o3998G4 d~:9.889673 
1.G889 R1ph~-pq: 1.780~ Ripha-z: 1.7898 Cor-pq 9.2599 Cor-x 1.8OeO (64 x 94) 
E: G,89573 I n t - z  E: G.91768 ( I n t - pq  E: 8.01893) Unsnooth: 8.13434 daq:G.888181 dz:8.890698 
E: G.88394 I~ t -~  E: 8.81262 ( I n t - a q  E: 8.81359) Un$~oo~h: 9.11393 d~q:8.88G586 d~:9.091413 

I ron :  449 grad 
I t e r :  512 Grad 
Lanbda: G.GIQ9 
I t a r :  648 Grad 
Zter :  ?68 grad 
I t a r :  896 Grad 
I t e r : 1824  grad 
Lanbda: 910959 
I t e r : 1299  Grad 
I¢ar:1536 Grad 
I t a r : l ? 9 2  grad 
I t e r : 2948  grad 
Lanbda: 9.8829 
I ta r :2384  grad 
I te r :2568  Grad 
I ta r :2816  grad 
~ter:3G?2 grad 
La~bda: G,991G 
1cer:3328 Grad 
I t a r : 3594  grad 
I tar :384G grad 
1ter :4896 ; red 
Laflbda: 9.8895 
liar:4352 Grad 
I ter :46G8 Grad 
l t e r : 4864  Grad 
I t e r : 5128  Grad 
Lanbde: 8.8883 
liar:53?6 Grad 
I t e r : 5632  Crad 
[ te r :5888  Grad 
I t e r : 6144  Grid 
Lanbda: 0.9902 
Ite~:6656 Gred 
I t e r : 7169  grad 
~ter :7688 Grad 
1tar :8192 Grad 
La~bda: 0.0001 
I t e r : 8794  Grad 
I t e r : 9216  grad 

E: 9,19616 Br t9ht  E; 3.09426 I n t - z  E: 8.81341 {Intmpq E: G.81483) UnsMooth; 8.11413 dpq:fl.610939 dz:3.094826 
E: 9.19992 Br igh t  E: 3 .093811n t - z  E: G.91189 ( I n t - pq  E: 8.81326) Unsnooth: 8.11442 dpq:G.Ge@979 dz:@.GG8526 

Mu: G.0589 Eps: 1.8898 fl lpha-gq: 1.7808 f l lpha-z: 1.7889 CoP-~q G.2598 Cor-z 1.8889 (64 X 64) 
E: 8.89924 Br t9ht  E: 3.88378 I n t - z  E: G.81167 ( ln t -Dq  E: fl.G1318) Unsnooth: @.11467 dpq:8.888968 dz:9.88@432 
E: 8.99948 Br igh t  E: 8.093?6 I n t - z  E: 8.31153 ( I n t - pq  E: 8.01388) Unsnooth: 8.11514 dpq:O.@98G33 dz:G.098251 
E: 8.89519 BrtGht E: 8.883R4 I n t - z  E= 9.81147 (Znt-aq E: G.81882) Unanaoth: @.11537 dpq:G.888821 dz:9.898164 
E: G.89459 Br tght  E: 0.G8373 I n t - z  E: 0.81144 ( In t -Da  E: G.01299) Unsnooth: 0.11551 daq:@.@99814 dt:9.890111 

ME: 9.8399 Gps: 1.9889 R]pha-pq: 1.7898 Alpha-z:  1.7898 Cor-pq 8.2588 Cor-z 1.8893 (64 X 94) 
E: 9.19299 Br t9ht  E: 8.89292 I n t - z  E: 8.91598 ( I n t - pq  E: 8.01858) Unsnooth: G.11612 daq:g.883722 dz:8.398633 
E: 0.10330 Br t9ht  ( :  9 . 882811n t - z  E= 0.91592 ( I n t - pq  E: G.81841) Unsnooth: G.11608 dpq:O.993155 dz:9.898624 
E: 8.18336 BrtshD El 8 .892811n t - z  E: 8.8159G (~nt-pq E: 8.81839) Unl .ooth l  8.11688 daq:g.Ge3287 ds:G.8GGG35 
E: 9.19349 BrtGht E: 8.89281 I n t - t  E: G.91598 ( I n t - a a  E: 9.81839) Onsnooth: 9.11697 daq:8.883141 dz.8.896629 
Mu: 8.9289 E~a: 1.3998 fl lpha-~q: 1.7899 f l lpha-~: 1.7Q89 eor-~q 9.2588 Cor-z 1.9889 (64 ~ ~4) 

E: 3.89838 Br tsh t  E: G.881111nt -z  E: 9.81341 ( I n t - a q  E: 8.81576) Uns~ooth: 8.12242 d~q:9.887526 d~:6.881322 
E: G.98954 8 r t9h t  E: 8.88110 Zn t - i  ~; G.8133~ ( In~-aq E: G,81570) Onanooth: 0.12259 dpq;O,Ge7G59 dz=flo991289 
E: 8.98932 9r49ht  E: 8.G8118 I n t - t  E: 9.31336 ( I n t - p q  E: 0.e1568) Unsnooth: 8.12264 dpq:8.897298 dz:E.Gf11277 
E: 8.88924 flrt9hg E: 8.88118 I n t - t  E: 9.81336 ( lne-pq E: 8.81567) Onsnooth: 8.12267 d~q:8,887276 d~:8.G81273 

MU: 9.BiGG Eps~ 1.9088 Rl~ha-pq: 1.?888 f l lDha-z: 1.7888 CoP-Dq 8.2599 Cor-~ 1.8989 (64 X 64) 
E: 9,88869 B~Bht  E: 8.88886 I n t - z  E: 8.81434 (~n~-pq E; 8.81679) UnanooLh~ 8.12387 dpq:8.811513 d1:g,802398 
E: 9.88866 9rtGh¢ G: 9,89886 I n t - ~  E: 8.91433 ( In~-~d E: 8.81679) Unlnooth: 8.12388 dpq:G.811497 d~:9.892395 
E: 0.98865 8Pt9ht E: 9.88886 I n t - z  E= fl.91433 ( I n t - pq  E: 8.01678) Unsnooth: 8.12388 daq:8.811493 d~:8.992394 
E: 8.89864 BrtGht E: 8.89986 I n~ - t  E: G.81433 ( I n t - p q  E: 9.81678) Unsnoaeh: 8.12388 d~:B.811492 dz:8.Of12394 
Ru: 8.9898 Ep$: 1.8888 R]pha-pq: 1.78~8 R]~ha-z: 1.7899 Cor-pq 9.2589 Gor-z 1.8888 (64 ~ 64) 

E: 8,8769fl Brlgh~ E: 8.38858 In t -~  E: fl,01111 ( I n t - p q  E: e.81298) Unsnooth: 8,12855 dpq:G.Ge?626 dt;9.f191396 
E: 8.8?629 Brasht E: 9.88849 %nt-I E: 9.91188 (Znt-aq E: 8.81285) Unsnooth: 8.12875 da~:8.887546 d~:8.891378 
E: G.87597 8rtGht E: 8.8G949 In~-z E: 9.81187 ( I n t - p q  E: 8.81284) Uns~ooth: 8.12882 doq:8.887589 dz:8.891371 
E: 8.97588 BrtGh~ E: 8.89949 In~-~ E: g.81197 ( In~-pq E: 8.31283) UnaRooth: 0.12805 dpq:G.GG?494 dz:G.gf11369 

Ru: 9.99?9 Eps: 1.8899 Rlpha-pq: 1.?G99 Rl~ha-~: 1.7999 Cor-pq G.2598 Cor-z 1.G889 (64 X 64) 
E: 8.9669? 9r49ht E: 8.98838 In¢-~ E: 9.88899 ( In¢-pq E: 8.81926) Unanooth: 8,13258 dpq:8.895249 dz:8.889933 
E: 8.G6620 9919ht E: 0.88829 In~-~ E: 9.89987 ( I n t - ~ q  E: G.81922) Unanoo~h: 8.13279 d08:9.885163 dl:G.Ggg917 
E: 9.96599 Br igh t  E: 8.89838 In¢-~ E: 8.98887 ( I n t - p q  E: 8.81921) Unsnooth: 8.13285 dpq:8.flG5119 d/ :9.888989 
E: 9.86599 Br~9ht E: 8 .6~3G I n t - I  E: 8.98886 ( I n t - pq  E: 9.91829) Unsnooth: B.13288 dpq:8.885999 dz:9.998986 

~u: 9.8959 Ep$: 1.9999 Rloha-~q: 1.?898 Rlaha- / :  1.TGGG Cor-aq 0.2589 Cor-z 1.8998 (64 X 64) 
E: 9.86486 BrtGh¢ E: 8.89925 I n t - z  E: 8.99961 ( In~-pq E: 8.99988) Unanooth: 8.13378 d~q:8.885282 dz:8.898968 
E= 9.86399 Br t9ht  E: 8.88925 Zn~-z E: 8.89869 ( I n t - ~ q  E= 9.89989) UnGnooth: 9.13381 dpq=8.G85278 d~:8.888966 
E: 9.86399 OrtGht E: G.EGG2S In¢-z  E: 9.98869 {~nt-pq E: G.G8988) Unsnooah: G.13391 doq:G.GGS2G8 dz:9.GGG96S 
E: 8.8639? Er~ght E: 9.88825 In¢-z  E: 9.88869 ( In¢-pq E: 8.88988) Unsnooah: 8.13382 d0~:9.885268 dz:8.999965 
MU: 8.9929 Eps: 1.8889 Rl~ha-pq: 1.7899 f l lpha-z: 1.7889 Gor-pq 8.2598 CaP-I 1.8889 (64 ~ 64) 

E: 8.96941 9 r t 9h t  E: G.89832 I n t - ~  E: 9.91912 ( I n t - a q  E: fl.81162) Unsnooth: 9.13186 dpq:8.997721 dz:8.981539 
E: 8.96955 Gr~9ht E: 8.88832 Znt-z E: 9.81812 ( l n t - p q  E: 8.81163) Unsfloogh: 8.13182 dpq:8.887748 d1:8.981535 

Zter :9729 Grad E: 8.86958 B r t ~ t  E: 0.89892 I n t - z  [ :  8.01812 ( I n t - p q  E: 8.81183) Unsnooth= 8.13181 dpq:e.GG7744 dz:e.001536 
I te r :10249  grad E: 8.96958 Grt9ht E: G.f18932 I n t - z  G: G.81912 (Znt -a~ E: B.91183) Unsnooth: G.13188 dpq:O.G87744 dz:G.G01536 
kanbda: 9.f1989 Mu: 9.8818 Ep$: 1.0989 fl lpha-pq: 1.7098 Rlpha-z: 1.7088 Cor-pq g,2588 Car - ,  1.8880 (64 X 64) 
Zter:18752 Grad E: G,81967 Br49ht E: G.88891Znt-z  E: G.88108 (Znt-Dq E: G.89992) Unsnooth: e.16893 doq:9.eGG962 dz:9.988185 
I te r :11264  Grad E: 9.89742 Br igh t  E: S.98988 I n t - =  E: 8.08839 ( I n t - p q  E: 9.98038) Unsnooth: 9.16351 d~q:9.888913 dz:8.880862 
I te r :11776  grad E: 9.89366 Grt9ht  E: 0,09000 Znt-z E: 8.98817 ( l n t - pq  E: 9.88814) Unsnooth: 0.18446 dpq:9.889895 d=:G.988825 
Zter:1228G Grad E: 8.89189 Grlght  E: 9.88888 l n t - z  E: 8.88898 ( l n t - pq  E: 8.8888?) Unsnooth= 8.16488 dpq:9.888883 dz:8.888811 

F/g. 5. Diagnostic trace of various error measures. This sequence of results corresponds to the reconstruction of the sharp-edged crater shape 
shown in figure 7. This kind of presentation is important, but must be supplemented by some graphic depiction of the evolving solution surface. 
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Fig. 6 Reconstruction of a portion of a truncated hexahedron from a shaded image. The dihedral angle between each pair of the three outer 
surfaces is r/2.  This example illustrates the algorithm's ability to deal with surfaces that have large discontinuities in surface orientation. 

Here the image provided to the algorithm corresponded 
to illumination from the northwest, while illumination 
from the northeast was used to display the reconstruc- 
tion. 3s Note how the edges become sharper as )~', con- 
trolling the contribution of the penalty term for depar- 
ture from smoothness, is made smaller and smaller. 
This example illustrates the algorithm's ability to deal 
with surfaces that have discontinuities in surface 
orientation. 

Because of the interest in application to astrogeology, 
a crater-like shape was also reconstructed, as shown in 
figure 7. In this case, the algorithm rapidly found a 
shape that was generally correct, except for flaws in 
places on the rim of the crater in the northeast and 
southwest. These are areas where there is little con- 
trast between the inside and the outside of the crater 
in the input image? 9 It took the algorithm a considerable 
number of additional iterations to determine the correct 
continuation of the shape computed in other image areas. 

7.2 Emergent Global Organization 

Often progress toward the correct solution is not as 
uneventful. Frequently, small internally consistent solu- 
tion patches will establish themselves, with discontinu- 
ities in surface orientation where these patches adjoin. 
Also, conical singularities form that tend to move along 
the boundaries between such regions as the iterative 
solution progresses. Conversely, boundaries between 
solution patches often form along curves connecting 
conical singularities that form earlier. After a large 
enough number of iterations, patches of local organiza- 
tion tend to coalesce and lead to emergent global organ- 
ization. This can be observed best when )~' is smaller 
than it would normally be for rapid convergence. In 
figures 8 and 9, for example, are shown a sequence of 
shapes leading finally to a spherical cap on a planar 
surface. Within some regions, solution surface patches 
quickly establish themselves that individually provide 
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Fig. 7. Reconstruction of a crater-like shape. Points on the rim in the northeast and the southwest correspond to places in the input image 
where there is least contrast between the inside and the outside, since the direction of the incident illumination is parallel to the rim there. 

good matches to corresponding parts of the input image. 
The borders between these internally consistent regions 
provide error contributions that the algorithm slowly 
reduces by moving the boundaries and incrementally 
changing the shapes within each of the regions. Too 
rapid a reduction of)~' can remove the incentive to re- 
duce the creases and kinks and to freeze the solution in 
a state where some unnecessary discontinuities remain. 
If, for example, ~' were to be set to zero with a "solu- 
tion" consisting of a spherical cap with an inner disk 
inverted, as in the right hand image of the middle row 
of figure 9, there would be no incentive to further reduce 
the length of the circular discontinuity, and the smooth 
solution for this part of the image would not be found. 

The algorithm was also applied to impossible shaded 
images. Suppose, for example, that we are dealing with 
a Lambertian surface illuminated by a source near the 
viewer and that there is a dark smudge in the middle 
of a large planar region facing us (which appears 

brightly lit). It turns out that there is no surface with 
continuous first derivatives that could give rise to a 
shaded image with a simply connected, bounded dark 
region in the middle of a bright region (Horn, Szeliski, 
and Yuille 1989). In figure 10 we see what happens 
when the algorithm attempts to feud a solution. Patches 
grow within which the solution is consistent with the 
image, but there are discontinuities at boundaries be- 
tween patches. Conical singularities sit astride these 
boundaries. For all random initial conditions tried, the 
algorithm eventually eliminates all but one of these con- 
ical singularities. The computed surface is in fact a 
"solution" if one is willing to allow such singularities. 

The graphical method of presenting the progress of 
the iterative solutions illustrated above was very helpful 
in debugging the program and in determining reason- 
able schedules for reduction of the parameters k'  and 
/~. Shown in figure 11 are some examples of what hap- 
pens when things go wrong. In the top row are shown 
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Fig. 8. Emergent global organization of local nonlinear iterative process. Internally consistent solutions arise in certain image patches with 
discontinuities at the borders between regions. The boundaries between these patches move, and the solutions within the patches adjust in 
order to reduce the sum of the error terms. 

instabilities arising in the solution for the crater-like 
shape, near the points where there is low contrast be- 
tween the inside and the outside of the crater--that is, 
where there is no local evidence for curvature. These 
instabilities can be suppressed by reducing ~ '  more 
slowly. In the middle row are shown patterns resulting 
from various programming errors. Finally, in the 
bottom row is shown the propagation of an instability 
from a free boundary when ~'  is set to zero. It appears 
that the process is not stable without the regularizer 
when the boundary is completely free. This is not too 
surprising, since the problem in this case may be 
underdetermined. 

In the past, shape-from-shading algorithms have 
often been "tested" by verifying that the computed gra- 
dient field actually generates something close to the 
given input image. To show just how dangerous this 
is, consider figure 12, which demonstrates a new non- 
iterative method for recovering a "surface" given a 

shaded image. In figure 12(a), is the input to the 
algorithm, while figure 12(c) is what the gradient field 
that is constructed by this algorithm looks like when 
illuminated in the same way as the original surface. 
Figure 12(b) shows what the original surface looks like 
when illuminated from another direction. As a test, we 
should check whether the computed gradient field looks 
the same under these illuminating conditions. But 
behold, it does not! In Figure 12(d) we see what we 
get when we use the other illuminating condition. The 
"trick" here is that the problem of shape from shading 
is heavily underconstrained if we are only computing 
a gradient field and not enforcing integrability. There 
are many solutions and we can, in fact, impose addi- 
tional constraints. The underlying gradient field here 
was computed by solving the photometric stereo equa- 
tions (Woodham 1978, 1979, 1980a, 1989) for the two 
images in figures 12(c) and (d) under the two assumed 
lighting conditions. 4° 
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Fig. 9. Emergent global organization of local nonlinear iterative process. Neighboring patches coalesce, as conical singularities are absorbed 
by coalescing with other singularities, or by being pushed towards a contour where the surface orientation is discontinuous. The final solution 
is a spherical cap resting on a plane. 

The new algorithm has also been applied to synthetic 
images generated from more complicated surfaces such 
as digital terrain models (DTMs) used earlier in re- 
search on interpretation of satellite images of hilly ter- 
rain (Horn and Bachman 1978; Sjoberg and Horn 1983) 
and in automatic generation of shaded overlays for 
topographic maps (Horn 1981). These synthetic images 
were somewhat larger (the one used for figure 1 is of 
size 231×178, for example). In this case, the simple 
algorithm, presented in section 5.3, using a regulariz- 
ing term would often get trapped in a local minimum 
of the error function after a small number of iterations, 
while the modified algorithm presented in section 5.6, 
exploiting the linearization of the reflectance map, was 
able to proceed to a solution to machine precision after 
a few thousand iterations. Most of the surface normals 
typically were already within a degree or so of the cor- 
rect direction after a few hundred iterations. 

The closeness of approach to the true solution depends 
on several of the implementation details discussed 
earlier. In particular, it was helpful to use the old values 
of p and q for the reference point in the linearization 
of R(p, q), rather than any of the other choices sug- 
gested earlier. Also, it helps to use the diagonal averag- 
ing scheme in the iteration for height rather than the 
scheme based on edge-adjacent neighbors. 

7. 3 Real Shaded Images 

The new algorithm has also been applied to a few real 
images, mostly aerial photographs and images taken 
by spacecraft. Shown here (figures 13 and 14) are the 
results obtained from a 108x128 patch of a 1024×1024 
SPOT satellite image (CNES--Central National Experi- 
mental Station, France) taken in 1988 of the Huntsville, 
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Fig. 10. What happens when the algorithm is confronted with an impossible shaded image? The input image here (not shown) is a circularly 
symmetric dark smudge in a uniformly bright surround. The light source is assumed to be near the viewer. The algorithm finds a "solution" 
with a single conical singularity. 

Alabama region. The ground resolution of such images, 
that is, the spacing between picture cells projected on 
the surface, is 10 meters. The area of interest is Monte 
Sano State Park, a tree-covered hilly region east of 
Huntsville. 

The algorithm was run with free boundary condi- 
tions on both height and gradient. With real data, there 
typically is no exact solution, and the error terms can- 
not be reduced to zero. Correspondingly, with free 
boundary conditions, the iteration is not stable when 
the regularizer is removed completely, so there is a limit 
on how small one can make k'. One side-effect of  this 
is that the reconstructed surface is somewhat smoother 
than the real surface and consequently the vertical relief 
is attenuated somewhat. The actual vertical relief here, 
for example, is about 250 m, while the overall relief 
in the reconstruction is a bit less than 200 m. 

At the time of this experiment, the viewing geometry 
and the light source position were not available, nor 
was information on atmospheric conditions or sensor 
calibration. The atmospheric scatter component was 
estimated by looking in regions that appear to be 
shadowed, where the reflected light component is ex- 
pected to be small (Woodham 1980b; Horn and Sjoberg 
1983). The product of illumination, surface albedo, and 
camera sensitivity was estimated by looking in regions 
that appeared to be turned to more or less face the light 
source. Unfortunately the range of grey levels in the 
region of interest was rather small (23-42), since the 
sensor had been adjusted so that it could cover the full 
dynamic range needed for the adjacent urban area, 
which was much brighter (21-149). 4~ Also, comparison 
of  the left and right images indicates that there may be 
a certain degree of aliasing in these images. 
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Fig. 11. Graphical depiction of instabilities and the effects of programming errors. In the top row are shown instabilities resulting from too 
rapid reduction of the penalty term for departure from smoothness. The middle row shows the results of various programming errors. The 
bottom row shows waves of instability propagating inwards from a free boundary. 

The light source elevation was estimated by assum- 
ing that the average brightness of  the image was ap- 
proximately equal to the cosine of the angle between 
the average local surface normal and the light source 
direction. The polar angle of the light source (90 ° 
minus the elevation above the horizon) can then be 
found if one assumes further that the average local sur- 
face normal is approximately vertical. For this image, 
this method yielded a polar angle of about 65 o, or  an 
elevation of 25 o. 

The light source azimuth, that is, the projection of 
the direction toward the light source into the image 
plane, was first estimated to be about 60 ° clockwise 
from the x-axis of the image, based on the directions 
of what appear to be shadows of tall buildings in the 
downtown area of Huntsville, as well as some other im- 
age features. Attempts to use Pentland's method 
(Pentland 1984) for estimation of the source azimuth 

failed, as did Lee and Rosenfeld's refinement of  that 
method (Lee and Rosenfeld 1985). A reasonable direc- 
tion was found by instead computing the axis of least 
inertia through the origin (Horn 1986) of a scattergram 
of the brightness gradient (Ex, Ey). There is a two way 
ambiguity in the result (corresponding to the usual con- 
vex versus concave interpretations of a surface) that can 
be resolved by other methods. Despite the crude nature 
of the scattergram, resulting from the coarse quantiza- 
tion of image irradiance measurements, an acceptable 
azimuth of between 60 ° and 65 ° was found in this 
fashion. 

Finally, it was possible to refine this estimate of the 
azimuth by running the shape from shading algorithm 
for various source azimuths and recording the remain- 
ing solution errors after many iterations. There was a 
broad minimum near an azimuth of 65 o. This method 
of estimating the source azimuth, while computationally 
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Fig. 12. New one-step shape-from-shading algorithm, See text! 

expensive, seems to be relatively reliable, since there 
does not appear to be a systematic deformation of the 
surface that can compensate for a change in azimuth 
of the light source while yielding a similar shaded 
image. Unfortunately the same cannot be said of the 
elevation angle of light source position, since tilting the 
surface about an axis perpendicular to the light source 
position, in such a way as to maintain the angle be- 
tween the average surface normal and the direction to 
the light source, produces a similar shaded image--at 
least to first order. 

Shown in figure 13 is a registered stereo-pair of 
SPOT images of the Monte Sano State Park region. 

Note that the light comes from the lower right (not the 
upper left, as is common in artistic renderings of 
sculpted surfaces). The stereo pair is shown here so 
that the reader can get a better idea of the actual sur- 
face shape. The algorithm, when presented with the 
left image of the pair, calculates a shape used to generate 
the synthetic stereo pair in figure 14. (The vertical relief 
has been exaggerated slightly in the computation of the 
synthetic stereo pair in order to partially compensate 
for the attenuation of vertical relief mentioned earlier. 4z) 

Another way of presenting the resulting shape is as 
a contour map. Shown in Figure 15(a) is a portion of 
the USGS 7.5' quadrangle of the Huntsville Alabama 
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Fig. 13. A stereo pair of SPOT satellite images of Monte Sano State park east of Huntsville, Alabama. The left subimage of 108 × 128 picture 
cells is used as input for the shape from shading algorithm. 

Fig. 14. A synthetic stereo pair computed from the solution obtained by the new shape from shading algorithm. 

area, with the area covered by the left satellite 
photograph outlined, while figure 15(b) shows a con- 
tour map derived from a smoothed form of the solu- 
tion obtained by the shape-from-shading algorithm. 
This is not a comparison that is likely to be flattering 
to the shape-from-shading algorithm, since we know 
that it is not very good at recovering the lower spatial 
frequencies. Conversely, the shape-from-shading 
algorithm finds a lot of detailed surface undulations that 
cannot be represented in a contour map. For this reason 
the surface must be smoothed or "generalized" before 
contours can be drawn. 

For want of a better assumption, the spacecraft was 
at first assumed to be vertically above the region of in- 
terest when the image was taken. Judging from lateral 
displacements of surface features it appears, however, 

that the left image was actually taken from a position 
that is about 15 ° away from the nadir, in the direction 
of the negative x-axis of the image coordinate system 
(and the right image from a position roughly the same 
amount in the other direction). This means that the 
computed result really applies to a tilted coordinate 
system. But more importantly, there is a distortion intro- 
duced by a poor estimate of the source direction occa- 
sioned by the assumption that average surface normal 
is parallel to the z-axis in the camera coordinate system. 
Attempts were made to compensate for this by 
estimating the source direction based on the assump- 
tion that the average surface normal was tilted 15 ° in 
the camera coordinate system. The reconstruction pro- 
duced in this fashion was then rotated in the xz-plane 
to bring it back into alignment with local vertical. While 
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Fig. 15. (a)A portion of the USGS topographic map of the Huntsville, Alabama area covering Monte Sano State park, with the approximate 
area covered by the left satellite image outlined. The rectangle is 3543' by 4200' (1080 m by 1280 m) and the contour interval is 20' (6.1 
m). (b) Contour map derived from a smoothed version of the solution obtained by the shape from shading algorithm from the left satellite image. 

the result produced in this way was better in certain 
ways (the lateral displacement of terrain features was 
greatly reduced), it was worse in others (including a 
small tilt of the result in the y direction). The moral 
is that to obtain quantitatively meaningful results, one 
needs to know accurately where the light source is in 
the camera coordinate system--and, if the result is to 
be related to some external coordinate system, then the 
camera position and attitude in that coordinate system 
needs to be known also. 

The algorithm has, by the way, also been applied 
to some images of Mars taken by the Viking Orbiter. 
But since the "ground truth" is not (yet) available in 
the case of the Mars images, it is not possible to say 
much about the accuracy of the recovered surface orien- 
tation field. 

7.4 Rating the Difficulty of Shape-from-Shading 
Problems 

Experiments with synthetic shaded images suggests that 
certain shape-from-shading problems are relatively 
easy, while others are quite difficult. First of all, basso- 
relievo surfaces (those with only low slopes) are easy 
to deal with (see also section 2.6) in comparison with 
alto-relievo surfaces (those with steep slopes). 43 The 

digital terrain model used for the experiment illustrated 
in figure 1 falls in the latter category, since the sides 
of the glacial cirque are steep and the individual gullies 
steeper still. 

Typically the brightness of a surface patch increases 
the more it is turned toward the light source. If it is 
turned too far, however, it becomes so steep that its 
brightness once again decreases. There is a qualitative 
difference between shape-from-shading problems where 
none of the surface patches are turned that far, and those 
where some surface patches are so steep as to have 
reduced brightness. In the latter case, there appears to 
be a sort of two-way ambiguity locally about whether 
a patch is dark because it has not been turned enough 
to face the light source or whether it has been turned 
too far. This ensures that simplistic schemes will get 
trapped in local minima where patches of the solution 
have quite the wrong orientation. Similarly, the more 
sophisticated scheme described here takes many more 
iterations to unkink the resulting creases. 

The transition between the two situations depends 
on where the light source is. The difficulty is reduced 
when the illumination is oblique (see also section 2.6). 
Conversely, the problem is more severe when the light 
source is at the viewer, in which case brightness 
decreases with slope independent of the direction of 
the surface gradient. This explains why the algorithm 
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took longer to find the solution in the case of the 
spherical cap (figure 8) since it was illuminated by a 
source near the viewer. It was more straightforward to 
find the solutions for the truncated hexahedron and the 
crater-like surface (figures 6 and 7), both of which were 
illuminated obliquely. The above dichotomy is related 
to another factor: problems where the relevant part of 
the reflectance map is nearly linear in gradient are con- 
siderably easier to deal with than those in which the 
reflectance map displays strong curvatures of iso- 
brightness contours. 

Smooth surfaces, particularly when convex, can be 
recovered easily. Surfaces with rapid undulations and 
wrinkles, such as the digital terrain model surface 
(figure 1) are harder. Discontinuities in surface orien- 
tation are even more difficult to deal with. Note that, 
with the exception of the digital terrain model, all of 
the examples given here involve surfaces that have some 
curves along which the surface orientation is not con- 
tinuous. The spherical cap, for example, lies on a planar 
surface, with a discontinuity in surface orientation 
where it touches the plane. 

Problems where boundary conditions are not 
available, and where there are no occluding boundaries 
or singular points, are ill posed, in the sense that an 
infinite variety of surfaces could have given rise to the 
observed shading. Not too surprisingly these tend to 
lead to instabilities in the algorithm, particularly when 
one attempts to reduce the penalty term for departure 
from smoothness. In these cases instabilities can be 
damped out to some extent by enforcing the image 
irradiance equation on the boundary by iterative ad- 
justment of the gradient computed from the discrete 
approximation of the natural boundary conditions for 
p and q. But results have not been promising enough 
to be worth discussing here in more detail. 

The number of iterations to converge to a good solu- 
tion appears to grow almost quadratically with image 
size (number of rows or columns). This is because some 
effects have to "diffuse" across the image. This means 
that the total amount of computation grows almost with 
the fourth power of the (linear) image size. It is well 
known that ordinary iterative schemes for solving ellip- 
tic partial differential equations quickly damp out 
higher spatial frequency errors, while low-frequency 
components are removed very slowly. One way to deal 
with this problem is to use computation on coarser grids 
to reduce the low spatial frequency components of the 
error. This is the classic multigrid approach (Brandt 

1977, 1980, 1984; Hackbush 1985; and Trottenberg 
1982). It is clear that a true multigrid implementation 
(as opposed to a simple pyramid scheme) 44 would be 
required to pursue this approach further on larger im- 
ages. 44 This is mostly to cut down on the computational 
effort, but can also be expected to reduce even further 
the chance of getting caught in a local minimum of the 
error function. Implementation, however, is not trivial, 
since the equations are nonlinear, and because there 
are boundary conditions. Both of these factors com- 
plicate matters, and it is known that poor implementa- 
tion can greatly reduce the favorable convergence rate 
of the basic multigrid scheme (Brandt 197% 1980, 1984). 

Alternatively, one may wish to apply so-called direct 
methods for solving Poisson's equations (Simchony, 
Chellappa, and Shao 1989). 

8 Conclusion 

The original approach to the general shape-from- 
shading problem requires numerical solution of the 
characteristic strip equations that arise from the first- 
order nonlinear partial differential equation that relates 
image irradiance to scene irradiance (Horn 1970, 1975). 
Variational approaches to the problem instead minimize 
the sum of the brightness error and a penalty term such 
as a measure of departure from smoothness. These 
yield second-order partial differential equations whose 
discrete approximation on a regular grid can be con- 
veniently solved by classic iterative techniques from 
numerical analysis. Several of these methods, however, 
compute surface orientation, not height, and do not en- 
sure that the resulting gradient field is integrable 
(Ikeuchi and Horn 1981; Brooks and Horn 1985). One 
thus has, as a second step, to find a surface whose gra- 
dient comes closest to the estimated gradient field in 
a least-squares sense (see Ikeuchi 1984; Horn 1986, ch. 
11; Horn and Brooks 1986). 

The two steps can be combined, and the accuracy 
of the estimated surface shape improved considerably, 
by alternately taking one step of the iteration for 
recovering surface orientation from brightness, and one 
step of the iteration that recovers the surface that best 
fits the current estimate of the surface gradient. This 
idea can be formalized by setting up a variational prob- 
lem involving both the surface height above a reference 
plane and the first partial derivatives thereof. The 
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resulting set of three coupled Euler equations can be 
discretized and solved much as the two coupled equa- 
tions are in the simpler methods that recover only sur- 
face orientation. 

Such an iterative scheme for recovering shape from 
shading has been implemented. The new scheme 
recovers height and gradient at the same time. 
Linearization of the reflectance map about the local 
average surface orientation greatly improves the per- 
formance of the new algorithm and could be used to 
improve the performance of existing iterative shape- 
from-shading algorithms. The new algorithm has been 
successfully applied to complex wrinkled surfaces, even 
surfaces with discontinuities in the gradient. 
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Notes 

1. A gradient field is imegrable if it is the gradient of  some sur- 
face height function. 

2. The gullies are steep enough to be of interest to ice climbers. 
3. For additional examples of reconstructions from shaded images, 

see section 7. 
4. In the examples tried, the algorithm always recovered the under- 

lying surface orientation exactly at every picture cell, starting 
from a random surface orientation field, provided that boundary 
information was available. Since the question of uniqueness of  
solutions has not been totally resolved, one cannot be quite certain 
that there may not be cases where a different solution might be 
found that happens to also fit the given image data exactly. 

5. In photoclinometry it is customary to use an object-centered coor- 
dinate system. This is because surface shape can be computed 
along profiles only when strong additional constraint is provided, 
and such constraints are best expressed in an object-centered 
coordinate system. Working in an object-centered coordinate 
system, however, makes the formulation of  the shape-from- 
shading problem considerably more complex (see, for exam- 
ple, (Rindfleisch 1966)). 

6. Grey-levels are quantized estimates of  image irradiance. 
7. The f-number is the ratio of the principal distance to the diameter 

of  the aperture, that is, rid. 
8. Dip is the angle between a given surface and the horizontal plane, 

while strike is the direction of the intersection of the surface 
and the horizontal plane. The line of intersection is perpendicular 
to the direction of steepest descent. 

9, Luminance longitude and latitude are the longitude and latitude 
of a point on a sphere with the given orientation, measured in 
a spherical coordinate system with the poles at right angles to 
both the direction toward the source and the direction toward 
the viewer. 

i0. Incidence and emittance angles are meaningful quantities only 
when there is a single source; and even then there is a two-way 
ambiguity in surface orientation unless additional information 
is provided. The same applies to luminance longitude and 
latitude. 

11. There is a small problem, however, with this method for speci- 
fying the direction toward the light source: A source may be 
"behind" the scene, with the direction to the source more than 
7r/2 away from the direction toward the viewer. In this case the 
z-component of the vector pointing toward the light source is 
negative. 

12. The coordinates of gradient space are p and q, the slopes of 
the surface in the x and y direction respectively. 

13. Note that shape-from-shading methods are most definitely not 
restricted to Lambertian surfaces. Such special surfaces merely 
provide a convenient pedagogical device for illustrating basic 
concepts. 

14. If there is a unique maximum in reflected brightness, it is con- 
venient to rescale the measurements so that this extremum cor- 
responds to E = 1. The same applies when there is a unique 
minimum, as is the case for the scanning electron microscope 
(SEM). 

15. We see that c : s = Ps : qs, so that the direction specified in 
the image by (c, s) is the direction "toward the source," that 
is, the projection into the image plane of the vector s ~ toward 
the light source. 
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16. If the function f i s  not monotonic, there will be more than one 
solution for certain brightness values. In this case one may need 
to introduce assumptions about continuity of the derivatives in 
order to decide which solution to choose. 

17. The integration is, of course, carried out numerically, since the 
integrand is derived from image measurements and not 
represented as an analytic function. 

18. The reflectance map is rotationally symmetric, for example, when 
the source is where the viewer is, or when an extended source 
is symmetrically distributed about the direction toward the viewer. 

19. Methods for recovering the shapes of polyhedral objects using 
shading on the faces and the directions of the projections of the 
edges into the image are discussed in (Sugihara 1986) and (Horn 
1986). 

20. The same argument applies when the unique extremum is a 
minimum, as it is in the case of scanning electron microscope 
(SEM) images. 

21. The shape-from-shading problem can be formulated and solved 
when the viewer and the light sources are not at a great distance 
(Rindfleisch 1966; Horn 1970, 1975), but then scene radiance 
depends on position as well as surface orientation, and the no- 
tion of a reflectance map is not directly applicable. 

22. A gradient-field (or needle diagram) {p(x, y), q(x, y)} is integrable 
if there exists some surface height function z(x, y) such thatp(x, 
y) = Zx(X, y) and q(x, y) = Zy(X, y), where the subscripts denote 
partial derivatives. 

23. Generally, a small patch of a shaded image is infinitely am- 
biguous. Also, without integrability, the problem of recovering 
a gradient field is generally ill posed. But if we impose integrabil- 
ity, and provide suitable boundary conditions, then the shape- 
from-shading problem is definitely not ill posed (Bruss 1982; 
Deift and Sylvester 1981; Brooks 1983; Blake, Zisserman, and 
Knowles 1985; Saxberg 1988). 

24. Note that X here is not a Lagrange multiplier, but a factor that 
balances the relative contributions of the brightness error term 
and the term measuring departure from smoothness. That is, there 
is no absolute contraint imposed here, only a penalty term added 
that increases with departure from smoothness. 

25. There are several methods for approximating the Laplacian 
operator, including five-point and nine-point approximations. It 
is well known that, while the nine-point approximation involves 
more computation, its lowest-order error term has a higher order 
than that of the five-point approximation (Horn 1986). 

26. Here r = 4 when the local average ~ t  is computed using the 
four edge-adjacent neighbors, while K = 10/3, when 1/5 of the 
average of the corner-adjacent neighbors is added to 4/5 of the 
average of the edge-adjacent neighbors (see also section 6.2). 

27. These equations are solved iteratively because the system of equa- 
tions is so large and because of the fact that the reflectance map 
R(p, q) is typically nonlinear. 

28. The resulting gradient field is likely not to be integrable because 
we have not enforced the conditionpy = qx, which corresponds 
tOZxy = Zyx. 

29. Natural boundary conditions arise in variational problems where 
no boundary conditions are explicitly imposed (Courant and 
Hilbert 1953). 

30. The reference gradient will, of course, be different at every pic- 
ture cell, but to avoid having subscripts on the subscripts, we 
will simply denote the reference gradient at a particular picture 
cell by (/70, qo). 

31. The new shape-from-shading algorithm, of course, works equally 
well on synthetic shaded images of digital terrain models ob- 
tained by other means, such as one of the Les Diablerets regions 
of Switzerland used in (Horn and Bachman 1978). 

32. See (Lee 1988) for a proof of convergence of an iterative shape- 
from-shading scheme. 

33. The "red" and "black" squares are the cells for which the sum 
of the row and column indexes are even and odd respectively. 

34. It may appear that this difficulty stems from the use of staggered 
grids. The problem is even worse when aligned grids are used, 
however, because the discrete estimator of the Laplacian con- 
sistent with simple central difference estimators of the first par- 
tial derivatives has a support that includes only cells that are 2c 
away from the center. And this form of the Laplacian operator 
is known to be badly behaved. We find that there are four  de- 
coupled subsets of cells in this case. 

35. Conversely, if the basic method has a tendency to be unstable, 
then one can "under-relax'--that is, use a value ~ < 1. 

36. One can obtain good synthetic data, however, with an exact 
algebraic solution, by sampling the height on a regular discrete 
set of points and then estimating the derivatives numerically, as 
discussed in section 5.1. This was done here to generate most 
of the examples shown in section 7. 

37. The test illumination should be quite different from the illumina- 
tion used to generate the original image--preferrably lying in 
a direction that differs from the original source direction by as 
much as r/2. 

38. The input image is not shown, but is just like the last image in 
the sequence shown, except that left and right are reversed. 

39. Again, the input image is not shown, but is like the last image 
in the sequence shown, except that left and right are reversed. 

40. There is no guarantee that there is a solution of the photometric 
stereo problem for surface orientation, given two arbitrary 
brightness values, since the two equations are nonlinear. In the 
particular case shown here, the dynamic range of the two im- 
ages was such that a solution could be found at all but about 
a hundred picture cells. 

41. The mapping finally chosen took a grey level of 22 into 0.0 and 
a grey level of 43 into 1.0 normalized surface radiance. 

42. While the base-to-height ratio in the satellite images appears to 
be about 0.5, it was assumed to be 0.75 for purposes of the com- 
putation of the synthetic stereo pair. 

43. For more regarding the terms basso-relievo, mezzo-relievo and 
alto-relievo (see Koenderink and van Doorn 1980). 

44. A naive approach has one solve the equations on a coarse grid 
first, with the results used as initial conditions for a finer grid 
solution after interpolation. True multigrid methods are more 
complex, but also have much better properties. 
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