
Instruetionat Science 17:281-307 (1988) 281
© Kluwer Academic Publishers, Dordrecht - Printed in the Netherlands

Skill-oriented task sequencing in an intelligent tutor for basic
algebra

DAVID McARTHUR, CATHY STASZ, JOHN HOTTA, ORLI PETER
& CHRISTOPHER BURDORF
The RAND Corporation, 1700 Main Street, PO Box 2138, Santa Monica, CA 90406--2138, U.S.A.

Abstract . As part of a project to develop an intelligent computer tutor for basic algebra, we have been
investigating task sequencing. In this paper we present an approach to task sequencing that is based on
a component-skills view of intelligence and learning. We postulate that tutors use inferences about
past and present student performance to determine a current skill set that will be the new target for
learning. The skill set is then used as a basis for generating tasks that should elicit those skills. Current
skill sets are modified slowly over time so that lessons appear coherent and well-planned. We first
describe the approach at a general level, where it can be viewed as a cognitive model of human task
sequencing. Then we discuss the implementation of the model in our intelligent algebra tutoring
system.

Introduction

One of the most important skills effective tutors possess is task sequencing, the
ability to generate an intelligent sequence of tasks for the student. To be effective,
the sequence of tasks generated must adhere to several constraints. Locally, each
task must be at the right cognitive level for the student - neither too simple nor
too difficult. Globally, the sequence as a whole must be coherent: that is, succes-
sive tasks should deal with the r2me or related concept sets.

How do tutors generate tasks that satisfy these constraints? In this paper we
present an approach we have been pursuing in the context of building an intelligent
computer-based tutor for algebra. The approach is based on a component-skills
view of intelligence and learning. First, we will describe the model at a general
level, where it can be viewed as a cognitive model of human task sequencing.
Next we discuss the implementation of the model in our algebra tutor, where it
can be viewed as a component of an intelligent tutoring system.

The role of task sequencing in learning

The ability to produce coherent and appropriate sequences of tasks is a key fea-
ture of many learning environments (Collins, Brown and Newman, 1987). For
example, in algebra tutoring, a tutor who fails to select questions that are at the
"edge" of the student's current competence may not succeed in helping the

282

student acquire new knowledge. Students may flounder on tasks that are too diffi-
cult or breeze mindlessly through ones that are too easy. Perhaps less obviously,
task sequencing is important in learning environments that do not fit the question-
and-answer mold. For example, Lave's (cited in Collins, Brown and Newman,
1987) analysis of apprenticeship learning shows that that masters reason carefully
about the sequencing of assignments for novices. Apprentice tailors invariably
practice putting together pieces of a precut garment before they learn to cut the
pieces.

Reasoning about task sequences can also play a role in exploratory learning
environments, or "microworlds" (see e.g., Lawler and Yazdani, 1987; Shute and
Glaser, 1986). In such situations the student is typically free to choose the task to
work on, since there is no tutor to reason about which kind of task would provide
useful learning opportunities for the student. However, the students' own selection
of tasks is often crucial in determining whether their explorations are informative
or not. For instance, students using ARK (Smith, 1986) to explore the effect of
gravity on the motion of objects may not learn about the independence of mass
and velocity under gravity, unless their experiments are sequenced so that the
motion of different objects is examined under identical configurations of position
and gravity. In a more mundane context, students in self-paced concept acquisi-
tion experiments acquire concepts more effectively when the examples they
examine vary systematically the features on which instances are defined.

A component-skill approach to task sequencing

In our view, tutors base task sequencing on a component-skills understanding of
the students' learning needs. In the component-skills perspective, learning any
complex body of knowledge entails acquiring a repertoire of interconnected skills.
This perspective has its roots in diverse sources. In cognitive psychology, task
analyses of many subjects have revealed that experts must learn complex net-
works of "rules", "scripts" or "schemas" (see e.g., Anderson, 1982; NeweU and
Simon, 1972; Schank and Abelson, 1977). In educational psychology there have
been many attempts to analyze the components of mathematical competence (see
e.g., Bell, Costello and Kuchemann, 1983), and to distinguish different compo-
nent skills of mathematics (see e.g., Gagn6 and Briggs, 1974). In cognitive
science, Goldstein (1982), among others, using Piaget as an inspiration, suggests a
general theory of learning based on the evolution of component skills.

Many subjects are amenable to a componential analysis. In cognitive domains,
such as algebra, learning frequently decomposes into acquiring interrelated con-
cepts - how to collect terms, how to isolate a variable, etc. Complex physical
skills decompose analogously, as the apprenticeship example above suggests.
Apprentices acquire a global competence at tailoring not by practicing the skill in

283

its whole and final form, but by first perfecting different component sells in their
natural contexts of use. A component-skills approach can be applied to learning
even in areas often regarded as more conceptual than procedural. For example,
students learning concepts and laws of physics (either using ARK, as above, or in
more traditional classroom settings), usually acquire mastery by learning simple
component concepts in problem contexts, later graduating to more complex ones,
or compound concepts.

We extend the component-skills approach to the analysis of tutoring expertise.
According to this view, regardless of the domain, tutors use knowledge of inter-
connected networks of skills to chart a learning course for the student, generating
sequences of tasks that help students learn efficiently and effectively.

A model of task sequencing

Figure 1 displays our model of task sequencing for tutoring based on the component-
skills approach. As the figure suggests, ~ve assume that a tutor begins a lesson by
focusing on a set of component skills necessary to solve tasks in the chosen
domain. Next, the tutor generates tasks that will tap those skills. Depending on the
student's performance on the task (and on inferences about student performance
maintained in a student model), the tutor will first update the target set of
component skills, then generate a new task consistent with the modified skill set.
If the current skill set is appropriate for the student, lesson tasks will be neither
too difficult nor too easy. Assuming tasks are generated using an incrementally
modified skill set, the task sequence should be coherent as a whole.

The figure is not intended as a complete model of tutoring, and parts not
directly relevant to task sequencing are excluded. For example, we do not discuss
teaching tactics, by which Ohlsson (1986) means the expertise needed to guide
the student through local difficulties (e.g., remedial tactics used by tutors to deal
with local student errors). In addition, several strategic aspects of tutoring are also
not discussed. Strategic reasoning concerns tutorial decision-making of greater
scope than local interventions. We regard task sequencing as one aspect of teach-
ing strategy. Other aspects not described include plans for presenting concepts
(e.g., Ohlsson, 1986) and techniques for opportunistically introducing issues (e.g.,
Burton and Brown, 1982). Some of these facets of a more complete tutoring sys-
tem will be discussed tangentially in subsequent sections on the implementation
of task sequencing in a tutor for algebra.

The model includes three kinds of components:

- Active memory components encode data structures that the tutor computes
during a tutoring session. Often this information is transitory: for example, the
current student performance changes from task to task. However, many aspects
of the student model may endure across several tutoring sessions.

284

~ J

Z ~

m ~

.~'~o

~ o

. A

.

~ r

---_---:---~

o ~

Figure 1. Overview of the task sequencing components of a skilled tutor

Active memory components encode local computations and choices made by the tutor during a
particular lesson with a specific student. Knowledge sources refer to different kinds of long-term
knowledge that the tutor must bring to bear to make lesson control decisions. Expertise comprise the
inferential skills that use long-term knowledge and infomaation in active memory to compute tutorial
decisions. Versions of the shaded components have been implemented in our intelligent tutor for
algebra (see section on implementing task sequencing).

285

- Expertise components perform the computations and inferences that result in
active memory structures. In order to make intelligent computations, expertise
exploits various kinds of knowledge sources.

- Knowledge sources encode kinds of general information about students, teach-
ing, and subject matter. This information is distinct from data about specific
students, teaching situations, and tasks, represented in active memory.
Knowledge sources are often referred to as long-term memory, since their con-
tents change little over time. 1

The following paragraphs briefly describe the components shown in Figure 1.
Student performance refers to the "uninterpreted" behavior of the student, gen-

erated when he or she solves a task. In algebra, for example, overt behaviors
include transformations of algebraic expressions (e.g., 2x+1 = 5 ~ 2x = 5+1).

Student model is a database that stores inferences made on the basis of student
performance that concern the student's knowledge or lack of knowledge about
skills that underlie overt performance. For example, given the above overt behav-
ior, one facet in a model for an algebra student might be an inference that the
student believes a buggy version of a rule for moving a term from one side of an
equation to another - the student does not appear to understand that the inverse of
the moved term should be added to the other side. The role of student modeling in
tutoring recently has been a topic of extensive investigation (e.g., Anderson,
Boyle and Yost, 1985; Brown and Burton, 1978; Matz, 1982; Ohlsson, 1986;
Sleeman and Smith, 1981).

Student inferencing represents the tutorial expertise that is responsible for mod-
ifying a set of inferences in the student model in light of new student input. In
algebra, for example, new student input can be interpreted in terms of algebra
skills by an inductive process that matches the behavior against that predicted by
skills and buggy versions of skills. Thus, student inferencing relies on knowledge
sources that describe buggy skills, and the visible behavior they would predict.
Existing inferences in the student model may control its performance as well. For
example, before integrating a new inference based on current student performance
into the model, student inferencing expertise may consult the existing model to
determine whether the proposed inference is consistent with current inferences.

Generally, we view student inferencing as cumulative: inferences are main-
tained over time. This contrasts with the usual treatment in modeling (Ohlsson,
1986), where student performance at a given point in time strictly controls the
inference made and inferences are discarded once used. Another novel aspect of
student inferencing in our model is its overall role in tutoring. Unlike most intelli-
gent tutoring systems (ITS) (e.g., Anderson, Boyle and Yost, 1985; Ohlsson,
1986), we do not use the student model just to compute the feedback to give a stu-
dent when he or she has made a mistake. Instead, we suggest that a main use of
student inferences is to contribute to decisions about the skills to focus on in a
given lesson.

286

Lesson skills represent the skills the tutor is currently focusing on in a lesson.
These skills are the basis for tasks that the tutor generates. Looked at another way,
they represent the knowledge goals the tutor chooses for the student at any point
during learning. Current lesson skills are typically limited to one or two; it rarely
makes sense to teach more than one skill at a time. Thus, the current lesson skills
usually comprise a small subset of the larger set of skills represented in the skill
network or in the current student model.

In a subject of any depth, many kinds of skills can be the target of tutoring. For
example, in algebra, a competent problem solver must learn low-level axioms of
algebra (e.g., commutativity of addition), and strategy-level heuristics for apply-
ing the axioms (e.g., attracting instances of a variable to the same side of an equa-
tion). Less obvious, but equally important, are even higher-level "meta-cognitive"
skills (Collins, Brown and Newman, 1987), such as the ability to debug or fix
incorrect solutions or monitor one's own progress. Schoenfeld (1985) adds to this
an even more abstract kind of understanding he refers to as (mathematical) belief
systems. Collins and Brown (Brown, Collins and Harris, 1978; Collins, Brown
and Newman, 1987) have demonstrated that these different knowledge levels are
important in learning such diverse subjects as reading, writing, mathematics, and
electronic troubleshooting. In our discussions we focus mainly on skills at the
level of local heuristics, since careful analyses of higher-level skills are not yet
available. Generalizing our model of task sequencing to these kinds of skills will
depend on whether we find a natural decomposition for skills at these levels.

Lesson updating is the process that decides how to modify the current lesson
skills in light of changes to the student model. It is the heart of our view of task
sequencing, One main activity in lesson updating is to decide how to incremen-
tally transform skills in the set of current lesson skills. If changes to the student
model indicate the student has mastered a skill which is currently the focus of the
lesson, updating must decide which new skill is a logical next target, and replace
the old skill with the new one in the lesson skills. Similarly, if the student model
indicates the student has failed to master a target skill, lesson updating must
decide to keep the target skill, or even "back off", replacing it with a logically or
pedagogically simpler one. To determine skills that are logically simpler (or more
complex) replacements for a current lesson skill, lesson updating relies on the
skill network, a long-term knowledge structure that records logical and conceptual
relations between algebraic skills.

A second activity of lesson updating involves the addition of totally new skills
to the lesson. In completing a task, the student may make a mistake that is
unrelated to the current lesson skills. This may be reflected in the student model as
a new inference about student misconceptions. The tutor may consider adding this
skill to the agenda of lesson skills. However, care must be taken in such decisions.
For example, it does not make sense to add a new skill to the lesson if there are
already several focused skills. High-level knowledge about when to add skills, as

287

well as what skills to add, is supplied by pedagogical rules. In general, they are
responsible for determining which skill transformations or additions in the lesson
set are pedagogically reasonable, while the skill network is merely a lower-level
record of skill relations.

Task generation is a process that creates new problems or challenges for the
student. Our skill-oriented view of task sequencing suggests that tasks are gener-
ated to embed a skill that is in the current set of lesson skills. For example, in
algebra, if a current skill is "moving a term from one side of the equation to
another" (focusing on the additive inverse) the task generator might compose a
question whose solution will necessarily involve exercising that skill (e.g., 2x-4 =

10). In addition, however, task generation must adhere to an important pedagogi-
cal constraint: a task should elicit the target skills and a minimum of others.
Consequently, task generation is not an isolated process, but exploits information
in the student model and is driven by pedagogical rules which characterize the
skills, not in the current skill set, that may be included in a task.

In a complex subject, just as there may be several different levels of skills or
knowledge to learn, there is often a variety of different kinds of tasks the tutor can
construct to get its point across. Our model of task sequencing in tutoring is not
limited to a question-and-answer style of teaching only. In algebra, for example,
in addition to generating equations for the student to solve, the tutor could decide
to model for the student by solving a problem himself or herself (Collins, Brown
and Newman, 1987); give the student an incorrect solution and ask him or her to
debug it; ask the student to "re-represent" an equation as a word problem; and so
on. In learning environments with several students (e.g., apprenticeship), the tasks
generated by the tutor(s) might be divided into several pieces for different
students.

Not all of the current lesson skills necessarily act to constrain the generation of
new tasks for the student. For example, we envision that one skill may serve to
generate a new task, while a few others will just be kept "active" while the student
solves the task. As the student progresses, if the opportunity arises, the tutor may
highlight those additional skills. For example, in algebra, the tutor's main goal
might be to help the student learn how to solve equations with implicit coeffi-
cients (e.g., 3x-x = 10). At the same time, the tutor may also want to encourage
the student to learn "'debugging" skills. Consequently, if the student solves a task
incorrectly, the tutor will not only focus on illustrating the correct technique for
adding implicit coefficients, but also may emphasize debugging concepts, such as
going back and testing the validity of each problem-solving step.

To summarize, we believe task sequencing aims at generating tasks with "a
point." In our view, the point of a task must always be a skill that the tutor
believes the student needs to acquire or improve. Several sources of information
are jointly consulted to determine what the point of a task should be. New skills in
the student model suggest plausible points in terms of the student's perceived

288

strengths and weaknesses. This set of alternatives is further reduced by continuity
and pedagogical considerations until only one or a few alternatives remain. Thus
we achieve coherence in the set of tasks we pose the student, without invoking
any explicit rigid lesson plan.

Related research

In this section we briefly discuss other work on task sequencing, including
research from cognitive psychology, and computer-based instruction.

Research in cognitive psychology

Collins and Stevens (1981a, 1981b) have been developing a cognitive theory of
interactive teaching from a different perspective. While some of their data has
come from classroom settings, they have examined one-on-one Socratic tutoring
most carefully. They describe the teaching goals, together with strategies for com-
municating the goals, and an overall control structure for interactive teaching.
Some aspects of their view have analogues in ours. The teaching goals they men-
tion are similar to the target skills that are the focus of task sequencing, and, like
our task generation module, many of their teaching strategies take a given goal
and translate it into a specific case for the student to work on.

In related work, Collins, Brown and Newman (1987) describe a cognitive
apprenticeship approach to learning and tutoring. In this important paper they
describe some general ideas for task sequencing which we consider later. In addi-
tion, they refer to teaching methods, including modeling, coaching, scaffolding,
fading, articulation, and reflection. These comprise general principles of teaching.
For example, scaffolding and fading suggest that the tutor should first help the
student in solving tasks, but as the student gets better, it should gradually reduce
its intervention. We regard these principles as important constraints on how tasks
should be managed, once created, and on the roles that the student and tutor
should take in executing the tasks. However, the principles themselves do not
describe the reasoning involved in actually creating tasks. Similarly, their idea of
cognitive apprenticeship is not a task sequencing technique, but rather can be seen
as a global philosophy of learning and tutoring. As we noted above, and will dis-
cuss again below, we believe that specific task sequencing policies we create can
be consistent with this general view.

VanLehn (1983, 1987) discusses STEP theory, mentioning various "felicity
conditions" that describe pedagogical principles for sequencing concepts (e.g.,
"introduce one disjunct per lesson"). Although such conditions are discussed in
the context of inductive learning of procedures from examples, it is obvious that

289

similar kinds of conditions or rules apply to a variety of learning environments,
including ones where tutors generate tasks for students. The modular component
skills we describe in this paper can be viewed as the disjuncts, or pieces, which
VanLehn discusses.

Research in computer-based instruction

In contrast to research in cognitive psychology, computer-based instruction pro-
grams give a more precise idea of task sequencing in a one-on-one tutorial setting.
Unfortunately the task sequencing embedded in the early computer-aided instruc-
tion (CAI) programs usually consisted of a simple algorithm for branching among
a few fixed alternative questions (e.g., Chambers and Sprecher, 1980). Such rigid
plans do not provide a model of how a tutor can adapt the generation of tasks to
suit the particular needs of each student. Other early programs, for example
TICCIT (Mitre Corporation, 1976), leave most decisions about task selection to
the student; they essentially engage in no reasoning about task sequences. Some
generative CAI programs do attempt to dynamically compute tasks for the student
(Palmer and Oldehoeft, 1975). However, as O'Shea and Self (1983) point out,
these programs represent very little of the knowledge required to reason intelli-
gently about task sequencing. For example, they do not possess explicit models of
task difficulty, like those encoded in our skill network.

More recent research in intelligent tutoring systems offers more promise in
supplying a cognitive theory of task sequencing, but, to date, few have focused
this issue. Ohlsson (1986) reviews a wide variety of intelligent tutors, and notes
that few use their expertise to influence the global structure of lessons. Most effort
has been aimed at the issues of student modeling (knowledge of student) (e.g.,
Anderson, Boyle and Yost, 1985; Sleeman and Smith, 1981), and domain exper-
tise (e.g. Clancey, 1979), instead of teaching knowledge.

Programs such as WEST (Burton and Brown, 1982) and GUIDON (Clancey,
1979, 1983) formalize teaching tactics but offer little in the way of more global or
strategic rules for overall control of learning. BIP (Barr, Beard and Atkinson,
1976; Wescourt, Beard and Gould, 1977) is still one of the few attempts to generate
intelligent sequences of tasks in a tutoring system. Like the current proposal, BIP
is skill-oriented, embedding a curriculum of concepts that need to be learned.
However, BIP cannot generate tasks, but rather relies on a library of pre-
constructed questions. Goldstein's WUMPUS tutors (Goldstein, 1982) uses a
genetic graph representation of skills that is a descendent of those used in BIP. It
encodes not only generalization, specialization, analogy, and prerequisite relation-
ships between skills, but also correction or deviation relationships that help capture
the evolution of skills from formative to mature states. Goldstein (1982) discusses
several possible uses of genetic graphs in tutoring, including their potential in

290

suggesting topics and tasks for the student. However, Goldstein mainly focuses on
the role of genetic graphs in supplying multiple explanations, representing the
syllabus, and providing a basis for student modeling. In this paper we provide a
more detailed computational model of how skill networks, or graphs, can be used
to reason about tasks for the student.

Peachy and McCalla (1986) attempt to use planning ideas from robotics as a
basis for dynamically creating and revising lesson plans, but their work is only at
the formative phase. To our knowledge they have not yet implemented a signifi-
cant task sequencing structure. MENO-TUTOR 0Noolf and McDonald, 1984) is a
program that attempts to model the discourse strategies of human tutors. It
embeds several levels of tutoring knowledge, including tutoring tactics, strategies,
and more general pedagogical states. MENO-TUTOR is one of the few ITS to
include a significant pedagogical component. Nevertheless, its tutorial knowledge
is not used for task sequencing so much as to provide sensitive feedback to a
student within a single task.

Generally, most intelligent tutors are clever at the level of individual tasks and
individual responses. They can supply sophisticated feedback about the student's
performance and possible misconceptions. However, they are not particularly
intelligent at the lesson level. They do not use what they have learned about a stu-
dent on previous tasks to influence strategic decisions about subsequent tasks for
the student. Our research on task sequencing is an attempt to rectify this situation.

Implementing task sequencing in an intelligent computer tutor for basic
algebra

In the following section we explain how we are implementing the general model
of task sequencing in our intelligent tutor for basic algebra. As background to the
implementation discussion, we first briefly overview the tutor environment. The
tutor is described in greater detail in McArthur, Stasz and Hotta (1987).

Overview of the algebra tutor

Our intelligent algebra tutor currently runs on Sun Microsystems workstations. It
has been tested at The RAND Corporation, using local high school students, and
we have located six workstations at Santa Monica High School, where the tutor
will be more extensively tested and developed over the next several years. There
are several versions of the tutor, each presenting a slightly different interface to
students, defining different roles for the students, and concentrating on different
learning goals. Here we focus on a version in which students solve equations,
much as in homework practice.

291

The student sees the tutor as a collection of windows and menus, as shown in
Figure 2. The menus on the left allow the tutor and student to converse about rea-
soning and problem solving. To the right of the menus, on the bottom, is the
"WorkSpace," where the student creates each new line in his or her solution. New
lines or reasoning steps can be created by either selecting commands from menus
(as in Figure 2), typing in algebraic expressions, or writing them on an electronic
tablet. To the right of the Workspace is the "CommentSpace," where the tutor
sends textual feedback to the student.

The large window in the upper right is the "DisplaySpace," where the student's
reasoning is recorded and queried. Problem solving is represented here as a
reasoning tree. Many of the menu items to the left are used to manipulate the
"nodes" in this tree. For example, "Explain Your Step" permits the student to
point at parts of the reasoning tree done by the tutor and obtain justifications for
the tutor's reasoning. Similarly, "Help Next Step" allows the student to obtain
several levels of hints from the tutor (see Figure 2).

Like AlgebraLand (Collins and Brown, 1986), the tutor displays the student's
work as a solution tree, thus "reifying" the student's reasoning process by show-
ing connections between steps. Each branch in the tree represents an alternate
solution, or line of attack on the problem.2 Hence a tree representation allows easy
comparison of different solutions, both the student's and tutor's. Moreover, menu
items like "Move Box" permit the history to be exploited effectively. The student
selects this item when he or she wants to return to a previous solution path. The
tutor then allows the new current expression (i.e., the one that it boxed) to be
changed by pointing to any other expression in the tree. That expression then
becomes the current one.

In general, the skills of the tutor in providing hints and explanations comprise
its intra-task tutoring expertise. These tactics enable the tutor to coach a student
through the local complexities of solving a single task. By contrast, the task
sequencing component of the tutor embeds inter-task skills; tutorial reasoning on
a more global or strategic level.

Current implementation of task sequencing

We have currently implemented only a subset of the general model of task
sequencing. It includes operating versions of student performance measures, the
skill network, pedagogical rules, lesson updating (which modifies the current
lesson skills), and task generation (which creates the next task) (see shaded com-
ponents of Figure 1). In spite of its limitations, we believe the current task
sequencing implementation represents a significant advance in formalizing the
expertise required to make strategy-level tutoring decisions.

< g

.
.
.
.
.
.
.
.
.
.
.

,,
,.
,,
..
..
,.
,.
, .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

,,
,,
,.
..
:,
.,
.,
.,
.,
. .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

. .

.
.
.
.
.
.
.

.~
,.
,,
,,
,

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

I
s
o
l
a
t
e

-
-

G
e
t

a

s
i
n
g
l
e

o
c
c
u
r
r
e
n
c
e

o
f

a

v
a

r
i

a
b

l
e

t
o

s
t
a
n
d

b
y

i
t
s
e
l
f

G
r
o
u
p

-
-

M
o
v
e

o
c

c
u

r
r

e
n

c
e

o
f

t
h
e

v
a
r
i
a
b
l
e

t
o

t
h
e

s
a
m
e

s
l
d
e

o
f

t
h
e

e
q
u
a
t
l
o
n
.

R
e
m
o
v
e

P
a
r
e
n
t
h
e
s
e
s

-
-

G
e
t

t
h
e

v
a
r
i
a
b
l
e

o
u
t

o
f

p
a
r
e
n
t
h
e
s
e
s
.

C
o
l
l
e
c
t

-
-

C
o
l
l
e
c
t

s
e
v
e
r
a
l

o
c
c
u
r
r
e
n
c
e
s

o
f

t
h
e

v
a
r
i
a
b
l
e

i
n
t
o

o
n
e
.

E
v
a
l
u
a
t
e

-
~

D
o

a
r
i
t
h
m
e
t
i
c
.

S
i
m
p
l
i
f
y

-
-

R
e
d
u
c
e

t
e
r
m
s

t
o

a

s
i
m
p
l
e
r

f
o
r
m
,

S
e
r
~
l
l
 9

i
g
h
t

S
c
r
o
l
l
 L

e
f
t

S
c
r
o
l
l

D
o
w
n

S
c
r
o
l
l

U
p

-9
 (

7w
+3

+6
'~

)
+9

-

2+
9

M
y

A
n
s
w
e
r

O
k
?

H
e
l
p
 N

e
x
t

S
t
e
p

E
x
p
l
a
i
n

Y
o
u
r

S
t
e
p

E
r
a
s
e

I
n
p
u
t

M
ov

e
B

ox

5
~
u
d
e
n
t

~
z
o
b
l
~

E
a
s
i
e
r

P
r
o
b
l
e
m

H
a
r
d
e
r

P
r
o
b
l
e
m

0
0
1
T

?

-
-

D
i
v
i
d
e

b
o
t
h

s
i
d
e
s

b
y

?

?

-
-

M
u
l
t
i
p
l
y
 b

o
t
h

s
i
d
e
s

b
y

?

?

-
-

A
d
d

?

t
o
 b

o
t
h

s
i
d
e
s

?

-
-

S
u
b
t
r
a
c
t

?

f
r
o
m
 b

o
t
h

s
i
d
e
s

s
t
r
i
b
u
t
e

?

-
-

E
x
p
a
n
d

a

m
u
l
t
i
p
l
i
c
a
t
i
o
n
 u

s
i
n
g

t
h
e

d
i
s
t
r
i
b
u
t
i
v
e

r
o
l
e

l
l
e
c
t

?

-
-

C
o
l
l
e
c
t

s
e
v
e
r
a
l

t
e
r
m
s

u
s
i
n
g
 t

h
e

d
i
s
t
r
i
b
u
t
i
v
e

r
u
l
e

7
w
+
3
+
E
w

-

-
2

9

iJJ
- , f

(+

9}

~
I

-~
)

(
s
i
m
p
l
i
f
y
}

:T
h

e
re

a

re

se
ve

ra
l

o
cc

u
rr

e
n

ce
s

o
f

th
e

va

ri
a

b
le

,
w

,
o

n

o
n

e

si
d

e

o
f

iT
w

+3
+S

w
~2

/%
.

S
o

m
y

g
o

a
l

w
as

to

co

ll
e

ct

th
e

va

ri
a

b
le

s
in

to

o
n

e

[o
cc

u
rr

e
n

ce
.

T
o

a
ch

ie
ve

m

y
g

o
a

l
I

u
se

d
 t

h
e

d

is
t~

ib
u

ti
ve

ru

le

to

t
r
a
n
s
f
o
r
m

7
w
+
3
+
E
w

i
n
t
o

(
7
+
6
)
W
+
3
.

i
T
h
l
s

g
o
a
l

t
r
a
n
s
f
o
r
m
e
d
 7

w
+
3
+
6
w
=
2
/
9

t
o

1
3
w
+
3
-
2
/
9
.

b
~

~
D

b
~

293

At the heart of our current implementation of task sequencing is a set of rules
of the form "if <conditions>, then <actions>". The <conditions> include various
tests and predicates on student performance, while the <actions> are recommen-
dations about how the tutor should adjust the current lesson skills that are being
using to generate tasks for the student. In the next section we describe the meas-
ures of student performance that enter into the <conditions> of the rules. The fol-
lowing sections discuss the <actions> in more detail and show how tasks are
actually generated.

Implementation of student performance measures

As a student answers an algebra problem we record several kinds of information.
Individual problem records are accumulated into student histories. Student histo-
ries are retained in f'des and may extend across many lessons. The records consist
of relatively superficial pieces of information about the student's performance, in
the sense that they contain no abstract inferences, only "facts". Thus, student
modeling, or diagnosis of the misconceptions underlying student performance,
plays no part in the current task sequencing structure. Since student modeling is
bypassed, these measures act directly as input to the pedagogical rules that decide
which skills to focus on at any given time.

The intelligent tutor records many different kinds of information for each ques-
tion the student answers:

- (A) The question itself.

- (B) The skill set that generated the question (see the section on skill sets).

- (C) Whether the student answered the question acceptably or not.

- (D) A list of invalid steps the student generated in answering the question.

- (E) A list of the inappropriate steps the student generated in answering the
question. An inappropriate step is one that is logically valid, but which does
not get the student closer to a solution.

- (F) Number of times the student asked the tutor to do a step in the solution of a
problem before the student obtained a correct answer by himself or herself.

- (G) Number of times the student asked the tutor to go back to some previous
step in a solution.

- (H) Number of times the student asked the tutor to elaborate a step that the
tutor has done in a solution. Elaborations give the student more detail about the
tutor's reasoning, often indicating that the student has not understood the
tutor's actions.

- (I) Number of times the student asked the tutor to explain a step that the tutor
executed in solving a problem.

294

- (J) Number of times the student asked the tutor to give a hint about what to do
for the next reasoning step.

- (K) Number of times the student asked the tutor to indicate whether or not a
step done by the student was correct.

- (L) Post-solution queries. All the above requests for information are counted
only before the student has obtained the correct final answer. The same
requests after the right answer has been obtained have a different intent than
"pre solution" queries and are accumulated here.

- (M) Total time required to solve the question, and the time required for each
step or action within a solution.

These raw measures are not used directly in the rules governing task sequencing.
Instead, a score is computed for each question, using these factors, and the score
enters into the conditions of the rules. The score for a question is computed using
the following formula:

if C = "no", score = 0
otherwise, score = max(0, 100 - (20*D+10*E+10*F+5*J))

If the student answers the question incorrectly, he or she scores 0. Otherwise,
the student may get a maximum of 100 for a question, with points taken off for
various kinds of mistakes made and assistance received. Each invalid step costs
20 points; each inappropriate step costs 10 points; each request asking the tutor to
do a problem solving step for the student costs 10 points; and each request for a
hint costs 5 points. No other requests enter into the score for a question. Scores
for a question are not shown to a student, but are used only for internal
computations.

The weightings in the formula were determined empirically. In our classroom
experience, they resulted in assessments of student performance that enabled the
tutor to generate sequences of tasks that appeared natural to students and observ-
ers. The value of the formula is that it includes a variety of factors that are not
usually available to CAI programs that assess student performance (e.g., number
of inappropriate steps, number of requests for explanation). Most of these factors
are available from the algebra expert system embedded in our tutor. In spite of
these advantages, we view the formula as a short-term solution that is subject to
change. Little importance should be associated with the specific weights assigned
to the various factors, or even to the decision to exclude some factors while
including others. For example, the number of explanations the student requests in
arriving at an answer might be a reasonable indicator of his strength on a particu-
lar skill. Hence, in the future, we might wish to include that factor in our compu-
tation. Such changes will be made as we see how the formula performs with
students in a classroom setting. A more ambitious change we hope to consider
shortly is to eliminate use of quantitative measures of performance, in favor of
more qualitative judgements.

295

Implementation of the skill network

The measures of student performance discussed in the previous section are refer-

enced in the conditions, or antecedents of rules, that the tutor uses to reason about
task sequencing. The actions, or consequents of the rules, reference the skills that
should be the topic of subsequent tasks, given the current conditions. Skill sets are
lists of basic algebra skills, some of which are outlined in Table 1.

The skills in Table 1 are a sample of. a relatively large number we have com-
piled to cover the whole range of equations in basic algebra. We emphasize that
they constitute a reasonable analysis of the subskills required for this simple
domain, but not the only possible analysis. We used our intuitions, and observa-
tions of students in classroom settings, to decide which properties of equations are
important enough to establish a distinct skill. For example, we decided that x--4=5
differs from x+4=5 with respect to the skills required to solve it, because moving
a positive term to the other side seems a cognitively distinct skill from moving a
negative term. On the other hand, we decided that x-4=5 is not different than
x-3=5 because we expect that skills for moving negative terms generalize
trivially to different integers.

Table 1. Skill sets (lists of basic algebra skills)

Skill Example Description

isolate+pos x+2=5

isolate+neg x-2=5

isolate+sc x+O=5

isolate*pos 2x=4

isolate*neg -2x=4

isolate*pos-sc x=4

isolate*neg-sc -x=4

Isolating a variable by moving a positive number added to it to
other side.

Isolating a variable by moving a negative number added to it to the
other side.

Special case of simple isolation with 0

Isolating a variable by moving a positive number multiplied to it to
the other side.

Isolating a variable by moving a negative number multiplied to it to
the other side.

Special ease where coefficient to be moved is an implicit 1.

Special ease where coefficient to be moved is an implicit -1.

296

Neither of these decisions is necessarily correct. Their plausibility rests on
psychological assumptions about learning and problem solving. For instance, if
students easily generalize from moving a positive number to moving a negative
number, then x-4=5 should not be treated differently than x+4=5 and one subskill
for moving added terms, not two, should be posited. However, we have observed
that students generalize very slowly. For a long time, they see moving a positive
term as different than moving a negative term. Eventually, these skills may gener-
alize into one procedure, possibly using composition and generalization tech-
niques, such as those described by Anderson (1982). However, in our analysis of
component subskills of algebra we are concerned with representing the skills of a
student who is still learning how to solve equations, not with those of an ideal
problem solver. Thus, our subskills often distinguish cases which might be logi-
cally subsumed by a more general skill.

While students do learn individual skills, it is also important for them to prac-
tice sets of skills together. For examplt, after students have mastered questions
that exercise i s o l a t e + (e.g., x-5=9), and i s o l a t e * (e.g., 2x=8), they should
work problems that tap both skills (e.g., 2x-5=8). We have defined skill sets to
encode such compounds (including degenerate compounds with only one mem-
ber). In the current task sequencing structure, skill sets, not individual skills are
the focus of tutoring.

We have compiled a database of skill sets representing all the sets we might
wish to tutor in basic algebra. Our database of skill sets does not include all logi-
cally possible skill compounds, since only a few skills are reasonable to teach
together. For example, a task that elicits the compound [i s o l a t e + , e v a l +]
(e.g., x+3 = 5-4) is probably useful; however the compound [i s o 1 a t e +,
e v a l + , e v a l + , e v a l + , e v a l +] (e.g.,x+3+4= 4+5+7) is probably not.
Thus the skill set database encodes an important pedagogical decision about
which skill compounds are good goals for teaching, and which are not.

The skill set database is not a random collection of skill sets. Instead, it is a net-
work, where skill sets are connected to other sets by various relationships. This is
shown in Figure 3 which represents a portion of the skill set network of linear
equations. Each node represents a skill set (in parentheses), and gives an example
question that would elicit the set. Connections between nodes denote different
kinds of relationships between skill sets. "S" indicates that one set is a
specialisation of another; "G" indicates that one set generalises another; and "C"
means that a skill set is a compound of several others. Arcs labeled "P" indicate
that one set is a prerequisite for another.

Skills in braces "{ }" represent skills that necessarily combine with others in the
set. Other non-singleton sets are deliberate combinations. In both cases, a
pedagogical decision has been made that the combination is worth teaching
explicitly.

297

2x+3x=5
(collect+pos, {isolate*pos})

/ * X .
S

2X+X=5
(colleet+pos-sc)

-2x-3x=5
(collect+neg, {isolate*neg])

G G S

2x-3x=5
(collect+, I isolate* 1)

C P

2x-x=5
(collect+neg-se)

2x-3x=5-4 2x-4+3x=l
(collect+,eval+) (collect+nurn, {isolate+})

c - ' T " c

2x--4+x=5
(collect+pos-sc, collect+num)

2x+3x-4+x=5
(collect+posse, collect+multi)

2x+4+3x--4x=4 2x-4-x=5
(collect+multi) (collect+neg-sc, collect+nurn)

A
C C

2x+3x--4-x=5
(collect+neg-sc, collect+multi)

Figure 3. Skill set network (collect component)

The collect group of skills reduces multiple occurrences of a variable to a
single instance. Several skills for complex types of collection are included.
c o l l e c t + n u m collects two occurrences of a variable, when a number is
interpolated, c o l l e c t + m u l t i collects more than two occurences of a variable,
with interpolated numbers. This group has the isolate group as a prerequisite.

As Figure 3 indicates, the relationships between skill sets fall into several dif-
ferent categories.

- Specialization (labeled "S" in Figure 3). One skill (or set) is a specialization of
a given skill if it applies to tasks that are special cases of the tasks to which the
given skill applies. For example, collecting terms with an implicit coefficient
(e.g., 2x+x=lO) is a special case of collecting terms with integral coefficients
(e.g., 2x+3x=10). Thus, the skill eollect+pos-sc is a specialization of
c o l l e c t + p o s . It is not necessary that students learn special-case skills,
since there is a general skill that takes care of all regular and special cases.
However, empirically, special cases are treated quite differently when students
are learning. Students typically are taught, and learn, special case skills after
learning regular-case skills.

298

- Generalization (labeled "G" in Figure 3). One skill (or set) generalizes a given
set of skills if it applies to the union of the set of tasks to which the skills in the
given set apply. For example c o l l e c t + applies to exactly the union of all
tasks to which collect+pos and collect+neg apply.

- Compound (labeled "C" in Figure 3). One skill set is a compound of two (or
more) other skill sets if the skills in the compound are a union of the skills in
the components. Note the subtle difference between generalization and com-
pound. One skill generalizes another if the tasks to which it applies are the
union of the problems to which the less general skills apply. Either
(c o l l e c t + n e g) or (c o l l e c t + p o s) (but not both) will apply to a problem
that is appropriate for (c o l l e c t +). On the other hand, compounds represent
unions of skills. For example (c o l l e c t + , e v a l +) is a compound of the
skill sets (c o l l e c t +) and (e v a l +) . An appropriate problem for this com-
pound skill (e.g., 2x-3x=5-4) will elicit both component skills.

- Prerequisite (labeled by "P" in Figure 3). The notion of a prerequisite is not as
well-defined as specialization, generalization or compound. Roughly, one skill
(set) is prerequisite to a given skill if the problems for the given skill are harder
than that for the skill or set. For example, a problem like 2x+3+5x=6 is more
complex than 2x+5x=6; consequently we say the skill collect+ is a prerequisite
for collect+num. The prerequisite relationship is distinct from both generaliza-
tion and specialization. Unlike generalization, the problems to which a prereq-
uisite skill applies are not a subset of the more complex skill; a prerequisite
skill applies to a different and simpler set of tasks. Nor is a prerequisite skill
identical with a special-case skill. Prerequisite skills are easier to learn than
more complex ones; special case skills are harder to learn than regular case
ones.

Implementation of pedagogical rules and lesson updating

The pedagogical rules for the current task sequencing structure can each be
thought of as functions that map current skill state information and student perfor-
mance information onto a new skill set state. Two skill set constructs are refer-
enced: (i) the most recent skill set used to generate a question (Sk), and (ii) the
lesson stack (LS). The lesson stack stores skill sets, and permits the tutor to sus-
pend one tutorial goal (i.e., a skill set), interpolate another goal (i.e., focus on a
new skill set), then resume the original goal.

The following are rough English translations of the rules used in the current
task sequencing structure.

(1) If Sk is null and the student has done no previous questions

then Sk to be a skill set with no prerequisites.

299

(2) If Sk is null and the student has done some previous questions

then set Sk to be the skill set associated with the last question type.

(3) If the student's score on the last 3 questions totals 0
and they are all from the same skill set (Sk)

then push Sk on the lesson-stack and set Sk to be a simpler skill set.

(4) If the student's score on the last 6 questions totals < 350
and they are all from the same skill set (Sk)

then push Sk on the lesson-stack and set Sk to be a simpler skill set.

(5) If the student's score on the last 4 questions totals 370
and they are all from the same skill set (Sk) and the LS is not empty

then pop the LS and set it as Sk.

(6) If the student's score on the last 4 questions totals 370
and they are all from the same skill set (Sk) and the LS is empty

then select a more complex skill set.

The rules are no doubt too simple to yield intelligent task sequencing in all
cases. However, they provide a reasonable starting point and are easily modified.
Gathering data on their performance in the classroom will permit us to experiment
with various rule sets and improve them in a principled way.

Rule (1) enables the tutor to "bootstrap." If it knows nothing about the student,
it figures the student is a beginner and decides to tutor skills that assume no previ-
ous knowledge. Rule (2) is similar. It says that if you know nothing other than the
last question done by the student, use the skills it exemplifies to generate a new
question. Rules (3) and (4) tell the tutor when the student's performance is poor
enough to merit going to simpler skills. Note that the current skill set is not aban-
doned. Rather, it is remembered on the lesson stack and, when the student has
shown mastery of the simple skills, the tutor will return to the remembered set.
Rule (5) permits skill sets to be restored from the lesson stack, while rule (6)
selects new skill sets when the student has mastered the current ones.

The above English specification of the task sequencing rules leaves considerable
ambiguity. In particular, notions like "a simpler skill" and "a more complex skill"
are vague. The skill network structure permits us to explicate these terms more
precisely. Simpler skills are those a tutor might want to revert to, should the given
set prove too difficult for a student. Given our skill network, skill-set 1 can be
simpler than skill-set 2 in four distinct ways: (i) skill-set 1 might be a prerequisite
for skiU-set2, (ii) skill-set 2 might be a compound skill that includes skill-set 1,
(iii) skill-set 2 might be a specialization of skill-set 1, or (iv) skill-set 2 might be a
generalization of skill-set 1. Similarly, more complex skill sets than a given set,
skill-set 1, are simply all those skill sets that have skill-set 1 as a prerequisite, or

300

which generalize, compound, or specialize skill-set 1. Generally, relationships
among skill sets imply important pedagogical constraints, as did our decision to
include only a few of the logically possible skill combinations in the skill set data-
base. The relationships tell the tutor which skill sets are natural tutorial goals
when a given skill set has been learned satisfactorily or poorly.

Because the different types of relationships among skill sets define four ways
in which a skill set can be simpler or more complex than another, the skill set net-
work, by itself, does not uniquely determine which simpler or more complex skill
we should select when we must change the current skill set. Many strategies are
possible and we should look to expert human tutors for answers to a variety of
implied questions. For example: is it best to introduce special cases of a skill
immediately after the regular skill has been taught? Or should the teacher quickly
introduce problems that exercise the new skill compounded with other important
skills? Similar questions arise when the tutor has to find a simpler skill set for the
student.

In the absence of any justified choice, when trying to find a simpler skill set,
the tutor first tries to find skill sets for which the current skill set is a compound.
In other words, it prefers to back off to simpler skill sets that are components. If it
cannot find a component skill set, it will pick a set that is simpler in any of the
other three senses. In selecting a more complex skill set, it chooses from speciali-
zations, generalizations, compounds or prerequisite successors at random.

We ~ regard the current implementation of simpler and more complex skill sets
to be interim solutions, of no great importance by themselves. More important
than any specific such implementation is the fact that we have defined a language

in which many different implementations can be defined. Below, under "Future
directions", we discuss in more detail how our approach to task sequencing can be
viewed as a language in which several interesting problems about task sequencing
can be posed, and a technology for implementing and testing answers. -

Implementation of task generation

In the current task sequencing structure, task (i.e., question) generation is the final
step in choosing a new task for the student. Prior to task generation, all measures
of student performance for the previous question have been computed, and the
above pedagogical rules have been executed to modify the current skill set and
lesson stack. To select an appropriate question now becomes a matter of generat-
ing a question that, if solved correctly by the student, will elicit the skills in the
current skill set.

Task generation in the algebra tutor has been relatively simple to achieve. We
have defined a library of question types (qtypes). Each qtype has associated with
it an abstract pattern and a list of skills. Below is an example of a qtype, repre-
sented in standard infix notation:

301

pattern: { {?integer * ?variable + ?integerl} = ?integer2 * ?variable}

skills: (attract+pos collect+ isolate*)
The pattern can be thought of as a template that instructs the tutor in putting

together a specific question. All terms beginning with a "?" are pattern variables
that the tutor will replace with specific items when creating a new problem.
Pattern variables like "?variable" tell it to create a variable name by selecting at
random from its known list of variable names (e.g., u, v, w, x, y). Multiple
appearances of the same pattern variable must be replaced by the same term.
Pattern variables of the form "?integer" mean the replacing term should be an
integer, while "?+integer" means the replacing term should be a positive integer.

Adhering to these rules, the tutor might use the pattern above to produce the
following problem:

{ {2y+3} --- 9y}
The brace constructs (" { }") add further generality to the ability of patterns to

generate a diverse set of questions. The braces tell the tutor that the terms appear-
ing inside can be in any order. Thus, when generating a specific question, the
tutor randomizes the order of these terms. Assuming the given substitutions for
the template shown above, the actual questions the tutor generates could be any
of:

2y+3 = 9y

3+2y = 9y

9y = 2y+3

9y --- 3+2y
In general, a pattern template defines a large class of questions that can be gen-

erated, each embodying a few important properties, but otherwise random in its
appearance. The common properties of questions generated by a template insure
that a select set of skills will be exercised in solving its problems. This set of
skills is remembered as the skills list for each qtype. For example, the skills list
for the pattern described above says that each question will exercise skills for
attracting occurrences of a variable closer together, collecting like terms, and iso-
lating the variable. For instance:

2y+3 = 9y [given]

3 = -2y+9y [attract+pos]

3 = 7y [collect+]

3/7 = y [isolate*]
Using qtypes with such patterns and skill lists it is relatively simple to generate

a question from a given target skill set. The tutor simply takes the target skill set,
matches it against the skills list of the qtypes in our library, and selects the best
match. There may be several qtypes whose skills list contain the target skill set. In

302

such cases, we pick the qtype whose skills list has the fewest additional,
unmatched skills. Intuitively, we are selecting the question type that will exercise
our chosen skills and the fewest additional ones.

Future directions

The implementation described above is a first attempt to provide a task sequencing
structure for our intelligent tutor for basic algebra. It generates reasonable behav-
ior, but is limited in several respects. Here we summarize some main shortcom-
ings in the selected components of the .task sequencing structure and suggest an
agenda of future research topics.

The skill network

Our representation of mathematical skills is currently limited to one type.
Students learning algebra ultimately need to understand the basic axioms of math-
ematics, local heuristics for how to use the axioms in problem solving, and higher-
level meta-cognitive skills. At present, our intelligent algebra tutor supports the
learning of such skills (e.g., we can present the student with "buggy" solutions
and ask him or her to fix them). However, the task sequencing facility cannot yet
reason about how to combine the learning of higher- and lower-level skills. We
have currently limited ourselves to representing, reasoning about, and tutoring of
just the local heuristics. Whether our view of task sequencing can extend to these
important skills is a question we have yet to answer. Our approach is to begin to
decompose the metacognitive skills involved in algebra, much as we decomposed
the subject-matter skills, above. This task appears more challenging than the
subject-matter decomposition because the structure of metacognitive skills is rela-
tively poorly understood. Nevertheless, we are encouraged by our observations,
discussed in the earlier section "The role of task sequencing in learning", that
skills in a wide range of subjects appear amenable to a decomposition into related
components.

Within the realm of local heuristic skills, several improvements can be envi-
sioned. Our skill set network encodes which logically possible skill compounds
should be candidates for teaching. Ultimately, we would like to remove such
pedagogical expertise from these data structures and situate it in rules that can
generate reasonable skill combinations. In effect, then, the skill network could
disappear because it could be constructed as needed. This can be accomplished
only if it is possible to articulate general heuristics that experts use in deciding
which combinations might be pedagogically useful. If this ability is domain
specific, then the skill set network will probably remain unchanged.

303

Student modeling

As we noted earlier, the current implementation lacks any sophisticated capability
for computing student diagnostic inferences or for maintaining such inferences in
a student model. To rectify this shortcoming we can draw on our work and that of
other researchers in this area (e.g., Anderson, Boyle and Yost, 1985; Sleeman and
Smith, 1981). However, we anticipate that traditional work on student modeling
may be of limited value since the role we wish to ascribe to diagnosis is different
than its traditional role. Typically, student modeling is used to compute local
feedback for a student. Our choice to use it primarily for task sequencing may
force us to investigate new kinds of diagnostic inferencing capabilities.

Although inferring students' misconceptions from their overt behavior is
generally a difficult problem, situating it in the context of task sequencing may
simplify the process by providing "top-down" constraints (Wenger, 1987) on the
inferential process. For example, since our tutor now knows all the skills that a
given question should elicit, when looking for ways to interpret a student's
mistake, it can begin by looking to see if the student's performance would be pre-
dicted by any "buggy rules" (Brown and Burton, 1978) or "mal-rules" (Sleeman
and Smith, 1981) that are variants of the skills that should have been used. In
addition, the skills we have already explicitly represented are an ideal place to
store the buggy skill variants; hence accessing plausible interpretations of students'
vis~le errors should be an efficient process. Goldstein (1982) makes similar com-
ments concerning the potential role of his genetic graphs in student modeling,

Taskgenera~on

Our current question generation module does not comprise a complete task
generation facility in several respects. First, we are limited to the generation of
equations for the students to solve. The different kinds of tasks that a good human
tutor may use to help students are not yet considered in the current tutor. In the
future, we may develop a more sophisticated model that uses a distinct set of
pedagogical rules to decide what kind of task to employ and to determine the
coaching policy for the task, once a skill set is determined.

Although we are considering this modification, it still may be too simple to
account for the sophisticated skills of human tutors. Perhaps a tutor can first
decide that he or she is going to present a certain type of task, and only then
decide which skills to focus on. For example, the tutor could decide that in the
next task the tutor and student will share problem solving in some way, and then
decide that the task should exemplify some very complex skills, since the tutor
will be helping the student. If such cases arise, we will have to revise our theory,
since it says that computing the current skill set is independent of, and precedes,
task generation.

304

Second, question generation, while flexible, may be inadequately controlled.
Currently, the generator expects a list of skills as input, and computes a question
that should elicit those skills. All properties of the question not determined by the
given skill list are established at random by the generator. In particular, values for
variables and constants cannot be controlled. However, such control may be desk-
able. To take one instance, we have observed that human tutors generate simpler
questions that are maximally similar to complex ones that the student cannot
answer. For example, if the student fails to answer 2x+4 - 8, the tutor might back
off to 2x = 8 (McArthur and Stasz, 1987). The tutor is not only generating a ques-
tion with a simpler skill set, but also constrains the variables and constants in the
new question to be identical to those in the previous one.

Similarly, question generation must be expanded in the future to insure that
questions will not elicit skills outside the current skill set that the student has not
yet mastered. Currently, it just picks a question type that best matches the skill
set. While this seems to work in practice, it means that the qtypes and matching
hide an important pedagogical decision. When student model information is avail-
able, we will make the decision about which skills to exclude an explicit, reasoned
process.

Pedagogical rules

The pedagogical rules we use to determine changes to the skill set are naive. A
minor problem involves the use of nunibers in the rule antecedents (e.g., "If the
student's score on the last 3 questions totals 0"). It is probable that good human
tutors rely less on such quantitative measures of student progress and on more
qualitative assessments. A more important shortcoming is that the rules neither
implicitly or explicitly encode a significant theory of how tasks should be
sequenced. A rough paraphrase of the sequencing notions embedded in our cur-
rent rules might be: (1) If the student is doing well, select skill sets of increasing
difficulty; (2) if the student is doing poorly, interpolate tasks with simpler skills
until he does better; otherwise (3) continue working the current skill set. While
this view is probably not wrong, an interesting theory of task sequencing should
contain much more.

Collins, Brown, and Newman (1987) and Schoenfeld (1983, 1985) suggest
several additional ideas we may consider implementing. First, tasks should not
only be of increasing complexity, but of increasing diversity. In other words, we
should give tasks where the current skill set does not apply, after drilling students
on tasks where it does apply, to help students understand the range of applicability
of the skill. This idea could be implemented in our current framework by creating
rules that first would focus on a single skill set, then alternate that skill set with
"similar" or recently completed sets. Second, Collins et al. suggest that global

305

skills should be taught before local skills. For example, Lave (cited in Collins,
Brown and Newman, 1987) indicates that apprentice tailors first learn to create a
whole suit out of precut parts, before learning how to fashion the parts them-
selves. This ordering enables the learner to establish an overall "cognitive map"
for the local skills he or she is to learn. Implementing this idea in our current
framework of pedagogical rules is challenging because, in our skills network,
skills are all at the same level. A skill like e v a l + + is no more or less global than
collect+multi.

Although the present rules for task sequencing lack an interesting theoretical
basis, they have an important value. In a sense, we are not providing a theory of
how tasks should be sequenced as much as proposing a framework for represent-
ing different ideas about sequencing. Different rule sets can be easily constructed,
encoding a variety of different theoretical approaches. Since little research has
been done to describe the important features of intelligent sequencing, our frame-
work can provide a useful way of empirically testing out alternate ideas about

sequencing.

Acknowledgements

This research is being funded by the National Science Foundation (Applications of Advanced
Technologies Program). Views or conclusions expressed herein do not necessarily represent the poli-
cies or opinions of the sponsor.

We would like to acknowledge the insightful comments of Andrea diSessa and two anonymous
re~rlewers.

Notes

1. For purposes of this paper, we assume the information in knowledge sources is fixed.
This is not strictly true, since tutors can acquire new teaching knowledge. However, such
acquisition is independent of the issues dealt with in this paper.

2. In the sections describing the implementation of task sequencing in our algebra tutor, the
terms "task", "problem" and "question" will be used synonymously, since the only kinds of
tasks the tutor can now generate are algebra problems to be solved by the student.

3. Requests for reprints and other correspondence concerning this article should be
addressed to the first author.

References

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.
Anderson, J., Boyle, D. F. and Yost G. (1985). The geometry tutor, Proceedings of the Ninth

International Joint Conference on Artificial Intelligence.
Barr, A. M., Beard, M. and Atkinson, R. C. (1976). The computer as a tutorial laboratory: the Stanford

BIP project. International Journal of Man-Machines Studies, 8, 567-596.

306

Bell, A. W., Costello, J. and Kucbemann, D. E. (1983). A review of research in mathematical educa-
tion (Part A). Berks., U.IC: NFER-Nelson.

Block, J. and Bums R. (1976). Mastery learning. Review of Research in Education, 4, 3-49.
Brown, J. S. and Burton R. R. (1978). Diagnostic models for procedural bugs in basic mathematical

sldlls. Cognitive Science, 2, 155-192.
Brown, J. S., Collins A. A. and Harris, G. (1978). Artificial intelligence and learning strategies. In H.

O'Nefl (Ed.), Learning strategies. New York: Academic Press.
Burton, R. R. and Brown, J. S. (1982). An investigation of computer coaching. In D. H. Sleeman and

J. S. Brown (Eds.), Intelligent tutoring systems (pp. 79-98), New York: Academic Press.
Chambers, I. A. and Sprecher J. W. (1980). Computer-assisted instruction: current trends and critical

issues. Communications of the ACM, 23, 332-342.
Clancey, W. J. (1979). Tutoring rules for guiding a case method dialogue. International Journal of

Man-Machine Studies, 11, 25-49.
Clancey, W. J. (1983). "GUIDON". Journal of Computer-Based Instruction, 10, (1 and 2), 8-15.
Collins, A. and Brown J. S. (1986). The computer as a tool for learning through reflection. In H.

Mandl and A. Lesgold (Eds.), Learning issues for intelligent tutoring systems. New York:
Springer-Verlag.

Collins, A., Brown, J. S. and Newman S. E. (1987). Cognitive apprenticeship: teaching the craft of
reading, writing, and mathematics. In L B. Resnick (Ed.), Cognition and instruction: issues and
agendas. Hillsdale, N. J.: Lawrence Erlbaum Associates.

Collins, A. and Stevens, A. (1981a). Goals and strategies of effective teachers. In R. Glaser (Ed.),
Advances in instructionalpsychology (Vol 2). Hillsdale, N. J,: Lawrence Erlbaum Associates.

Collins, A. and Stevens, A. (1981b). A cognitive theory of interactive teaching. In C. M. Reigeluth
(Ed.), Instructional design theories and models: an overview. New York: Academic Press.

Gagnt, R. M. and Briggs, L. J. (1974). Principles of instructional design. New York: Hok, Rinehart
and Winston.

Goldstein, I. (1982). The genetic graph: a representation for the evolution of procedural knowledge. In
D. H. Sleeman and J. S. Brown (Eds.), Intelligent tutoring systems. New York: Academic Press.

Lawler, R. and Yazdani, M. (Eds.) (1987). Artificial intelligence and education: learning environ-
meats and intelligent tutoring systems. Norwood, N. J.: Ablex.

Matz, M. (1982). Towards a process model for high school algebra errors. In D. H. Sleeraan and J. S.
Brown (Eds.), Intelligent tutoring systems. New York: Academic Press.

McArthur, D., Stasz, C. and Hotta, J. (1987). Learning problem-solving skills in algebra. The Journal
of Educational Technology Systems,/5(3), 303-324.

McArthur, D, and Stasz, C. (1987). Tutoring techniques in algebra. Paper presented at the American
Education Research Association national conference, Washington De, April.

Mitre Corporation (1976). An overview of the TICCIT program. Report M76-44, Washington: Mitre
Corporation.

Newell, A. and Simon, H. A. (1972), Human problem solving. Engelwood Cliffs, N. J.: Prentice-Hall.
Ohlsson, S. (1986). Some principles of intelligent tutoring. Instructional Science, 14, 293-326.
O'Shea, T. and Self, J. (1983), Learning and teaching with computers. New York: Prentice-Hall.
Palmer, B. G. and Oldehoeft, A. E. (1975). The design of an instructional system based on problem-

generators. International Journal of Man.Machine Studies, 7, 249-271.
Peachy, D. and McCalla, G. (1986). Using planning techniques in intelligent tutoring systems.

International Journal of Man-Machine Studies, 24, 77-98.
Schoenfeld, A. H. (1983). Problem solving in the mathematics curriculum: a report, recommendations

and an annotated bibliography. The MathematicalAssociation of America Notes, No. 1.
Schank, R. and Abelson, R. (1977) Scripts, plans, goals, and understanding. HiUsdale, N. J.: Lawrence

Erlbaura Associates.
Schoenfeld, A. H. (1985). Mathematicalproblem solving. New York: Acadeinic Press.
Shute, V. and Glaser, R. (1986). An intelligent tutoring system for exploring principles of economics.

Technical Report: Learning Research and Development Center, University of Pittsburgh,
Pennsylvania.

307

Sleeman, D. H. and Smith, M. J. (1981). Modeling student's problem solving. Artificial Intelligence,
16, 171-188.

Smith, R. (1986). The alternate reality kit: an animated environment for creating simulations.
Proceedings of the 1986 IEEE Computer Society Workshop on Visual Languages, 99--106.

Stallings, L A. and Stipek, D. (1986). Research on early childhood and elementary school teaching
programs. In M~ Wittrock (Ed.), Handbook of research on teaching (3rd edition). New York:
MacMillan,

VanLehn, K. (1983). Felicity conditions for human skill acquisition: validating an AI-based theory.
Doctoral dissertation, MIT, Cambridge, MA.

VanI~hn, K. (1987). Learning one subprocedure per lesson. Artificial Intelligence, 31, 1--40.
Wenger, E. (1987). Artificial intelligence and tutoring systems. Los Altos, CA: Morgan and

Kaufmann.
Wescourt, K., Beard, M. and Gould, L. (1977). Knowledge-based adaptive curriculum sequencing for

CA.I: applicatic~a of a network representation. Proceedings of ACM, 77, 234-240.
Wool.f, B. and McDonald, D. (1984). Building a computer-tutor: design issues. IEEE Computers,

September, 61-73.

