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Abstract 

Will a more risk-averse individual spend more or less to improve probabilities, say on marketing efforts that 
enhance the chance of a sale? For any two payoffs and starting probabilities, the answer is unfortunately 
indeterminate. However, interpreting gambling as increasing small chances of good outcomes and insurance as 
reducing small chances of bad outcomes, the more risk-averse individual will pay less (more) to gamble 
(insure). We find a critical switching probability that depends on the individuals and outcomes involved. If the 
good outcome is less (more) likely than this critical value, the expenditures represent gambling (insurance). 
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Many a dollar is spent to shift probabilities. Airlines put money into maintenance to 
reduce the chance of a crash. Businesses court clients to enhance the probability of a 
sale. A homeowner installs a lightning rod to diminish the likelihood that a fire will 
destroy his home. A would-be model pays a professional photographer to prepare a 
lavish portfolio that she hopes will impress agencies. 

Do such expenditures represent gambling, or are they a form of insurance? We nor- 
mally think of gambling as paying a small amount to obtain a small probability of a big 
prize. Insurance also involves a small expenditure and a low-probability outcome, but  its 
purpose is to ameliorate an otherwise adverse outcome. Under such an interpretation, 
the lightning rod is insurance; the model's portfolio is a gamble. But there is also a 
distinction to be made from the traditional literature (which is excellently surveyed by 
Hirshleifcr and Riley, 1979). Gambling and insurance in the standard paradigm are 
defined as transfers of resources across contingencies when probabihties arefixed. In our 

*Zeckhauser's research was supported in part by the Bradley Foundation. After this work was essentially 
complete, we encountered working papers by George Sweeney and T. Randolph Beard of Vanderbilt Univer- 
sity, titled "Self-Protection in the State-Independent Expected Utility Model," and "Self-Protection, Risk 
Aversion, and Caution," which address some of the issues in this article. A referee provided helpful comments. 
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examples, by contrast, the essence of the transaction is to pay a sum to change the 
probabilities for the better. 

In the context of insurance, such expenditures have been described as loss prevention 
or self-protection (see Ehrlich and Becker, 1972). It has long been noted that the pur- 
chase of insurance through markets leads to a reduction in loss-prevention efforts, a 
process labeled moral hazard (see Arrow, 1963; Pauly, 1968). Our concern in this analysis 
is the link between risk aversion and the nature and magnitude of loss-prevention 
expenditures. 

We shall focus here on situations in which all expenditures and outcomes are mea- 
sured in dollar equivalents. With dollars (or any single numeraire) as a metric, the theory 
of risky choice and risk aversion is well established. A rational individual maximizes his 
expected utility. A utility function u is defined to be more risk averse than v if the 
certainty equivalent of every lottery is less for u than for v. Equivalently, at every wealth, 
the lotteries u would accept are a subset of those acceptable to v. (We adopt the short- 
hand of referring to an individual by his or her utility function and do not distinguish 
between "more risk averse than" and "at least as risk averse as," etc.) 

How does risk aversion affect choices when the decision maker pays money to improve 
his chances (i.e., to make favorable outcomes more likely)? Is the influence of risk 
aversion here the same as when probabilities are fixed? One might think an expenditure 
to improve chances (such as the business's courting of clients) represents a gamble and as 
such would be more attractive to less risk-averse decision makers. Alternatively, how- 
ever, one might regard the expensive marketing effort as a form of insurance against the 
loss of clients, an expenditure attractive to the more risk-averse business. Without fur- 
ther elaboration, such expenditures apparently cannot be categorized as either insurance 
or gambling. 1 

In this article, we investigate how well our conventional intuition, developed from the 
fixed-probabilities case, applies to probability-improving outlays. Here, too, it turns out, 
the more risk-averse decision maker will be more prone to insure, the less risk-averse to 
gamble, provided that we understand when an expenditure represents a gamble, and 
when insurance. That is, the more risk-averse individual pays less to secure a small 
chance of a good outcome, but pays more to avoid a small chance of a bad outcome. We 
shall demonstrate that this intuition is correct, but defining a "small chance" is crucial. 
We develop a definition in the form of a critical switching probability, which depends on 
the individuals and outcomes involved. Above this value, odds-improving expenditures 
reduce the probability of a failure to a low-enough level that they are properly regarded 
as insurance, and hence more attractive to the more risk averse. Below this critical value, 
the probability of success is small enough that odds-improving expenditures can be re- 
garded as gambles, and therefore more appealing to less risk-averse individuals. Spend- 
ing more, it should be noted, worsens the worst possible Outcome. In this sense, such 
spending is risk-taking behavior, and when the more risk-averse individual spends more, 
he is taking greater risk. 

The two extreme cases of the foregoing result say simply that the more risk-averse 
individual will choose a riskless portfolio if either party does, as the definition of more 
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risk averse requires (see above and theorem 1 below). These cases suffice to show that 
with u more risk averse than v, it is always possible to construct examples of options to 
purchase more favorable probabilities at higher cost where u spends more than v, and 
others where he spends less than v. Riskless options are seldom available or affordable, 
however. Installing the lightning rod protects against lightning fires, but not against fires 
caused by poor wiring: some risk remains. Our main concern is what we can say about 
gambling and insurance behavior when there are residual risks. 

1. Formulation and results 

For simplicity, we consider situations with but two outcomes, x1 andx2. The probability of 
receiving the greater value x2 depends on how much one spends, z, according to a func- 
tionp(z). Thus, the net payoffwill bex2 - z with probabilityp(z) andxl - z otherwise. It 
is assumed that u is more risk averse than v over an interval including all possible 
outcomes. 

1.1. Who spends more is indeterminate 

We show (theorem 2) that, given any outcomes Xl and x2, and any nonequivalent utility 
functions u and v, there exists a probability purchase functionp(z) such that u spends less 
than v, and another functionp*(z) such that u spends more than v. We demonstrate this 
in cases where the more risk-averse individual chooses a riskless portfolio at one extreme 
or the other. Obviously, small perturbations away from zero risk could give us the same 
result without employing riskless portfolios. (Dionne and Eeckhoudt (1985) had previ- 
ously provided explicit exampleS of the counterintuitive result that the more risk-averse 
individual may spend less on risk-reducing activities.) 

1.2. Ambiguity of  gambling and insurance 

Interestingly, for any pair of gross payoffs xl and x2, any cost z < x2 - x~, and any 
probability level Po, 0 < Po < 1, there exist utility functions u and v and a probability 
purchase function p(z) such that v chooses p(z) = Po, while u is more risk averse and 
choosesp(z) either larger or smaller thanpo, as desired. (Theorem 4 produces a stronger 
result, which allows the functionp(z) to be given as well.) Evidently, therefore, a partic- 
ular instance of spending to shift probabilities cannot unambiguously be regarded as 
gambling or insuring, except in the extreme cases where spending to achieve certainty is 
insurance and spending that forgoes certainty is gambling. 
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1.3. Single-sw#ching, critical-probability results 

If we relinquish the idea that our exogenous intuition can assess when the probability of 
success is sufficiently high (10w) that expenditures are insurance (gambling), some regu- 
larity returns. Basically, the more risk-averse individual will pay more when the likeli- 
hood of the good outcome is above an endogenous threshold and less when it is below. 
We state this proposition more formally as our single-switching result mentioned above. 
Assume thatp(z) is sufficiently well behaved that u's expected utility is a single-peaked 
function ofz. For any two utility functions and any two net outcomes Wl = Xl - z and w2 
= x2 - z with w2 > Wl, there is a critical probability, call itps, such that if the optimal 
purchases for v secure these net outcomes coupled with a probabilityp~ of winning w2 
that is greater than Ps, then optimally u spends more than v. Thus p~ > Ps defines 
expenditures as insurance, and the more risk-averse person buys more insurance. On the 
other hand, ifp~ < Ps, then such expenditures are gambles and optimally u spends less 
than v. Even if the functions giving the individuals' expected utilities as a function of 
expenditure are not single-peaked, u has positive marginal return toz atps ifp~ > Ps, and 
u has negative marginal return there ifp~ < Ps (see theorem 3(b)). 

Moreover, we can compare two arbitrary levels of expenditure without an assumption 
of single-peakedness or a restriction to marginal changes. We obtain a similar result 
(theorem 3(a)), now utilizing a pair of critical probabilities. Specifically, for any two utility 
functions, and any two expenditure levels y and z with y < z, there exist two critical 
probabilities py and pz such that if u prefers z to y and v prefers y to z, then the probabil- 
ities p(y)  and p(z)  must exceed the respective critical probabilities, while the reverse 
preferences are only possible for p ( y )  < py and p(z)  < Pz. Figure 1 illustrates this 
relationship between the preferences of u and v. In the figure, the indifference line for v 
must be steeper than that for u. This fact leads to theorem 3(a). 

1.4. Multiple Iocal optima 

The above critical probability results are simplest when expected utility has only one 
local optimum as a function of the expenditure z (the single-peaked case). Some intuitive 
insight into the possibility of multiple local optima and the effect of risk aversion thereon 
can be obtained by considering marginal benefits and marginal costs separately. The 
expected utility maximizer may be regarded as comparing 

Marginal Benefits (MB) = p'(z)(u(w2) - u(wl)) 

and 

Marginal Costs (MC) = p(z)u'(w2) + (1 - p(z))u ' (wl) ,  

where both margins are measured in utility terms. (Equating MB and MC yields equation 
(28) of Ehrlich and Becker (1972), p. 639.) Standardizing (dividing) by u(w2) - U(Wl) does 
not change their relative magnitudes, even though wi = xi - z depends on z, and gives 
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Figure 1. Possible preferences between two expenditure levels z andy. 

Standardized Marginal Benefit (SMB) = p'(z) 

and 

Standardized Marginal Cost (SMC) = p(z)s2(z) + (1 - p(z))sl(z), 

where Si(Z) = U ' ( W i ) / ( U ( W 2 )  - -  U(W1)), the ratio of the slope of u at wi to the change in u 
o n t h e  interval (Wl, w2), i = 1, 2. I fu  is risk averse, thens l  (z) > 1/(x2 - Xa) > sz(z) > 0. 
The  more risk averse u is, the more the si(z) differ from 1/(x2 - xa). After  rescaling, Sl(Z) 
and s2(z) can be interpreted as (nonlocal) measures of risk aversion, relating specifically 
to two-point gambles on wl and w2, with infinitesimal probability on w2 and Wl, respectively. 

Ifp(z)  exhibits diminishing returns to expenditure, then SMB is positive and decreas- 
ing, and it is as smooth (or rough) asp '  is. SMC is a weighted average ofsl(z)  and s2(z). As 
z increases, the weight on the smaller, s2(z), increases. This tends to make SMC decreas- 
ing inz. The  more  risk averse u is, the greater are Sa - s2 and this tendency. On the other  
hand, if u has decreasing risk aversion, then Sl is an increasing function and s2 is a 
decreasing function. This tends to make SMC increasing in z wherep(z )  is small. The  
more rapidly risk aversion decreases, the greater  this tendency. Thus it appears that 
multiple local optima can occur more  easily the larger risk aversion is, the more  rapidly it 
decreases, and the morep(z)  varies for0  < z < x2 - Xl. (Local irregularities can multiply 
optima as well, of  course.) 
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For u(x )  = -e-CX (constant risk aversion), we obtain 

SMC = c ( K  - p ( z ) ) ,  

where K = 1/(1 - e cxl -cx2 > 1. Comparing this SMC to SMB, we see that multiple local 
optima are clearly possible even when risk aversion is constant andp(z) exhibits dimin- 
ishing returns. 

2. Conclusions 

Our four theorems taken together tell us a great deal about the relationship between risk 
aversion and behavior in the common situations in which one can pay to shift probabil- 
ities. First, the more risk-averse individual may purchase a riskless portfolio when the 
less risk-averse person does not, but not vice versa. Second, when some risks persist, as in 
most situations, merely knowing that one individual spent more than another to improve 
probabilities does not tell us whether such behavior is properly thought of as gambling or 
insuring. Third, if a good outcome is likely enough, so that we are essentially in an 
insurance situation, the more risk-averse individual spends the larger amount to improve 
his or hcr chances. By contrast, if the likclihood of the bad outcome is sufficiently large, 
expenditures essentially represent gambles and the less risk-averse individual will spend 
more. Fourth, one cannot diagnose any behavior in a vacuum as constituting either 
gambling or insurance. How likely is likely enough to make an expenditure insurance will 
depend on the degree of risk aversion of the individual observed and the reference 
group. Sharper demarcations would not seem to be available. 

These results, we believe, accord with intuition. In a more general vein, they suggest 
that examining how individuals behave in the types of real situations in which expenditures 
shift probabilities may provide an insightful way to study behavior toward risk. It is reassur- 
ing that the classic concept of risk aversion bears a natural relationship to such behavior. 

Appendix: Theorems and proofs 

Assume in theorems 1 through 3 that u is strictly more risk averse than v on an interval 
including all possible outcomes. 

Theorem 1. Given any choice set with all outcomes in (Xl, X2) , if v chooses a riskless 
portfolio, then u does also. 

This is an immediate consequence of the fact that if u is more risk averse than v, then 
u prefers a certainty to a lottery whenever v does. (In the nonstrict case, this is an 
equivalence, essentially the definition, and theorem 1 still holds up to indifference in the 
conclusion.) 

Assume hereafter that the choice to be made is a value of z, which yields outcomex2 - z 
with probabilityp(z) andxl - z otherwise, wherep is an increasing function withp(0) = 0. 
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Theorem 2, 
(a) There exists ap  such thatp(z) = 0 is optimum for u butp(z) > 0 at the optimum 

for v. 
(b) There exists ap  such thatp(z) = 1 is optimum for u butp(z) < 1 at the optimum 

forv. 

Proof of  theorem 2(a). Let U(z) be the expected utility if u spends z, and similarly for V(z). 
Then - 

U(z) = p(z)u(x2 - z) + (1 - p(z))u(xl - z) (1) 

U'(O) = p'(O)[u(x2) - U(Xl)] - u'(x D 

.'(xD 
U'(0) > (< )0 i f fp ' ( 0 )  > ( < )  u(x2)-U(Xl) 

~ ' ( x 0  ~ ' (~1)  
V'(0) > 0 > U'(0) if V(X2 )_I~(X1 ) < p '(0)  < bt(Xz)_U(Xl). 

Choosep(z) to satisfy this condition. U(z) < U(0) and V(z) > V(0) for small z. Letp(z) 
increase so slowly that U(z) < U(0) for allz. The result follows. The condition is possible 
by Pratt's (1964) theorem l(e) or equation (21) or Pratt (1988), section 4.1; alternatively, 

v{x2)-v(~) u(x2)-u(xl) - x,)[v,;xl) u,(xl)] v'(xD u'(xD - (x2 ¢(0  u'(t) 

u'(x) 
for some t~(xbx2), and this is strictly positive since v ~  is decreasing because u is more 
risk averse than v. Q.E.D. 

Proof of  theorem 2(b). Supposep(y) = 1. Letx[ = xi - y for i = 1, 2. Then 

V ' ( y )  = p ' ( y ) [ u ( x ~ )  - . ( x l ) ]  - . ' ( ~ ) ,  

U'(y) > ( < )  0 iffp'(y) > ( < )  u'(x~) u(x~) -u(x~)' 
v' (xS) u' (xS_) 

V'(y) < 0 < U'(y) if v(x~)-v(x]) < P'(Y) < u(x~)-u(xi)" 

Choosep to satisfy this condition, but to increase so slowly that U(z) < U (y) for all z. 
The condition is possible for sufficiently smally, since 

V(X2)--V(xl) > U(X2)--U(xl) 
V'(X2) b/'(X2) 

by Pratt (1964), equation (22). Q.E.D. 

Corollary. Given any nonequivalent utility functions u and v, there exist xl, x2 and 
functionspl andp2 such that u will spend less than v forp~ and more forp2. 
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Proof I f u  and v are not equivalent, then there exists some interval [xl,x2] on which one is 
strictly more  risk averse than the other, so the two functions of  theorem 2 serve. (We 
assume u and v are smoo th - - say  thrice continuously different iable--al though this may 
not be necessary.) Q.E.D. 

Theorem 3. 
(a) Suppose 0 < y < z < X 2 - -  X 1 and let wl = Xl  - z ,  w 2 = x 2 - z ,  w 3 = x 1 - y, 

,w4 = x2 - y, uij = u(wi) - u(wj), vii = v(wi) - v(wj), and 

U31//121 - -  V31/V21 

py = V 43/V21_ U43/U21 , 

U31/U43 --  V31/V 43 

Pz = /121//143_ V21/V43 • 

Then 0 < py < Pz < 1. I f u  prefe rsz  toy,  and v prefersy  toz,  t henp (y )  > py andp(z)  
> Pz. The  opposite preferences implyp(y)  < py andp(z )  < Pz- 

U' (W1)/U21 -- V' (W1)/V21 
(b) Le tps  = v , ( w z ) / v Z l _ / 1 , ( w 2 ) / u 2 1 .  

I fp(z)  > ( < ) Ps and the marginal return to spending is positive (negative) for v, 
then so it is for u. 

Proof o f  theorem 3(a). Scale u and v so that/t21 = V21 = 1. B y  equation (1), u prefersy  to 
z iffp(z) < u31 + u43p(y). Similarly, v prefe rsy  t o z  iffp(z) < v31 + v43p(y). Since u is 
more  risk averse than v, we have u31 > v31, u43 < v43, and (1 - u3a)/u43 > (1 - v31)/v43. 
Hence,  the relationships shown in figure 1 hold. The  formulas for py, Pz where  the 
indiference lines intersect are easily obtained. The  result follows. Q.E.D. 

Proof o f  theorem 3(b). This follows from 3(a) by taking limits asy ---~z and asz  ---> y. For a 
direct proof, note that with the scaling Uza = v21 = 1. 

u '(z) = p ' ( z )  - p/1'(w2) - (1 - p )u ' (w l ) ,  
U'(z)  > (< )  0iffp'(z) > ( < ) p u ' ( w 2 )  + (1 - p ) u ' ( w l ) ,  

and similarly for v, w h e r e p  = p(z) .  Hence,  

U'(z) > ( < ) 0  > (<)W(z) 

is impossible if 

pu' (w2)  + (1 - p ) u ' ( w l )  - p v ' ( w 2 )  - (1 - p ) v ' ( w l )  > (<)0 .  (2) 
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Since u'(wl) > v'(wl) and u'(w2) < v'(w2), the left-hand side of  inequality (2) is decreasing 
as a function of/), positive forp = 0, and negative forp = 1. Letps be the value at which it is 
0. Then U' (z) > ( < ) 0 > ( < ) V' (z) is impossible forp  > ( < )Ps. Q.E.D. 

Theorem 4. Given anyxl ,x2 ,z ,  andp,  there exists a v for which z is opt imum if and only 
ifz < x2 - xl and for all t < z, 

/)(t) + (1 - p ( t ) ) ( z  - t)/(x2 - X l )  < p(z) .  

In regular cases, v can be chosen strictly monotone,  strictly concave, and twice (indeed 
infinitely often) continuously differentiable. Then there exists a more risk-averse u for 
which z is locally and globally too small, and another  for which z is locally and globally 
too big. 

Proof Let vo(w) = - m  for w < xl - z and vo(w) = min(w, x2 - z ) fo r  w >_ xl - z. Given 
the utility values at Xl - z and x2 - z, which can be chosen arbitrarily by scaling, vo has 
the minimum possible value everywhere. It follows that if z is optimal for any utility 
function, then it is optimal for vo. By straightforward algebra, z is optimal for vo if and 
only if the conditions given in the first sentence of  the theorem hold. The first sentence of  
the theorem follows. 

In regular cases, if vo is replaced by a sufficiently close, smooth approximation v, the 
opt imum will be close toz  and can be made equal toz  by reducing v(w) for w > ( < )Xl - 
z if the optimum is larger (smaller) than z. The regularity condition needed is that for all 
e > 0, the leeway in the inequality is bounded  away from 0 for t _< z - e. For this it 
suffices that the inequality hold and p be continuous, or  that the derivative of  the left- 
hand side be positive for t _< z, that is, 1 - p(t )  < p ' ( t ) ( t  + x2 - xl  - z). 

The last sentence of  the theorem can be proved as follows. (We omit details.) Let u(w) 
= v(w) for w _< x2 - z - e and elsewhere let u be slightly more risk averse than v. Then, 
for sufficiently small E, z is locally and globally too small. One can make u strictly more 
risk averse than v everywhere without losing this property by adding to u a sufficiently 
small multiple o f  any more risk-averse function. If w < x2 - z - e here is replaced by w 
-> Xl - z + e, the effect on the opt imum is reversed. Q.E.D. 

Note 

1. Ordinarily, insurance is actuarially unfavorable (reduces expected monetary, value) but reduces risk, while 
gambling increases risk and hence must be actuarially favorable to be desirable for a risk-averse decision 
maker. For probability-improving expenditures, however, actuarial favorability is not key, and we make no 
assumption about it. 
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