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Abstract 

Valuation formulas for age-specific mortality risks are derived from life-cycle allocation theory under 
uncertainty and related to empirical estimates of the value of life. A change in an age-specific mortality 
risk affects all subsequent survivor functions and reallocates consumption and labor supply over the 
entire life cycle. The value of eliminating a risk to life at a specific age is the expected present value of 
consumer surplus from that age forward. Approximate numerical extrapolations from cross-section es- 
timates imply that values decrease rapidly in current age and in the distance between current age and 
age at risk. 

Professional interest in cost-benefit analysis of safety, illness, and death prob- 
abilities had its origins in the environmental concerns and the growth of the 
medical sector of the 1960's as a practical matter, and in the pioneering work of 
Schelling (1968) and Mishan (1971) as an intellectual one. Subsequent work has 
followed two distinct lines. One, beginning with Usher (1973), has analyzed inter- 
temporal risks affecting life expectancy (Conley, 1976; Cropper, 1977; Ehrlich and 
Chuma, 1984; Arthur, 1981; Shepard and Zeckhauser, 1984; Moore and Viscusi, 
1988), where risks are implicitly evaluated at various points in the life cycle. The 
other uses simpler, atemporal models to guide empirical work (Jones-Lee, 1976; 
Thaler and Rosen, 1975; Viscusi, 1978). The relationship between the two is 
developed below. 

Section 1 briefly reviews the single-period model, and explores some unusual 
consequences of state-dependent preferences. The net difference in utility between 
life and death states is an essential aspect of preferences for life-risk valuation. 
Paradoxically, risk-averse people can actually prefer more life-risk gambles to less 
in order to convexify preferences in certain cases. The consumption elasticity of 
net utility is established as a key determinant of the value of life. 

Section 2 examines a deterministic life cycle model and establishes two points. 
First, intertemporal substitution possibilities in life cycle preferences determine 

I am indebted to A1 Harberger, Ken Judd, Kevin M. Murphy, and Kip Viscusi for helpful discussions. 
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the value of life extensions: greater substitution reduces the willingness to pay for 
life extensions because quant i ty  (life-years) and quali ty  (consumption per year) of 
life are better substitutes. Second, the marginal value of life extensions increase 
with age, a phenomenon that can lead to regret in old age from having voluntarily 
exposed oneself to irreversible risks when young. However, this is neither inter- 
temporally inconsistent nor irrational. 

Section 3 addresses the stochastic life cycle problem and derives valuation for- 
mulas for perturbations in age-specific death (hazard) rates. The value ofelirninat- 
ing a risk to life at a specific age is the expected present value of the additional con- 
sumer surplus it gives rise to. Using the fact that the value of a current (age- 
independent) risk is estimated by equalizing wage differences on risky jobs, sec- 
tion 4 imputes middle-of-life-cycle valuations of death hazards based on an ap- 
proximation of the valuation formula developed in section 3. Valuations of 
current risks decrease with age in this range of approximation. They also decrease 
with the future age of risk exposure. These calculations illustrate how to value risk 
exposures, such at to carcinogenic substances, that involve delays between initial 
exposure and subsequent risk. Suggestions for future research appear in the con- 
cluding section. 

1. Some consequences of normalization 

Valuing risks to life requires some unusual normalizations of preferences because 
utility is inherently state-dependent in this problem. The basic issues have not 
been thoroughly treated in the literature and are best illustrated in a one-period 
model (e.g., Bailey, 1980; Rosen, 1981). 

Consider a person without heirs or altruism toward others. There are two states: 
If an accident doesn't occur, the risk-averse person survives and enjoys utility 
a(c), where c is consumption. The person dies if an accident occurs, so it is 
meaningless to think of consumption. Instead, assign a constant M to utility in this 
state (with M <>- 0). Expected utility is 

E O  = p a ( c )  + (1 - p ) M ,  (1) 

where p is the probability of survival. 
In expected utility theory, preferences are independent of  states and the utility 

function is defined only up to an increasing linear transformation. When pref- 
erences are state-dependent, any increasing linear transformation is acceptable 
so long as the s a m e  transformation is consistently applied to the utility function of 
each state. In the case at hand, subtracting M from utility in each state normalizes 
the utility of nonsurvival to zero: 

E U  = p [ a ( c )  - MI  + (1 - p ) [ M  - M l = p u ( c ) ,  (2) 

where 
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u(c) = a(c) - M (3) 

is the differences in utility between life and death. Only the difference matters, 
because (1) and (2) order life-and-death gambles in exactly the same way. 

The value of life is defined as the willingness to pay for a small increment dp in 
the survival rate. Budget opportunities obviously enter into this calculation. The 
person is endowed with nonhuman wealth W. What happens to ownership of 
these assests if the person dies? Assume the atemporal equivalent of an actuarially 
fair annuity, a tontine in which all survivors share equally in the unintended be- 
quests of decendents. In a large group of equally endowed persons, a proportion 
( 1  - p) die and their wealth is distributed top survivors. A survivor's consumption 
equals initial endowment Wplus the tontine share (1 - p)W/p, or W/p in all, so the 
budget constraint is 

W = pc. (4) 

Totally differentiate (2) and (4) and eliminate dc: 

Op dp + ~ d W =  u -  u' dp + u 'dW.  (5) 

The value of life is the marginal rate of substitution between W and p: 

d W _ u  W [ u / ( W / p )  1] W 1 - e  W (6) 
v -  dp u' p L u p e p '  

where e = d log u/d log c is the ratio of marginal to average utility evaluated at c = 
W/p. Equation (6) shows that a person will pay to reduce death risk if and only ife 
< 1. The person will pay to increase risk if e > 1. The following argument proves 
that 0 < e < 1 covers all economically interesting cases (for persons without earn- 
ings). Two possible configurations of  u(c) = a(c) - M must be considered to 
show this. 

(i) Suppose u(c) >/0 for c/> 0; that is, u(c) has a nonnegative intercept (figure 1). 
Since u(c)/c is the slope of a line from the origin to a point on u(c), it follows from 
the figure that u'(c) < u(c)/c and e < 1 for all c. Furthermore, e > 0 because u is 
positive--the utility of survival is at least as large as the utility of death for all c. 
This, however, need not be true. The second case is more interesting. 

< 0 as c u(c) has a negative intercept (figure 2) and ~ > 0 is (ii) Suppose u(c) > > c. 
minimum survival consumption. Since the utility of death has been normalized to 
zero, death is the preferred state ifc < Y because M > a(c) in that range. Neverthe- 
less, for t  < c < c*, a(c) > M and the slope of the cord linking the origin with u(c) is 
less than u'(c). Therefore e > 1, so equation (6) implies that the person would pay 
to reduce survival chances even though survival is preferred to nonsurvival. Sur- 
vival seems to be a bad, not a good, in this range. 
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Fig. 1. The utility of  survival is at least as large as the utility of  death for all c. 
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Fig. 2. The utility of  death is preferred to the utility of  survival for c < 3. 
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It is incorrect to apply equation (6) in case (ii) because of a nonconvexity in the 
utility function. The effective utility function in figure 2 is the abscissa for c in the 
range [0,?] connecting to u(c) for ¢ ~ ?. It exhibits an increasing return because the 
outcome is indivisibile--one either lives or dies. However, the indivisibility is 
smoothed (or convexified) by randomizing between death (zero utility) and life 
utility at consumption c* if one survives. From figure 2, if W/p falls in the interval 
(0,c*) there existsp* = W/c*, with 0 < p* < p < 1 such that survivors enjoy u(c*) = 
u(W/p*) and nonsurvivors receive zero utility. Ex ante expected utility is on the 
cord connecting 0 and u(e*) and is larger than the sure thing for 0 < c < c*. The 
smoothed utility function is the envelope 0A for 0 < c < c* and the original func- 
tion AB thereafter, c = 1.0 on the straight line segment and e < 1.0 for c > c*. 

Put differently, calculations leading to (6) imply OEU/Op = k[(1 - e)/e]W/p, 
where L is the marginal utility of  money. Ifc  <c*  then (1 - ~) < 0 and OEU/Op < O. 
Think of a choice problem in which p* is chosen to maximize EU in (2) subject to 
(4) and to the constraintp* ~<p. The solutionp* = W/c* is the opt imum value of p* 
when e > 1 in the utility function u(c). p = p* is chosen when ~ ~< 1. 

Convexification is achieved by adopting modes of  behavior that increase the 
risk sufficiently to enable survivors to attain consumption standard c*. Applying 
equation (6) to the convexified utility function shows that the person will not pay 
anything to extend life chances in the straight line section of figure 2 because ex- 
cess risks are already being taken to smooth out preferences before the experiment 
is presented to the person. ~ Whatever risk is offered will be undone by ran- 
domization. 2 

For a working person, specify utility in the first state as u(c,l), where 1 is leisure, 
and the budget equation as 

W 
c = w(1 - l) + ~ - ,  (7) 

where w is the wage rate, and earnings (but not assets) are assumed to be at risk. If  
expected utility maximizat ion implies that the person does not work, the analysis 
remains as above. If  some labor is supplied to the market, the envelope theo- 
rem yields 

0EU 0EU d W  1 - 
v - / - - c + w(1 - l), (8) 

Op OW dp 

where c and 1 in (8) are their optimal values and c = CUc/U is evaluated at those 
values. Foregone earnings are now included in v. 

In this case, the derivative OEU/Op is proportional to the right-hand side of (8). 
There is no scope for randomizat ion to increase expected utility if that sum is posi- 
tive. In particular, e > 1 is consistent with utility maximization and no randomiza- 
tion for a working person so long as w(1 - l) > (1 "- e)c/e. Consequently, the value 
of  life can either exceed or fall short of earnings according as e ~ 1, and no theo- 
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retical bounds connecting the two can be established a priori. The early human 
capital estimates of Weisbrod (1971) and Rice (1966) remain unjustified from 
utility theory, unless other evidence suggests that e ~ 1. Ife is so large that v < 0 in 
(8) then randomization reduces v to zero, whatever earnings and consumption 
happen to be. 

2. Deterministic life-cycle model 

Consider the following problem. A person with time-separable preferences and 
access to a perfect capital market lives for certain until age T. How much wealth 
will the person give up to extend life years by a small increment d T ?  The concept 
of risk aversion in the one-period problem is replaced with the concept of inter- 
temporal substitution in a life-cycle problem. Furthermore, discounting of future 
risks implies that the value of life extension systematically changes with age. 

2.1 The decision problem 

Preferences remain state-dependent in this problem. Assume the person enjoys a 
flow of utility a(c(t)) at age t. Assigning a constant M to instantaneous "utility" 
beyond the age of death T, 

f0 0 = (a(c( t ) ) )e-Ptdt  + Me-Ptdt  

= (a(c( t )  - M)e-Ptdt  + M / p ,  (9) 

where 9 is the rate of time preference. However, the constant M/p may be dropped 
because any monotone transformation of O preserves orderings, resulting in 

U = (a (c ( t ) )  - M)e-P~dt = u(c)e-P~dt, (10) 

where u(c) has exactly the same form as equation (3). 
A person endowed with wealth W confronts a pure-consumption-loans market 

at interest rate r and cannot die in debt. Then all capital is consumed in the 
lifetime, so the choice of consumption path c(t) is constrained by 

W = c(t)e-r 'dt .  (11) 

The Lagrangian expression for this problem is 
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foru(c(t))e-°'dt + ?~[W- foTc(t)-~'dtl, 

and the marginal condit ion is familiar: 

u'(c(t))e -~' = ~.e -~' for 0 < t < T. 

(12) 

(13) 

2.2. Valuation of longevity 

Indirect utility is a function of W and T (and r and 9), 

f0 T U(W,T;r,9) = max u(c(t))e-P'dt s. t .( l l) ,  (14) 
c(t) 

and defines (W,T) indifference curves from which the marginal rate of substitu- 
tion -dW/dT  = v follows. Applying the envelope theorem to (12), 

U W ~ )2~ 

Ur = u(e(T))e - p r -  )vc(T)e -~ = [u(c(T) - c(T)u'(c(T))]e -°r, (15) 

after exploiting (13). The marginal utility of life-years has two components.  Ex- 
tending life has a direct effect which adds a term u(c(T)) to the lifetime sum of 
utilities on the one hand,  but it also requires reallocating consumption away from 
other points in the life cycle, given W, on the other. These indirect increments are 
valued at marginal cost u'(c(T)). The term in square brackets in (15) is the utility 
surplus at t = T, and is discounted by the rate of time preference, 9, since it occurs T 
years in the future. 

Collecting results, 

dW 
dT 

OU/OT = u(c(T))e-OTL - c(T)e -rr 
OU/OW 

_ [u(c(T))  c(T)]e_rr - 1-e(T) u'(c(T)) ~(~)) c(T)e -rT. (16) 

2.3. Discussion 

v is decreasing in e in both the one-period and intertemporal problems, but now 
is related to the concept of  intertemporal substitution in preferences. This is illus- 
trated by examining some extreme cases. 

For IM] sufficiently small, u(c) approaches a linear function of c as e goes to 
unity, and from (10), U is essentially summable in c(t). How that total is distributed 
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over time hardly matters, because consumption at any one time is a very good sub- 
stitutc for consumption at any other time. Equation (16) shows that v goes to zero 
in this case. A person won't pay for an increment d T  because the increased 
horizon is completely offset by lower per-period consumption. This is the sense in 
which large intertemporal substitution implies large substitution between the 
quantity (r )  and the quality (c) of life. 

I fM is small but ~ goes to zero, the indifference curves between c(t) and c(t') in- 
creasingly resemble those of fixed proportions, and v grows very large. A person 
with such preferences is willing to pay a great deal for d T  because each year of life 
becomes essential, and quantity and quality of life are poor substitutes. Intertem- 
poral substitution plays a similar role in life-cycle theory as risk aversion does in 
atemporal models. 3 

The presence of the discount factor in (16) implies that v systematically in- 
creases with age. It is known that consumption plans are intertemporally consist- 
ent when preferences are time-separable. No matter what the person's age, 
planned consumption at T, c(T), remains unchanged and so does ~(T). Nonethe- 
less, v changes because the horizon is shortened. Ifv(t) is the value at age t and v(t') 
is the value at some later age t', equation (16) implies 

v(t ')  = v(t)e r(~'-~). (17) 

A person close to the end is willing to pay more to extend life than a person whose 
horizon is longer. One implication is that risky personal actions that have long 
latency periods have smaller value to younger people than to older people. The 
young may appear reckless on this account, but such recklessness may pass a per- 
sonal cost-benefit test. Moreover, there is a natural tendency for participation in 
the risky activity to fall as the person ages. 

There is nothing irrational about this. Suppose a person trades v(t) dollars for a 
reversible decrement - d T  at age t. Investing the money makes it grow to v(t') = 
u(t)e r(t'-O at age t'. At that point, the person would be willing and able to pay v(t') to 
re-extend life by dT. However, if the earlier action is irreversible, the willingness to 
pay v(t') - v(r) at t' in excess of compensation at t suggests a sense in which earlier 
actions are regretted later, even when regrets are fully foreseen (if information is 
perfect) when the initial action is taken. Regret is not irrational. It is similar to a 
gambler regretting having played a game ex post even though the prospect of los- 
ing was fully weighed in the decision to gamble in the first place. 

Extending the analysis to include labor supply is straightforward. Earnings at T 
discounted back to the present are added to (16). Again v = 0 if randomization 
is optimal. 

3. Valuation of risks over the life cycle 

The more general problem of  a stochastic horizon is analyzed in this section. 
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3.1. Tastes, opportunities, and optimization 

A person who lives exactly t years enjoys utility (as in (10)) of 

Y0' g( t )  = u(c(,c),l(l:))e-°~dl:. (18) 

Let f ( t )  be the probability density of living for t years, and  let F(t) be the cdf, the 
probability of  dying on or before age t. Then expected utility is 

f0 ° i0 Y0 ' EU = f ( t ) U ( t ) d t  = f ( t )u(c(~:) , l ( z ) )e  °~dzdt 

fO c~ = (1 - F(t ) )u(c( t ) , l ( t ) )e -°~dt ,  (19) 

where the third equality follows from changing the order of integration. (1 - F(t)) 
is the survivor function (from birth), hereafter written S(t), and is itself a function 
of the pattern of  age-specific death rates: 

S(t )  = (1 - F(t))  = e -floh~)a~ (20) 

where h(t) = f(t)/(1 - F(t)) is the death rate at age t. Substituting (20) in (19) shows 
that the force of mortality increases the effective rate of time preference. The future 
is discounted more heavily because a person may not live to see it. 

Analysis is confined to the stochastic equivalent of  a perfect capital market in 
which actuarially fair life-assured annuities (Yaari, 1965) are available. 4 In effect a 
person assigns all current and  future claims to income to an insurance company 
in exchange for a contract that guarantees consumption c(t) until death. The con- 
sumption risk of death is insured because those who die earlier than the average 
leave enough wealth behind to finance the consumption claims of those who live 
longer than the average. 

A person who lives for exactly t years imposes a capital liability on the insurance 
company of  

fo t [C(Z) -- W('C)(1 -- l(v))]e-r~dv, 

where w(1 - l) is earned income. Budget balance requires that the expected 
liability over all claimants equals endowed wealth, or 

fo fo t W = f ( t ) [ c  - w(1 - l)]e-r~dvdt 

f0 °° = S( t )[c( t )  - w(t)(1 - l ( t ) )e-r 'd t  (21) 
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after changing the order of integration. Mortality increases the net interest rate 
because net credits are earned on those who die early. 

Optimal choices of c(t) and l(t) maximize EU subject to constraint (21). The 
marginal conditions 

uc(c(t),l(t))e-P'= )w -r~, 

u1(c(t),l(t))e -° '= w(t)Le -r*, 
(22) 

are identical to a deterministic problem because financial uncertainty is fully in- 
sured by annuities. 

3.2. Valuation of life risks 

Valuation formulas follow, as usual, from the indirect utility function. However, 
there are two technical complications. First, expected utility in the optimal pro- 
gram varies with attained age because the probability of surviving to any given age 
depends on age itself. The conditional probability of attaining some future age 
must be continually renormalized as the person ages. IfS(t) in (20) is the survival 
probability at birth, the conditional probability of surviving until age t given that 
one has survived until age a is 

Sa( t  ) = S(t) /S(a)  = e-fth(~)dL (23) 

Writing ELla for discounted expected utility given that the person has survived 
until age a, (19) becomes 

fa c~3 EU,, = Sa(t)u(c(t),l(t))e-PO-a)dt. (24) 

Second, expected utility at a depends on the entire function So(t), and calculating 
marginal rates of substitution requires extending the concept of differentiation to 
a perturbation or variation in the function S(t). This is technically a Frechet 
derivative, as pointed out by Arthur (1981). Willingness to pay for any pattern of 
(small) changes in death probabilities can be calculated by examining how 
variations in h(t) affects Sa(t). 

Using notation 8 to indicate this kind of differentiation, from (24), 

6So - u + Souc ff~a + Saul (SSo)e-°(t-a)dt, 

where 8S~ is the variation is Sa(t) and 8c and 8l are the equilibrium variations in c(t) 
and l(t) that are caused by it. Exploiting the time-consistent nature of the solution, 
reconditioning and differentiation of constraint (21) yields 
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,5'o~ ~ + W (~Sa)e-r~t-a)dt = - (c - w(1 - l))(SS~)e-rU-~)dt. 

These two expressions and the marginal conditions give the envelope result 

8EUo _ [u - u~. (c - w(1 - l))l(SSo)e-P('-a~dt. (25) 
8Sa 

Similarly, 8EU~/81,V ° = OEU~/c?W ~ = Uc e(r-p)Ct-a), where W ~ is wealth remaining at 
age a, so the appropriate marginal rate of substitution reduces to 

8W~ 
8So - f~ [ (  l~-e e~-)e + w ( 1 -  l ) ] (SSa)e - ' d t '  (26) 

which generalizes equation (16) above. 5 The value of a perturbation in Sa(t) is the 
change in expected discounted consumer surplus it gives rise to along the opt- 
imum (c,l) path. Further calculations reveal that 8EU~/Sw = )~f ~(1 - l(t))e-"dt, im- 
plying that 

~]4 J ~ W ° ff 
8 S o -  8S. / ( 1 -  l ( t ) ) e - ' d t  (27) 

is the intertemporal version of  Slutsky compensation for a change in the intertem- 
goral pattern of wage rates. 

3.3. The value of  saving a life 

S~(t) is related to h(t) through (23). Taking logs and differentiating, 

fa t 8So = -So ( t )  8h(z)d~:. (28) 

Substituting (28) into (26) gives the valuation formula for changes in death 
rates, the natural primitives of  the problem. 

Consider the canonical experiment where 8h is the Dirac-delta function taking 
a point-mass jump of size A at age a and otherwise remaining unchanged. Then 
the perturbation 8S in (26) is zero for t < a, because 8h = 0 for t < a, and also for a 
> a because the person has survived the risk. However, for a < ct and t > ct there is 
a persistent effect Of Sa(t) because - l og  Sa(t) is the sum of all previous hazard rates, 
from (23). 

8So= 0 fora  > a ,  

8So = 0  f o r t < a a n d a < c t ,  

8S a = - A [S(t)/S(a)] = - A . Sa(t ) t >/ (z and a < a. 

(29) 
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The money  value of  an excess risk incurred at age a from the prespective of  a 
person currently of  age a < ct is, from (26) and (29), 

L 
~ 

v (a ,a )  = Z( t )S , ( t )e-r( ' -~)dt ,  (30) 

where 

1 - - 8  
z ( t )  - - -  c + w(1 - I) (31) 

8 

is consumer  surplus at t. Of  course, the value is zero for a person older than a. 
Define V(ct) = v(a,a) as the value of  el iminating a current  risk. Then  

V(a)  = Z(t)S~(t)e-r(~-~)dt, (32) 

and after simple manipulat ions,  

v(a,a) - S(a)  e_rt~_~)V(a)" 
S(a) 

(33) 

V(a) in (32) is the value of  saving a current  life. It is the expected present value of  
consumer  surplus at age ct. Since h(a) is a probability, the jump A lies in the unit  
interval. For  example, suppose A = 1/1000. Then  A.  V(a) in (32) is the amount  of  
money  an age ct person would pay to eliminate the extra risk, and 1/A = 1000 such 
people would collectively pay (V- A)/A = V to eliminate a risk that on average 
takes one life among them. The value of  a prospective risk in (30) or (33) is smaller 
than the value of  a current  risk for two reasons. First, Z(t)  is discounted by e -r~-~) 
because it occurs in the future, as in the deterministic model; and second, not all 
people of  age a will survive until age ct to enjoy the benefit. The term S(a)/S(a)  in 
(33) reflects this latter fact. In that sense v(a,a) is the fractional value o f  a life with 
fraction S((O/S(a). It is a whole life value when a = (t. Prospective risks have smaller 
value than current  risks at a given age because they are discounted by interviewing 
mortality as well as by the rate of  interest. 

Since V(a) is the value of  eliminating exposure to a current  risk, its derivative in- 
dicates whether  older people would pay more or less than younger  people to elim- 
inate age-independent  risks. We have 

dV(a)  _ - Z ( a )  + (r + h ( a ) ) V ( a ) .  
da  (34) 

= [ z ' ( r  + a)  - (h(~ + a) - h (a ) )ZO:  + a)lS~(v + a )e -~d~ .  
JO 
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The first form of(34) follows the usual relationship between flow and stock values, 
taking care to gross-up the interest rate by the current mortality rate. Value is rising 
with age if current surplus is small relative to discounted future surpluses. The sec- 
ond form of (34) shows that Z(t) must be increasing for V(ct) to be increasing, 
which is likely to be true in the interval between youth and middle age. 6 Surplus 
Z(t) would be constant in the case where r = 9 and w(t) is constant. Then V falls 
with age because h(t) is strictly increasing. The latter fact must make V fall in very 
old age in any case, because there is little surplus left to discount. This point would 
be reinforced if age-dependence had been specified in utility to reflect deteriorat- 
ing health and quality of life with age as well as greater mortality per se. 

Older persons may nonetheless put greater value on some risks than younger 
people because the risk is more immediate, as in the difference between (32) and 
(33). As longevity increases, it is natural to expect more resources to be devoted to 
curing specific diseases of older age, such as cancer and Alzcimer's disease, 
because in earlier eras people did not live long enough to be exposed to them. 
However, V(ct) declining for a large a is paradoxical for the incidence of voluntary 
exposure to immediate risks. To account for why such risks are most often borne 
by younger people requires an auxilary physiological hypothesis that younger 
people produce less real risk per unit of exposure than older people do. 

4. Estimates 

Applying (30) - (33) requires estimates of surplus Z and the elasticity ~. It is impor- 
tant to understand that a cannot be inferred from consumption or labor supply 
behavior because marginal conditions (22) do not involve the parameter M or 
other aspects of mortality, and ~ depends on M, the curvature oftL and on c and I. 
In principle ~ could be identified by repeated observations on risky choices over 
the life cycle. The estimate below is based on cross-section wage premiums ob- 
served on risky jobs. Since panel data are not available, only average values of Z 
and ~ can be estimated. 

The idea of the method is to interpret observed wage-risk premiums as an es- 
timate ofv(a,a) = V(a) in (30) or (32). Then assume a factorization of(32) into its Z 
and discount components and use data on consumption and earnings to infer av- 
erage value of ~ and Z. 

The risks that are priced in labor market studies generally refer to immediate 
risks to life from fatal accidents at the work site. This is not strictly true in all cases, 
but is a reasonable assumption for most of the risky occupations used by Thaler 
and Rosen (1975; T-R hereafter), in which case that study estimates V(a) in (32). 
Now fsa(t)dt is remaining life expectancy for a person who has attained a years of 
age; and if the interest rate were zero, V(a) in (32) is approximately the remaining 
average annual surplus times average remaining life-years. Discounting requires a 
simple actuarial adjustment because f2S~ (t)e-r('-~)dt = A(a,r) is the present value of 
a unit annuity at age a when the interest rate is r, tabulated (as ax) in actuarial tables. 
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To proceed, assume a factorization of (32): 

V(a) = Z .A(a,r). (35) 

Then average surplus Z is approximately V(a)/A(a,r). Finally, use consumption 
and earnings data to infer e from (31) interpreted as a relationship about 
averages. 

This procedure is exact if p = r and w does not change over the remaining 
horizon (though the implied estimate o f t  is valid only in the neighborhood of the 
constant equilibrium values o fc  and l). If P 4: r and w changes with age, the ap- 
proximation may be less useful. Still, the average worker in the T -R  sample is ob- 
served in the middle of work life, when relative age-earnings growth has mostly 
disappeared and subsequent living standards are largely set. Insofar as earnings 
and consumption growth are correlated over time due to the common factor of 
economic growth, the growth rate is netted out of the real interest rate r in dis- 
counting. When all is said and done, however, the quality of the approximations is 
unknown. A warning of caveat emptor hardly seems necessary, but a crude estimate 
may be better than none at all. 

Using (27) to transform the risk-earnings estimate of T-R to a wealth estimate 
(with annual hours worked at the sample mean in the denominator because the es- 
timate refers to one year each of risk and wage rates) implies a value for V(a) of 
$630,000, converted to dollars of 1986 purchasing power. 7 The mean age of workers 
in that sample is 41.8, so a = 42. Table 1 reports A(42,r) based on mortality experi- 
ence of white males. The third column reports corresponding values of Z in 1986 
dollars, dividingA(42,r) into V(a) = 630,000 from (35). The estimate of Z is sensitive 
to the rate of interest, rising by about $6000 for each percentage point in r for small 
r and by $11,000 for large values ofr.  

Table 1. Estimated elasticities and average consumer surplus, 
42-year-old white males, by interest rate 

Z 
r(%) A(42,r) (19865) e 

0 32.1 $19,660 1.06 
2 24.4 25,820 .81 
4 16.9 37,280 .56 
6 13.2 47,730 .44 
8 10.8 58,330 .36 

10 9.0 70,000 .30 
12 7.7 81,820 .25 

Notes: A(42,r) from U.S. Social Security Administration, Of- 
fice of the Actuary, "Actuarial Tables Based on U.S. Life 
Tables, 1979-81." Actuarial Study No. 96, August 1986. Z in 
1986 dollars based on 0(42,42) = 630,000, from T-R. Elasticity 
calculated assuming c = w(1 - l) = 20,800 in 1986 dollars, 
from T-R. 
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The estimate of c in column 4 is based on mean earnings of $20,800 (1986 
dollars) in the sample. This was a relatively low-income population whose full- 
time earnings averaged 25% below the mean of all full-time wage and salary earn- 
ers, so their consumption expenditure must have been well approximated by ear- 
nings. The estimate in column 4 assumes c = w(1 - l) = 20,800, implying ~ = w(1 - 
l)/Z from (31). The sensitivity of Z to r in the third column carries over to ~, with 
the estimate declining geometrically at about 10% per percentage point increase in 
r. The estimate also is sensitive to the estimate of V(a), which had a sampling error 
alone of 25% of the estimated level value, s 

There are several additional possible sources of bias in these numbers. 
i) Savings. Assume that c = 13w(1 - l) with f3 < 1. If [3 is .9, the implied saving 

rate is 10% and the estimates in column 4 fall by less than 5%. A 10% savings rate 
surely is an upper bound for this population. 

ii) Costs of Mortality. If medical and other costs of mortality are fixed atD, then 
incorporating them into the model (assuming full insurance) involves setting up a 
sinking fund and charging interest rD against consumer surplus in (31). Approx- 
imately 10% of all medical expenses are accounted for by people in their last year 
of life, or $22,000 in 1986 dollars. Adding a generous allowance for other expenses 
increases the estimate ofe in table 1 by 3% and decreases the estimate of Z by 5% at 
r = .10. The adjustments are less at lower interest rates. 

iii) Taxes. The survey data underlying T-R's study probably refer to before-tax 
earnings, so V(a) should be multiplied by (1 - y )  where ~, is the marginal tax rate. 
For this population y lies within [.15,.20], (see Steuerle and Hartzmark, 1981) and 
the values of Z and V(c0 in tables 1 and 2 should be multiplied by .80 or .85. The es- 
timate of e is hardly affected by marginal taxes of this size. 

iv) Cross-Section Life Table. Though the T-R data are from 1968, the 1979-1981 
life table is used forA(42,r) in table 1. Falling mortality rates causes cohort bias in 
cross-section life tables. Substantial increases in longevity during the 1970s made 
the 1979-1981 life table more accurate for this population. However, using the 
1969-1971 life table gives estimates of ~ that are only 3-6% smaller than those 
reported. 

v) Retirement. Since earnings fall to zero during retirement and consumption 
changes as well, average Z in (31) is itself a weighted average ofpre- and postretire- 
ment years. However, the weight on retirement years is smaller than the weight on 
working years for 42-year-olds, and it decreases with the rate of interest. Assuming 
retirement at age 65, 29% of A falls in the retirement years when r = .01, but only 9% 
of it does when r = .08. Ifu(c,l) is strongly separable and 9 = r, ~ in table 1 is un- 
derestimated by 7% at r = .01, by 3.5% at r = .04 and by 1% at r = .08. Ifu(c,l) is not 
separable, things are more complicated. However, at respectable interest rates, the 
calculation above suggests small bias from this source unless e falls dramatically 
during retirement. 

Taken in total, all of these refinements would affect the estimates of Z and ~ in 
table 1 by relatively little compared to their sensitivity to r. There is little pro- 
fessional consensus on the appropriate size ofr. It ranges from the 0-1% long-run 
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average after-tax rate of return found on individual portfolio items relevant to an- 
nuities to the 15% gross rate of return on capital implicit in aggregate production 
studies. A value of 8% is chosen here as middle ground, since the applicable rate 
for individuals should be as large as the after-tax rate on corporate capital on risk- 
premium considerations alone. Futhermore, Moore and Viscusi (1988) estimate 
only a slightly larger value in their recent study of the nonlinear interactions be- 
tween wage-risk premiums and age. 

Extrapolations of table 1 to v(ct,a) in (33) must be confined to persons near the 
same age and income levels, since e and Z may change markedly outside that 
neighborhood. Maintaining c ~ w(1 - l ) ,  equation (31) implies Z ~ w(1 - 1 ) / ~  = 

2.8w(1 - l )  for r = .08 and (30) implies V(42) ~ Z .A(42,.08) = 30w(1 -1). For each 
dollar increase in earnings near $20,800, consumer surplus rises by $2.8 and the 
current value of life rises by $30. These are lower bounds because, on selection 
grounds, individuals with larger-than-average values of e would find risky jobs 
more attractive, and also because the T-R estimates are smaller than other 
estimates. 

Equation (33) is extrapolated in an age range six years on either side of age 42 in 
table 2, assuming constant income in this range (a good approximation after net- 
ting out time-series growth effects from r), and Z is held fixed at $58,330 as es- 
timated for r = .08 in table 1. 9 Column 1 shows that the value of a current risk 
declines with age, following the pattern of A(a,.08), because Z is assumed constant 
in this age range. Other columns evaluate willingness to pay now by a person a 
years old to eliminate a prospective risk that occurs x years from now, forx = 1, 2, 
3, and 4. These numbers decline markedly with x. A risk that is only four years in 
the future has $190,000 less value (about 70%) than an immediate risk. A risk that is 
ten years away would have less than half the value of an immediate risk. However, 
estimates of e and Z at other incomes and ages are necessary to evaluate risks for 
younger and older persons, x° Again, the numbers in table 2 are on the conservative 
side for the same reason as mentioned above. 

Table 2. Value of Current and Future Risks, by Age (in 1986 Dollars) 

a o(a~) u(a + 1,a) u(a + 2,a) u(a + 3,a) u(a + 4,a) 

36 658,000 604,100 554,300 508,300 465,800 
38 649,200 595,300 545,600 499,600 458,400 
40 639,300 585,400 537,200 489,800 447,400 
42 630,000 574,400 524,600 478,900 436,600 
44 616,100 562,300 512,600 467,000 424,900 
46 602,800 548,900 499,400 
48 588,400 

Notes: v(a,a) = V(a) = Z .A(a,.08), for Z = 58,330 from Table 1. v(a + x,a) = (S(a + x))/(S(a)) • v(a + 
x.a + x)/(1 + r) x for r = .08, from equation (33). 
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The benefit side of a project affecting age-specific mortality always respects the 
current values of the population. For the case at hand, total benefits are the sum 
fv(a,a)O(a)da, where O(a) is the current age distribution function. Project evalua- 
tion can change as the age distribution changes. A project affecting mortality of 
the elderly receives a low score in a population that has relatively large numbers of 
young people, but the score may increase over time as the large cohort ages and the 
risks become more immediate. 

5. Conclusions 

This paper has spelled out the close connection between cross-section estimates of 
willingness to pay to reduce mortality risk and the valuation of changes in inter- 
tcmporal survivor functions obtained from expected utility theory. It goes without 
saying that the most urgent needs in this area are better empirical estimates of the 
valuation of risks, and reconciliation of the differences in existing estimates based 
on different data sources. 

Much work remains to be done on refining the conceptual apparatus as well. 
First, most models generally recognize only the two states of life and death, and do 
not consider illness states. This might be repaired by using a semi-Markov transi- 
tion process among states, with death being the absorbing state. Since long-term 
disability and other serious health problems are correlated with mortality rates, 
risk estimates are some amalgam of the two. A more complete theory would show 
how to evaluate the incidence of morbidity risks. Another problem in extrapolat- 
ing from table 1 to the longer-term risks in table 2 is that the manner of death may 
be different between immediate hazards and long-term hazards associated with 
lengthy periods of illness and suffering prior to death. The numbers in table 2 may 
be biased downward for this reason. 

Second, bequests have been ignored in this study because of a belief that exist- 
ing treatments are flawed. The prevailing method introduces a bequest function 
B(~) in place of M, where ~- is descendants' consumption. Such a specification 
necessarily reduces the value of risks to life, because by leaving a large bequest, the 
decendent lives on through descendants. A complete analysis must incorporate 
the utility the person receives from dependents when alive. Surely family members 
are worse off when the head dies in the prime of life. A more refined treatment of 
altruism and preference dependencies is necessary to do justice to these issues. 
Since resource transfers among family members are important ways in which 
people cope with imperfect insurance and loan markets, such an analysis would 
go a long way in treating capital market imperfections as well as bequests. 

Finally, the valuation formulas in (30) and (33) deal with known risks. Statistics 
on instantaneous exposure and risk are quite accurate in many cases, but there is 
much more uncertainty about the connections between exposure and changes in 
subsequent age-specific death rates when exposure has delayed and cumulative ef- 
fects. In only a few cases, such as cigarette smoking and asbestos exposure, are the 
data extensive enough to determine these effects with precision. The relation be- 
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tween exposure and timing cannot be quantified even for such potent carcinogens 
as aflatoxin and vinyl chloride. Expected utility theory replaces the pdff(t) in (19) 
with a subjectivepdfin these cases. However, the constraint (21) is affected in a dif- 
ferent way. Uncertainty about hazards has the effect of introducing nontrivial load 
factors on consumption-annuity premiums because such risks are not diversifi- 
able. The insurance company runs large risks of ruin and must charge large loads 
to create the  necessary contingency reserves. Insurance is incomplete and may 
break down altogether (as it has in the case of asbestos exposure). Personal ex- 
posure to uncertain risks therefore must involve a significant degree of self- 
insurance, and this leads to larger valuations compared to known risks. Whether 
they are large enough on these grounds alone to account for the extreme social 
caution and prohibitions often observed among some risks remains to be shown, 
notwithstanding Peltzman's (1973) emphasis on the optimal production of risk in- 
formation and the balancing of type I and type II errors. 

Notes 

1. The value of lotteries for dealing with indivisibilities and nonconvexities has been increasingly 
recognized in the past few years. Bergstrom (1974) was the first economist to notice the possible op- 
timality of lotteries for mortality risks. Marshall (1984) emphasized preferences for life-risk lotteries in 
the context of bequests. Bergstrom (1986) gives a superb account of the case for a draft lottery over a 
voluntary army. Townsend (1986) presents the most complete general equilibrium theory yet available. 
Viscusi (1979) showed value for uncertainty in the present problem based on incomplete information 
and option value, which is a different basis for risk-preferring behavior. Notice that there is possible 
moral hazard in a randomization scheme. It is in the interests of a person to agree to the scheme ex ante 
and then to defect from it ex post, given that everyone else follows through with it. If everyone defects 
then it is the case that v < 0. As usual, some form of commitment is required to eliminate this 

problem. 
2. It is easy to show that the indifference curves between Wandp are convex so that v is decreasing in 

p: the greater the hazard rate, the more a person is willing to pay to reduce it. This must be qualified in 
case (ii), where the convexified indifference curve has a zero slope at high values ofp and willingness to 
pay is zero there. Finally, differentiate (6) with respect to Wto obtain Ov/OW = s/ep > 0, where s = 
- u " .  c/u' is the coefficient of relative risk aversion: safety is a normal good. 

3. The statement is loose because the connection between ~ and the intertemporal elasticity of sub- 
stitution is lost if IM] is large. 

4. Shephard and Zeckhauser (1984) consider a lending but no borrowing constraint and simulate 
valuations that are very close to the full annuities case. Other possible ways of specifying such con- 
straints may give much different results. 

5. The marginal conditions for constraints h*(t) < h(t) where h*(t) is chosen to convexify prefer- 
ences are 

k ~ c ( ~ )  + w(z)(1 - l(~)) S(~)e-r(~-~)d~ >----> 0, all t. 

The intergral enters because a change in h(t) has a permanent effect on future values of S (see below). 
The discounted expected surplus at every age must be nonnegative or else randomization is desirable. 
Notice that this condition allows instantaneois surplus (in curly braces) to take on some negative 
values, so long as the sum is positive or zero. Since this condition places a lower bound of zero on the 
value of life as before, it is ignored hereafter. 
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6. If 9 = r, then (22) implies that Z'(t+a) = w'(t + a)(1 - l(t + a)) and Z(t) varies with the wage rate. 
If 9 ~ r, the expression for Z'  is much more complicated and not very helpful. 

7. The regression coefficient of the weekly wage on excess death risk is about $4 per .001 risk incre- 
ment in 1968 dollars. The average person in the sample worked 50 weeks per year, for an increment of 
$200 per year per .001 unit of excess risk. Dividing by .001 and multiplying the result by 3.15 to convert 
to 1986 dollars yields V = $630,000. 

8. Estimates of V based on industry rather than on occupation risks are as much as five times (!) 
larger than those in T-R. The implied estimates of Z are five times larger and the estimates of~ are one- 
fourth the size of those in table 1. Interested readers are invited to adjust the estimates in table 2 
correspondingly. 

9. The numbers in table 2 refer to the steady state. The transitional problem of recontracting an- 
nuities among existing cohorts after the risk has been eliminated is ignored here. 

10. Suppose exposure changes the flow death rate by A(t) from age ct onward. Here 6Sa(t ) = 0 for t < 
a as before, but A(t) now has cumulative effects on subsequent survival rates from (28), so 5S(t) = Sa(t) 
ftaA(~)dv for t ~> a. Substituting into (26) gives a valuation formula for any age-risk pattern. In distinc- 
tion to the stock experiment in (29), where the weight on future survival rates is reduced by discounting, 
approximation errors are greater for these flow changes because the cumulation of effects in &Sa(t ) for t 
>/a offsets the discount factor, and expected surplus at much older ages gets much greater weight. More 
precise knowledge of Z and ¢ are required to implement these more elaborate experiments. 
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