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Abstract. A scheme for recognizing 3D objects from single 2D images under orthographic projection is intro- 
duced. The scheme proceeds in two stages. In the first stage, the categorization stage, the image is compared to 
prototype objects. For each prototype, the view that most resembles the image is recovered, and, if the view is 
found to be similar to the image, the class identity of the object is determined. In the second stage, the identification 
stage, the observed object is compared to the individual models of its class, where classes are expected to contain 
objects with relatively similar shapes. For each model, a view that matches the image is sought. If such a view is 
found, the object's specific identity is determined. The advantage of categorizing the object before it is identified 
is twofold. First, the image is compared to a smaller number of models, since only models that belong to the 
object's class need to be considered. Second, the cost of comparing the image to each model in a class is very low, 
because correspondence is computed once for the whole class. More specifically, the correspondence and object 
pose computed in the categorization stage to align the prototype with the image are reused in the identification stage 
to align the individual models with the image. As a result, identification is reduced to a series of simple template 
comparisons. The paper concludes with an algorithm for constructing optimal prototypes for classes of objects. 

1. Introduction 

Recognition is a task of identifying portions of the im- 
age with object models stored in memory. One dif- 
ficulty in recognition is that objects appear different 
from different viewpoints. Model-based approaches to 
recognition usually handle this problem by recovering 
the position and orientation (pose) of the object in the 
image and bringing the model to the recovered pose 
(Fischler and Bolles, 1981; Lowe, 1985; Faugeras and 
Hebert, 1986; Chien and Aggarwal, 1987; Thompson 
and Mundy, 1987; Ullman, 1989; Huttenlocher and 
Ullman, 1990; Basri and Ullman, 1993). This ap- 
proach involves time-consuming algorithms requiring, 
for instance, the establishment of correspondence be- 
tween model and image features. Furthermore, since 
it is not known in advance which of the models ac- 
counts for the image, the process of pose recovery is 
repeated separately for each of the models in the library. 
Consequently, methods for reducing the computational 
complexity of the recognition process are necessary. 

An initial stage of categorization proposes a way to 
reduce this computational complexity. The objective of 
categorization is twofold. By dividing the objects into 
classes, a vision system is capable of concluding prop- 
erties of unfamiliar objects from their resemblance to 
familiar ones. For familiar objects, categorization of- 
fers an indexing tool into the stored library of object 
representations. As an indexing tool, categorization 
proposes two ways to accelerate the recognition pro- 
cess. First, the image is compared to a smaller number 
of models, since only models that belong to the object's 
class need to be considered. Second, during categoriza- 
tion information about the object is extracted, and this 
information can be used to reduce the cost of matching 
the image to the individual models. 

To see how information acquired during categoriza- 
tion can be used for identification, consider the example 
of face recognition. When a face is recognized, the im- 
age positions of its parts and key features are known. In 
particular, an observer already knows where the eyes, 
nose, and mouth are and can even infer the direction of 
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gaze and expression. The person's identity is not essen- 
tial for extracting and locating these features. Instead, 
they are matched against features in a "generic" repre- 
sentation. More generally, we can postulate that, dur- 
ing categorization, sub-structures of the objects (such 
as parts and key features) are extracted and located 
with respect to a generic model, and the object's pose 
is determinedl 

To follow this example, I propose a scheme for 
recognizing 3D objects from single 2D images under 
orthographic projection that proceeds in two stages, 
categorization and identification. The library of objects 
is divided into classes where a class contains objects 
that share a fair number of similar features. (Note that 
such classes generally are restricted relatively to the 
classes considered by the human visual system.) Cate- 
gorization is achieved by aligning the image to proto- 
type objects. The prototype that appears most similar 
to the image determines the class identity of the object. 
After the object is categorized, its specific identity is 
determined by aligning the image to individual models 
of its class. By first categorizing the object not only 
the number of models considered for identification is 
reduced, but also the cost of comparing each model 
to the image significantly decreases. This is achieved 
by reusing the correspondence and pose computed for 
the prototype in the categorization stage to align the 
image with the individual models. It is shown in this 
paper that, albeit a perfect match between the proto- 
type and the image is not obtainable, the correspon- 
dence and pose can be computed for the prototype, 
and can be used to bring the image and the object's 
model into alignment. Consequently, recovering the 
correspondence and pose for the individual models be- 
comes unnecessary, and identification is reduced to a 
series of simple template comparisons. 

The rest of this paper is divided as follows. 
Section 2 reviews the main existing approaches for 
categorization and identification. Section 3 presents 
the scheme of recognition by prototypes. Section 4 pro- 
poses an algorithm for generating optimal prototypes 
for the scheme. Implementation results are presented 
in Section 5. 

2. Previous Approaches 

Recognition can be performed in a variety of "abstrac- 
tion levels". For example, the same object can be 
recognized as a face~ a human face, or as a specific 

person's face. Psychological studies suggest the exis- 
tence of a preferred level for recognition, called "the 
basic level of abstraction" (Rosch et al., 1976). Exist- 
ing computational schemes usually approach recogni- 
tion in either one of two levels. Some schemes attempt 
to classify objects in their basic level of abstraction 
(we refer to this task by categorization), while other 
schemes attempt to determine the specific identity of 
objects (we refer to this task by identification). This pa- 
per presents an attempt to combine classification with 
identification. However, the classes considered by our 
approach are generally more restricted than the basic 
level classes. 

Existing schemes for categorization often use a "re- 
ductionist" approach. The image, which contains a de- 
tailed appearance of an object, is transformed into a 
compact representation that is invariant for all objects 
of the same class. One common approach to generating 
such a representation is by decomposing the object into 
parts. Parts are extracted by cutting the object at con- 
cavities or at inflections (Koenderink and Van Doom, 
1982; Hoffman and Richards, 1985; Vaina and Zlateva, 
1990) and then labeled according to their general 
shape. The labels, together with the spatial relation- 
ships between the parts, are used to identify the class of 
the object (Binford, 1971; Marr and Nishibara, 1978; 
Brooks, 1981; Biederman, 1985; Bajcsy and Solina, 
1987; Connell and Brady, 1987; Pentland, 1987). A 
second approach extracts the parts of the object that 
fulfill certain functions. The list of functions is used to 
determine the object's class (Winston et al., 1984; Ho, 
1987; Stark and Bowyer, 1991; Rivlin et al., 1994). 

Schemes that break objects into parts are insufficient 
to explain all the aspects of recognition for the follow- 
ing reasons. First, in many cases objects that belong to 
the same class differ only by their detailed shape, while 
they share roughly the same set of parts. Moreover, even 
objects that at some level may be considered belong- 
ing to different classes may also share roughly the same 
set of parts. To solve this problem several systems also 
store, in addition to the part structure of the objects, 
the detailed shape of the parts (Binford, 1971 ; Brooks, 
1981; Bajcsy and Solina, 1987; Pentland, 1987). An- 
other problem is that the existing techniques for ex- 
tracting the parts from an image tend to be relatively 
sensitive to small changes in the image. 

To recognize the specific identity of objects, a rel- 
atively detailed representation of the object's shape 
is compared with the image. An example for such 
methods is alignment (Fischler and Bolles, 1981; 



Recognition by Prototypes 149 

Lowe, 1985; Faugeras and Hebert, 1986; Chien 
and Aggarwal, 1987; Thompson and Mundy, 1987; 
Ullman, 1989; Huttenlocher and Ullman, 1990; Basri 
and Ullman, 1993). Alignment involves recovering the 
position and orientation (pose) in which the object is 
observed and comparing the appearance of the object 
from that pose with the image. Only a few attempts 
have been made in the past to extend the alignment 
scheme to the problem of object categorization (e.g., 
Shapira and Ullman, 1991). As has already been noted, 
the main difficulty in applying the alignment approach 
is the recovery of the pose of the observed object. In 
most implementations this involves a time-consuming 
stage for finding the correspondence between the model 
and the image. The process becomes impractical when 
the image is compared against a large library of objects, 
because typically the correspondence is established be- 
tween the image and each of the models in the library 
separately. 

To handle large libraries, indexing methods were 
proposed (e.g., Lamdan et al., 1987; Weiss, 1988; 
Forsyth et al., 1991; Jacobs, 1992; Mundy and 
Zisserman, 1992; Weinshall, 1993). The basic idea is 
the following. A certain function is defined and applied 
to the views of all the objects in the library. The ob- 
ject models are arranged in a look-up table indexed by 
the obtained function values. When an image is given, 
the function is applied to the image, and the obtained 
value is used to index into the table. To reduce the size of 
the table and the complexity of its preparation, invari- 
ant functions, functions that when applied to different 
views of an object return the same value regardless of 
viewpoint, often are used as the indexing functions. 

Indexing methods suffer from several shortcomings. 
First, existing indexing methods handle only rigid ob- 
jects. Extending these methods to handle classes of 
objects has not been discussed. Second, because of 
complexity issues, indexing functions usually are ap- 
plied to small numbers of features. As a result, high 
rates of false positives are obtained, and the effective- 
ness of the indexing is reduced. 

The scheme presented in this paper differs from pre- 
vious schemes in several respects. The scheme com- 
bines both categorization and identification of objects, 
and uses fairly detailed representations for objects. 
Rather than indexing directly to the specific object 
model, the scheme indexes into the library of ob- 
jects by categorizing the object. The classes handled 
by the scheme include objects with relatively similar 
shapes. To fit into the scheme, in some cases basic 

level classes are broken into sub-classes. The general 
problem of categorization, therefore, may require ad- 
ditional tools. 

3. Recognition by Prototypes 

The recognition by prototypes scheme proceeds as fol- 
lows. A library of 3D object models is stored in mem- 
ory. The models in the library are divided into classes, 
and 3D prototype objects are selected to represent the 
classes. For every class, the correspondence between 
feature points in the prototype object and the individ- 
ual models is determined, and the models are aligned 
in the library with the prototype. The role of this 3D 
alignment will become clear shortly. 

At recognition time, an incoming 2D image is first 
matched against all of the prototypes. For each proto- 
type object, the system attempts to recover the view 
of the prototype that most resembles the image. To do 
so, the system recovers the correspondence between 
the prototype and the image, and, using this corre- 
spondence, it determines the transformation that best 
aligns the prototype with the image. This transforma- 
tion, referred to as the prototype transform, is then ap- 
plied to the prototype, and the similarity between the 
transformed prototype and the actual image is evalu- 
ated. Since the observed object in general differs from 
the prototype object, a perfect match between the two 
is not anticipated. The system therefore seeks a pro- 
totype that reasonably matches the image. Once such 
a prototype is found, the class identity of the object 
is determined. 

After the object's class is determined, the system at- 
tempts to recover the specific identity of the object. At 
this stage, the image is matched against all the models 
of the object's class. For each of these models, the sys- 
tem seeks to recover the transformation that aligns the 
model with the image. As will be shown below, since 
the models are aligned in the library with the proto- 
type, the transformation that best aligns the prototype 
with the image is identical to the transformation that 
aligns the model to the image. The prototype trans- 
form therefore is applied to the specific models, and 
their appearance from this pose is compared with the 
image. The model that aligns with the image, if there 
is such, determines the specific identity of the object. 

The rest of this section is divided as follows. In Sec- 
tion 3.1 the object representation used in our scheme 
is presented. Section 3.2 describes the categorization 
stage, and Section 3.3 describes the identification stage. 
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3.1. Object Representation 

In our scheme, an object is modeled by a matrix M of 
size n x k, where n is the number of feature points, 
and k, the width of M, is related to the degrees of 
freedom of the object. A vector fi 6 7Z k, referred to 
as the transform vector, represents the transformation 
applied to the object in a certain view, and the object's 
appearance from this view is given by 

= Mfi. (1) 

In the rest of this section we explain the use of this 
notation. The notation follows from the linear com- 
binations scheme (Ullman and Basri, 1991), which is 
briefly reviewed below. 

Under the linear combinations scheme an object is 
modeled by a small set of views, each is represented 
by a vector containing point positions, where the points 
in these views are ordered in correspondence. Novel 
views of the object are obtained by applying linear com- 
binations to the stored views. Additional constraints 
may apply to the coefficients of these linear combina- 
tions, Computing the object pose therefore requires re- 
covering the coefficients of the linear combination that 
align the model with the image and verifying that the re- 
covered coefficients indeed satisfy the constraints. The 
method handles rigid objects under weak-perspective 
projection (namely, orthographic projection followed 
by a uniform scaling) and under paraperspective projec- 
tion (Basri, 1995). It was extended to approximate the 
appearance of objects with smooth bounding surfaces 
(Ullman and Basri, 1991 ; Basri and Ullman, 1993) and 
to handle articulated objects (Basri, 1993). In our rep- 
resentation, the columns of the model matrix M contain 
views of the object, and the coefficients of the linear 
combination that align the model with the image are 
given by the transform vector ft. 

For concreteness, we review the linear combinations 
scheme for rigid objects. Consider a 3D object O that 
contains n feature points (Xi, Yi, Zi), 1 < i < n. Un- 
der weak-perspective projection, the position of the ob- 
ject following a rotation R, translation t', and scaling s 
is given by 

xi  = S r l l X i  q- s r l 2 Y i  + s r l 3 Z i  q- st~ 

yi ~- sr21Xi + sr22Yi  q- s r23Zi  -}- sty, (2) 

where  rij are the components of the rotation matrix, R, 
tx, ty are the horizontal and vertical components of the 

translation vector, i, respectively, and s is the scaling 
factor. 

Denote by X, Y, Z, 2, ~ 6 T4 n vectors of X i ,  Yi, 
Zi, xi and Yi values respectively, and denote 1 = 
(1 . . . . .  1) E T4 n, we can rewrite Eq. (2) in a vector 
equation as follows: 

where 

-r = al)( -I- a2Y -t- a3Z + a 4 i  

= b,)( + b2f  + b3Z + b4i, (3) 

Therefore, 

al = Sr l l  bl = st21 

a2 = Srl2 b2 DE sr22 

a3 = sr l3  b3 = sr23 

a4 =s tx  b4 = Sty. 

; ,  ~ ~ span{X, Y, Z, 1}. (4) 

Different views of the object are obtained by chang- 
ing the rotation, scale, and translation parameters, and 
these changes result in changing the coefficients in 
Eq. (3). We may therefore conclude that all the views 
of a rigid object are contained in a 4D linear space. 

This property, that the views of a rigid object are 
contained in a 4D linear space, provides a method for 
constructing viewer-centered representations for the 
object. The idea is to use images of the object to con- 
struct a basis for this space. In general, two views pro- 
vide sufficiently many vectors. Therefore, any novel 
view is a linear combination of two views (Ullman 
and Basri, 1991; Poggio, 1990). The same underly- 
ing property was used by Koenderink and van Doom 
(1991) to recover the affine structure of objects from 
two views, and by Tomasi and Kanade (1992) to re- 
cover the 3D shape of objects from multiple views. 

Not every linear combination provides a valid view 
of a rigid object. Following the orthonormality of the 
row vectors of the rotation matrix, the coefficients in 
Eq. (3) must satisfy the two quadratic constraints 

a~ + a  2 q - a  2 b~ + b  2 + b  2 
. 3 ~ . 3 

al bl + azb2 n t- a3b3 = O. (5) 

When the constraints are not satisfied, distorted (by 
stretch or shear) pictures of the objects are generated. 
In case a viewer-centered representation is used, the 
constraints change in accordance with the selected ba- 
sis. A third view of the object can be used to recover 
the new constraints. 
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For the purpose of this paper a model for a rigid 
object can be constructed by building the following 
n x 4 model matrix 

M = (2,  Y, 2,-1). 

Views of the object can be constructed as follows 

.~ = M h  

= Mb, (6) 

where 5 = (al, a2, a3, a4) and g = (hi, b2, b3, b4) 
are the coefficients from Eq. (3). Notice that the two 
linear systems can be merged into one by constructing 
a modified model matrix in the following way 

Similar constructions can be obtained for objects with 
smooth bounding surfaces and for articulated objects. 
The width of M, k, should then be modified according 
to the degrees of freedom of the modeled object. As 
was mentioned above, viewer-centered representations 
can be obtained by constructing a basis for the 4D space 
from images of the object. Therefore, viewer-centered 
models can be obtained by replacing the column vectors 
of M with the constructed basis. 

To summarize, following the linear combinations 
scheme we can represent an object by a matrix M and 
construct views of the object by applying it to trans- 
form vectors 2. For rigid objects not every transform 
vector is valid; the components of the transform vector 
must satisfy the two quadratic constraints. Recognition 
involves recovering the transform vector 5 and veri- 
fying that its components satisfy the two constraints. 
Ignoring these constraints will result in recognizing the 
object even when it undergoes general 3D affine trans- 
formation. In the analysis below we largely ignore the 
quadratic constraints. These constraints, however, can 
be verified both during the categorization stage as well 
as during the identification stage. 

3.2. Categorization 

The recognition by prototypes scheme begins by de- 
termining the object's category. This is achieved by 
comparing the observed object to prototype objects, 
objects that are "typical exemplars" for their classes. 

For a given prototype, the view of the prototype that 
most resembles the image is recovered and compared 
to the actual image, and the result of this comparison 
determines the class identity of the object. 

We begin our description of the categorization stage 
by defining the data structures used by the scheme. 
A class C = (P, {Ml, M2 . . . . .  Ml}) is a pair that in- 
cludes a prototype object P and a set of object models 
Mi, M2 . . . . .  Ml. Both the prototype and the models 
are represented by n x k matrices, where n defines the 
number of feature points considered, and k is related 
to the degrees of freedom of the objects. For the sake 
of simplicity we assume here that all the objects in the 
class share the same number of feature points, n, and 
that they have similar degrees of freedom. Note that 
similar objects tend to have similar degrees of freedom 
(e.g., all of them are rigid). Both assumptions are not 
strict, however. The scheme can be modified to tolerate 
both varying numbel~ of feature points as well as differ- 
ent degrees of freedom. The details will be discussed 
later in this paper. Note that the objects can be mod- 
eled by either object-centered or viewer-centered rep- 
resentations. In case viewer-centered representations 
are used we shall assume that the models represent the 
objects from the same range of viewpoints. However, 
we shall not restrict model images across objects to be 
taken from the same set of viewpoints. 

A class in our scheme contains objects with similar 
shapes. These objects share roughly the same topolo- 
gies, and there exists a "natural" correspondence be- 
tween them. In general we shall define the natural 
correspondence by matching features of the same type 
that are nearest to each other when the two objects are 
viewed from corresponding viewpoints (namely, view- 
points which minimize the difference between the vol- 
umes of the objects). Consider, for instance, the two 
chairs in Fig. 1. Although the shapes of these chairs are 
different, and some parts (e.g., the arms) appear only in 
one chair and not in the other, a natural correspondence 
between features in the two objects can be determined. 

In the library of models, the natural correspondence 
between objects is made explicit. It is specified by the 
order of the row vectors of the models. Specifically, 
given a prototype P and object models M1 . . . . .  Ml, 
we order the rows of these models such that the first 
feature point of P corresponds to the first feature point 
of each of the models M1 . . . . .  Mr, and so forth. The 
importance of this matching between the prototype 
and the models will become clear in the identification 
stage. 
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Figure 1. "Natural" correspondences between two chairs. 

1 L 

Given the library of objects and given an incoming 
image, the recognition by prototypes scheme begins 
by categorizing the object observed in the image. To 
achieve this goal, the prototype objects are aligned and 
compared to the image. For every prototype, the corre- 
spondence between the image and the prototype is first 
resolved, and, using this correspondence, the nearest 
prototype view is recovered. By doing so, the scheme 
decouples the two factors that affect the appearance of 
the object in the image, namely, view variations and 
shape variations. By selecting the nearest prototype 
view to the image, the scheme compensates for view 
variations. Then, by evaluating the similarity between 
the nearest prototype view and the actual image, it ac- 
counts for the differences in shape between the proto- 
type and the observed object. 

The first stage in matching the prototype to the im- 
age involves the recovery of correspondence between 
prototype and image features. In existing systems for 
recognizing the specific identity of objects establishing 
the correspondence between images and object models 
involves a time-consuming process in which sophisti- 
cated algorithms are applied (Rosenfeld et al., 1976; 
Davis, 1979; Fischler and Bolles, 1981; Grimson and 
Lozano-P6rez, 1984; Lamdan et al., 1987; Lowe, 1985; 
Ullman, 1989; Huttenlocher and Ullman, 1990). These 
algorithms rely on the property that, when the correct 
correspondence between a model and an image is es- 
tablished, a perfect match between the two is obtained. 
While this assumption is valid for identification, it can- 
not be used under our scheme since the prototype and 
the image generally represent different objects. 

To determine the correspondence between the pro- 
totype and the image, we define an objective function 

that is applied to the prototype and the image under 
a given correspondence and that obtains its minimum 
under the correct correspondence (an example for such 
a function is given in Eq. (13)). The objective function 
will measure the quality of the match between the pro- 
totype and the image. Namely, under this measure the 
correct correspondence is the one that brings the proto- 
type into its best alignment with the image. Given this 
objective function, correspondence is a combinatorial 
optimization problem, and so minimization techniques 
can be used to resolve the correspondence between the 
prototype and the image. In our implementation (see 
Section 5) we used a procedure similar to the one used 
in (Fischler and Bolles, 1981) to resolve the correspon- 
dence between the prototype and the image. The va- 
lidity of this procedure is established in the Appendix. 
It is shown that when the prototype and the observed 
object are relatively similar the time complexity of re- 
covering the correspondence between them using this 
procedure is relatively low. This procedure, however, 
is only one of a variety of techniques that can be used 
for this purpose. 

After the correspondence is recovered, the scheme 
proceeds as follows. Given a prototype P and an im- 
age I, we generate a view vector ~ from the image by 
extracting the location of feature points and arranging 
them in a vector. The points in fi are ordered in corre- 
spondence to the prototype points; that is, the first point 
in ~ corresponds to the first point in P and so forth. The 
prototype transform is the transformation that brings 
the prototype points as close as possible to their cor- 
responding image points. The prototype transform, 
therefore, is the transform vector b that minimizes the 
Euclidean distance between the prototype and image 
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points, namely 

min IIPb' - ~11. (8) 
y,, 

A solution for Eq. (8) is obtained as follows. Assuming 
P is overdetermined; that is, P is n x k where n > k 
and rank(P) = k, and denote by P+ = ( p r p ) - i  pT 
the pseudo-inverse of P, the prototype transform, b, is 
given by 

= P+F, (9) 

and the nearest prototype view, fi, is obtained by ap- 
plying P to the prototype transform, tS, that is 

= Pb = PP+F. (10) 

The nearest prototype view is now compared to the 
image, and their resemblance determines the class iden- 
tity of the object. The quality of the match between the 
prototype and the image is defined by 

D(P, ~) = I1~ - i l l  = I I ( P P  + - I ) D l l .  (11) 

(Notice that the assumption of an overdetermined pro- 
totype is essential or else D(P, F) vanish for every P 
and f.) To eliminate effects due to scaling of the ob- 
ject, this measure should be normalized, as is illustrated 
by the example below. Consider an object seen from 
some view Vl. Its distance to the prototype is given by 
D(P, vl). Suppose the object is now seen from a new 
view F2 that is identical to F1, except that the object 
is now as twice as close to the camera. Under these 
conditions F2 = 2~1, and its distance to the prototype 
is given by D(P, v2) = 2D(P, Fix). Clearly, we should 
have a measure that is independent of the distance of 
the object to the camera. One way to obtain such a 
measure is by dividing D(P, F) by the norm IIv[I 

D(P,  F) -- II(PP+ - 1)~11 (12) 
II~ll 

The normalized distance, / ) (P,  F), has two roles. 
First, / ) (P ,  F) is proposed here as an objective func- 
tion for establishing the correspondence between the 
prototype and the image. In other words, we expect 
that if the object belongs to the prototype's class then 
/ ) (P ,  F) obtains its minimal value when F is ordered 
in correspondence to P. Any other permutation will 

increase the value of D. Formally, denote by o a per- 
mutation matrix, we assume that 

L)(P, F) = min D(P,  a~).  (13) 
o" 

Secondly, s ince/) (P,  F) measures the similarity be- 
tween the prototype and the image, it can also be used 
to determine the object's class. An object observed in a 
view F belongs to the class represented by a prototype 
P if 

/ ) (P,  fi) < ~ (14) 

for some constant ~ > 0. We refer to Eq. (14) as the 
categorization criterion. 

The categorization stage proceeds as follows. Given 
an image I and a prototype P, the correspondence be- 
tween P and I is resolved by minimizing the measure 
D(P,  eF) over all possible permutation a of F, and 
if the obtained minimum D(P, ~) is below the thresh- 
old E, then the class identity of the object is determined. 

Note that in our scheme the prototype and the cat- 
egorization criterion determine the actual division of 
objects into classes; an object belongs to a certain class 
if its views are sufficiently similar, according to the cat- 
egorization criterion, to views of the prototype. Under 
the above definition, an object belongs to a prototype's 
class if the total (normalized) difference between its 
feature points and their corresponding prototype points 
does not exceed ~. Geometrically, a class is a cone of 
radius E surrounding the column space of the proto- 
type P. 

The measure / ) (P,  F) defined here determines the 
similarity between the prototype P and the view ~ us- 
ing only the distances between feature points. In gen- 
eral, since correspondence is difficult to achieve, such 
a measure would not be robust. Including additional 
information about the features in the similarity mea- 
sure may increase the robustness of the scheme. Also, 
measures that consider only the proximity of feature 
points are limited in terms of dividing the library into 
classes, since they induce classes of objects with highly 
similar shapes. Measures that consider additional in- 
formation may extend the scheme to handle larger and 
more sophisticated classes of objects. 

The measure D(P, F) can be enriched by consid- 
ering the similarity between corresponding points. A 
simple example for a measure that considers both the 
proximity and similarity between feature points is the 
following measure. Each feature point is associated 
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with a label (such as a corner or an inflection point). 
Again, the measure /9(P, 5) is applied, but this time 
only correspondences between points with similar la- 
bels are allowed; namely, corners in the image can 
only match corners in the prototype, and, similarly, 
inflection points can only match inflection points. 
Other examples for measures that combine proximity 
and similarity include measures that retain the tangent 
or the curvature of points. More sophisticated mea- 
sures may compare the topologies of the objects in the 
two views, or, in other words, verify that the objects 
share similar part structures in 2D. 

A useful technique in measuring the similarity be- 
tween the image and the nearest prototype view is to 
consider a larger set of features than the set used to 
determine the prototype transform. The rationale be- 
hind this technique is that it is generally difficult to 
recover exact feature-to-feature correspondence, and 
while such correspondences are necessary for recov- 
ering the prototype transform, similarity measures can 
be successfully applied even in the absence of exact 
feature-to-feature correspondence. This idea resem- 
bles the basic principle of the alignment algorithm 
(Ullman, 1989; Huttenlocher and Ullman, 1990), in 
which a small set of points is used to compute the ob- 
ject pose, while a larger set of points is used to verify 
this pose. 

It should be noted that the general flow of the scheme 
and, in particular, the identification stage are indepen- 
dent of the specific choice of similarity measure. As 
has been noted above, the measure affects the divi- 
sion of model libraries into classes and the selection of 
optimal prototypes for these classes. An example for 
selecting the optimal prototype for a given class under 
the measure specified in Eq. (12) (for either labeled or 
unlabeled features) is described in Section 4. 

Another important issue is the choice of threshold 
value, ~. In general, this value will depend on the 
structure of the classes considered by the system and 
on the specific similarity measure used. In particular, a 
different threshold value may be assigned to each of the 
classes. Methods for estimating the optimal threshold 
value for given classes of objects (such as MAP esti- 
mators) are not discussed in this paper. 

Finally, although the main objective of the catego- 
rization stage is to determine the class identity of the 
object, the categorization scheme described above is 
useful even if the object's category cannot be deter- 
mined. Section 3.3 below shows that the prototype 
transform can be reused to align the image with the 

specific models. Consequently, following the catego- 
rization stage the cost of comparing the image to each 
of the specific models is substantially reduced since 
the difficult part of recovering the transformation that 
relates the models to the image is applied only to the 
prototype objects. As a result, if the class identity of the 
object cannot be determined we still need to consider 
all the specific models in the library, but the overall 
cost of comparing the models to the image would be 
low because correspondence is computed once for the 
whole class. 

3.3. Identification 

After the observed object is categorized, the system 
turns to recovering its individual identity. At this stage 
the image is matched to all the models in the object's 
class. For each model, the system seeks to recover the 
transformation that aligns the model to the image, if 
there is such. In previous schemes this required recov- 
ering the correspondence between the image and each 
of the models separately. In our scheme, however, this 
no longer is necessary, since these correspondences 
can be inferred from the initial match between the pro- 
totype and the individual models. Thus, the model 
transform can be recovered directly from the prototype 
transform. We show in this section that the prototype 
and the model transforms are related by a simple trans- 
formation, which can be computed in advance, and 
which can in fact be undone already in the library of 
stored models. Consequently, the prototype transform 
can be reused in the identification stage to align the 
individual models with the image. 

The initial stage of categorization recovers three 
pieces of information that can be used for identifi- 
cation. The three are: (i) the object class, (ii) the 
correspondence between the prototype and the image, 
and (iii) the prototype transform. This information is 
used in the identification stage as follows. First, since 
the object's class is determined, only models that be- 
long to this class are considered. Second, using the 
correspondence between the prototype and the image 
established in the categorization stage, and using the 
stored correspondence between the prototype and each 
of the object models in the class, the correspondence 
between the models and the image is immediately re- 
covered. Finally, as is shown below, the model trans- 
form, namely, the transformation that aligns the model 
with the image, is recovered from the prototype trans- 
form. This recovery is possible because the feature 
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points in the prototype and the models of a class are 
matched in advance. 

Assume we are given with a view fi of some object 
model Mi, namely 

~ = M i 3  (15) 

for some transform vector 3. When the identification 
process begins, it is still unknown which of the models 
MI . . . . .  Ml of the object's class accounts for the image 
and what the transform vector 3 is. The first task faced 
by the scheme at this stage is to recover the model 
transform, 3. This is done, as is explained below, using 
the prototype transform b = P+~ defined in Eq. (9). 
Once 3 is recovered, it is applied to all the models 
M1 . . . . .  Ml, and the model for which a near-perfect 
match is obtained determines the object's identity. 

Theorem 1 below establishes that the model trans- 
form 3 can be recovered directly from the prototype 
transform b by applying a linear transformation which 
is referred to as theprototype-to-model transform. This 
transform has two interesting properties. First, it is 
view-independent; namely, for any given view of the 
object, the same transform maps the prototype trans- 
form that corresponds to this view to the correct model 
transform. The prototype-to-model transform there- 
fore can be computed in advance and stored in the 
library of models. Second, the prototype-to-model 
transform can be used to recover the model transform 
regardless of the quality of the match between the pro- 
totype and the image. In other words, even if the proto- 
type aligns poorly with the image, the transformation 
that aligns the model with the image is determined cor- 
rectly in this process. 

Theorem 1. Let {) = M i~t be a view ofMi, andlet b = 
P+ {) be the prototype transform, that is, the transform 
vector that best aligns the prototype with the image. If 
det(P+ Mi) :;/= O, then the model transform, 3, can be 
recovered from the prototype transform, b, by applying 
a matrix Ai, namely 

3 = A f t .  

A i is referred to as the prototype-to-model transform. 

Proof: Notice that 

I) = P+v = P+Mia. 

Since det(P+Mi) # 0 then P+Mi is invertible. Let 

we obtain that 

Ai = (P+Mi) - l ,  

3 = Aib. [] 

Corollary 2. The prototype-to-model transform is 
view-independent. 

Proof: The prototype-to-model transform, Ai,  is in- 
dependent of both pose vectors, 3 and b. Changing 
the imajge ~ will result in a new pair of pose vectors, 
3 and b, but similar to the old pair, the new pair is 
related through the same transform Ai. The prototype- 
to-model transform Ai therefore can be used to recover 
the object pose for any view of M i. [] 

A i exists if P + M  i is invertible. This condition is 
equivalent to requiring that the two column spaces of 
P and Mi will not be orthogonal in any direction. The 
condition holds, in general, when the two objects are 
fairly similar. This is illustrated by the following ex- 
ample. Consider the case that both column spaces of 
P and Mi are  unidimensional; namely, each represents 
a line through the origin. The only case in this ex- 
ample in which Ai does not exist is when P and Mi 
are orthogonal. But these lines are farthest apart when 
they are orthogonal. Consequently, if the objects are 
relatively similar A i would exist. 

Since it depends only on the prototype P and the 
model Mi, the prototype-to-model transform A i c a n  be 
pre-computed and stored in the library of models. Ev- 
ery model Mi E C is associated with its own transform 
A i that relates, for every possible view of Mi, between 
the prototype transform and the model transform. To 
compare the image to the model Mi the model trans- 
form should first be recovered. This is achieved by 
a p p l y i n g  Ai tO the prototype transform computed in 
the categorization stage. 

Furthermore, the prototype-to-model transform, A i, 

can be used to align the model Mi with the prototype 
P in 3D. Denote the aligned model by M~, M~ mod- 
els the same object as  M i does, since their column 
vectors span the same space. In addition, the aligned 
model M[ has the property that it is brought by the 
prototype transform, b, to a perfect alignment with 
the image. Consequently, if the models are aligned in 
the library with the prototype, the prototype transform 
computed in the categorization stage can be reused for 
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identification with no further manipulations. This is 
established in Theorem 3 below. 

Theorem 3. Let M~i ~- M i Ai  be the model M i aligned 
with the prototype P. For any view ~ = Mi~l, the 
prototype transform for this view b = P+ ~ is identical 
to the model transform for this view; that is, ?) = M[b. 

Proof: Since 

M[ = M iAi 

we obtain that 

M;b = MiAib = Mifi = F;. [] 

Using Theorem 3, the identification scheme is sim- 
plified as follows. The models M1 . . . . .  Mt are aligned 
in the library with the prototype P by applying the cor- 
responding prototype-to-model transform, A k' . . . .  At. 
At recognition time, the prototype transform b = P+ fi, 
is applied to the aligned models M I . . . . .  M~. Accord- 
ingto Theorems 1 and 3, by transforming the models 
by b the correct model, M[, would perfectly align with 
the image. Notice that when viewer-centered repre- 
sentations are used the prototype and the models im- 
age stored in the library are not required to be taken 
from the same set of viewpoints, since by applying the 
prototype-to-model transform these images will be au- 
tomatically aligned. 

In the scheme above we assumed that full feature- 
to-feature correspondence is established between the 
prototype and the image. This assumption is not manda- 
tory. Methods for estimating the prototype transform 
using partial correspondence (e.g., under partial occlu- 
sion) or by considering other types of features (such as 
line segments) can also be used. Note that in case the 
prototype transform can only be approximated, the ac- 
curacy of the model transform obtained is determined 
by the quality of this approximation as well as by the 
condition number of the prototype-to-model transform 
Ai.  The condition number of A i affects the match even 
if Theorem 3 is applied, namely, even if the models are 
aligned with the prototype in advance. 

The condition number of the prototype-to-model 
transform Ai may also be used as a criterion to divide 
the library into classes since it reflects the similarity 
between objects. For instance, a class may include all 
the objects Mi for which the condition number of the 
corresponding prototype-to-model transform Ai does 
not exceed some threshold p. Dividing the library this 

way guarantees that errors in estimating the prototype 
transform would not be amplified to corrupt the match 
between the specific model and the image by more than 
a constant factor p. 

3.4. Summary 

We presented in this section a scheme for recognizing 
3D objects from single 2D views under orthographic 
projection that proceeds in two stages, categorization 
and identification. The main steps in this scheme are 
summarized below. 

Preparations. In an offline stage the library of objects 
is divided into classes, where a class contains objects 
that share a fair number of similar features. A prototype 
object is then selected from every class (a method for 
constructing optimal prototypes is described in Section 
4), and the feature points of the prototype are matched 
against the feature points of the individual models. Fi- 
nally, the prototype-to-model transform is determined 
and applied to each of the models so as to align it (in 
3D) with the prototype. 

Categorization. In the categorization stage the image 
is compared against all the stored prototypes. For ev- 
ery prototype, the correspondence between the image 
and the prototype is recovered, and the nearest view of 
the prototype is constructed. The similarity between 
this view and the image is evaluated, and, if the two 
are found similar, the class identity of the object is de- 
termined. If at this stage more than one prototype is 
found similar to the image the information is passed 
on to the identification stage, and the identification 
procedure will be repeated for each of the respective 
classes. 

Identification. In the identification stage the observed 
object is compared against all the models of its class. 
Since the prototype and the models were brought in 
the library into alignment, the same transformation that 
aligns the prototype to the image also aligns the object 
model to the image. (Alternatively, if the models were 
not aligned with the prototype in advance for every 
model in the class the prototype-to-model transform is 
applied to the prototype transform to obtain the trans- 
formation which relates the correct model with the im- 
age.) The prototype transform therefore is applied to 
the models, and the obtained views are compared with 
the image. The view that is found to be identical up to 
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noise and occlusion to the image determines the indi- 
vidual identity of the object. 

The presented scheme is based on several key prin- 
ciples. Recognition is divided into two sub-processes, 
categorization and identification. In both stages mod- 
els are aligned with the image, and the identity of the 
object is determined by a 2D comparison; 3D recon- 
struction of the observed object from the image is not 
performed. The difficult component of the alignment 
approach, namely, the recovery of correspondence and 
object pose, is performed only once for each class; the 
prototype transform is reused in the identification stage 
to align the image with the individual models. 

4. Constructing Optimal Prototypes 

In the scheme above we assumed that the classes in the 
library of models are represented by prototype objects. 
Since categorization is achieved by matching the image 
to prototype objects, better results can be anticipated if 
we select the prototype that produces the best matches. 
In this section we present an algorithm for constructing 
optimal prototypes. 

Given a class of objects, the optimal prototype for 
this class is the object that resembles the objects of the 
class the most. Under our formulation, such an object 
would share as many features as possible with the ob- 
jects of its class, the position of these features on the 
prototype would be as close as possible to their position 
on the objects, and the prototype-to-model transform 
for these objects would be as stable as possible. Below 
we show that the optimal prototype can effectively be 
computed using a principal components analysis; that 
is, by computing the eigenvectors that correspond to 
the dominant eigenvalue for some matrix determined 
by the models of the class. 

Principal components analysis often is used in clas- 
sification problems to reduce the dimensionality of the 
data while preserving the most of its variance (Duda 
and Hart, 1973). In existing applications, objects are 
represented by points in some high dimensional space, 
where the components of the points represent the invari- 
ant attributes of the objects. Using the principal com- 
ponents, the objects are mapped to a lower-dimensional 
space, where it is assumed that objects that belong to 
the same class will tend to cluster together. Alterna- 
tively, the principal components are used directly to 
construct classes and prototypes. In this case it is as- 
sumed that the objects that belong to the same class lie 
along some hyperplane in the space of all objects. The 

goal of the principal components analysis is, given a 
set of points (objects), to recover the hyperplane (class) 
that these points induce. Our case is somewhat differ- 
ent. In our case an object is represented by a continuous 
linear space (representing all its possible views) rather 
than by a point. Whereas the use of hyperplanes in 
other schemes often is arbitrary and made primarily 
for convenience, their use in our scheme is appropriate 
following the linear combinations scheme (Ullman and 
Basri, 1991; see Section 3.1). 

The differences outlined above also imply differ- 
ences in the proof that a principle components analysis 
applies to our case. We show below that the optimal 
prototype can be computed by principal components 
analysis. The traditional proof needs to be extended 
since in our case objects are represented by continuous 
spaces rather than by discrete points. 

The prototype constructed in this process is a 3D ob- 
ject obtained by manipulating the objects in its class. 
To allow the construction, it seems as if the objects in 
the class should first be brought into alignment. In 
particular, if the objects are represented by viewer- 
centered models (that is, by sets of their views, see 
Section 3.1 for details), the different objects would then 
have to be represented by images taken from similar 
viewpoints. Nevertheless, the process presented below 
does not require an initial alignment of the objects. The 
same prototype is obtained in this process even when 
the objects are not aligned. 

We now turn to constructing the optimal prototype. 
First, we define an objective function. Given a proto- 
type P and an object model Mi, w e  define the similarity 
between P and Mi a s  follows. Let ~i be a view of Mi, 

we measure the similarity between the prototype P and 
the view Ui using Eq. (12). Then, we sum the mea- 
sure over all possible views of M i. Assuming without 
the loss of generality that ]]vil] = 1, Eq. (12) can be 
rewritten as 

/~(P, ~i) = II(PP + - I)~11. (16) 

Without the loss of generality, we can assume that the 
constructed prototype, P, is composed of orthonor- 
mal columns. Note that an overdetermined matrix P 
with orthonormal columns satisfies P+ = p r .  We can 
therefore rewrite Eq. (16) as 

L ) ( P ,  ~i) = II(PP T - l)fiill. (17) 

The distance between P and the model M i is now given 
by summing/)(P,  ~i) over all unit-length (to eliminate 
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scaling effects) views of Mi, namely 

D(P, Mi) = f~,,=~ II (ppV _ l)~i II dT~i. (18) 

To obtain the objective function, we sum these dis- 
tances over all models 

l 

E(P)=i~_lfll_ 7, II=l II(PPT-l)~il]d~i" (19) 

The object P that minimizes this function is defined to 
be the optimal prototype. 

Note that Eq. (19) is not the only possible objec- 
tive function for this purpose. An alternative "worst 
case" approach is to measure the distance between the 
prototype to the farthest model in the class (rather than 
summing this distance over all models). Except for be- 
ing difficult to compute, this measure also is sensitive 
to "outlier" models. 

The prototype that minimizes Eq. (19) can be con- 
structed in a process that includes the following steps. 

I. Verify that the column vectors of each of the model 
matrices, Mi (1 < i < l), are orthonormal. In case 
they are not, apply a Gram-Schmidt process to them. 
(Such a process obviously does not alter the space 
of views implied by the models.) 

2. Build the n × n symmetric matrix 

F = E M i M i  r. 
i = l  

3. Find the k eigenvectors of F that correspond to its 
dominant eigenvalues. The optimal matrix P is con- 
structed from these eigenvectors. 

Note that, in general, we are trying to construct a 
prototype object that would belong to the given class. 
This condition determines the choice of width k for the 
prototype. If all the models share the same width then 
the prototype would assume this width. In the rigid 
case, for example, k = 4 (see Section 3.1). In case 
more than k large eigenvalues are obtained, one may 
ignore these guideline rules and construct a prototype 
that has higher degrees of freedom than the objects in 
the class. One should note, however, that the larger the 
rank of the prototype is the larger becomes the num- 
ber of objects that can align well with the prototype. 

Thus, increasing the rank of the prototype will effec- 
tively increase the size of the class represented by the 
prototype. 

Theorem 4 below establishes that the algorithm 
above produces the optimal prototype. We consider 
here the case that all the objects share similar degrees 
of freedom. The same procedure can be applied with 
slight modifications to include the case of objects with 
different degrees of freedom. 

Theorem 4. Let Ml, M2 . . . . .  Ml  be a set of models 
belonging to some class C. Assume every model Mi 
is represented by an n x k matrix with orthonormal 
column vectors. The prototype P that minimizes the 
term 

l 
E(P) = E f  t [I(PP T - I)F)~lldF~i, 

i=1 ~i II=l 

where the integration is performed over all the unit- 
length views vi of each model Mi, is composed of the 
k eigenvectors of the matrix 

F=EMiMf 
i=1 

that correspond to its k largest eigenvalues. 

Proof: Let P be composed of the k eigenvectors of F 
that correspond to its k dominant eigenvalues. By re- 
gression principles (best eigenvectorfit, see, e.g., Duda 
and Hart, 1973; p. 332) P minimizes the term 

I k 

~_~ ~ II(PP T - I)Tnq [I, 
i=l j=l 

where rfiij is the j th column vector of Mi. In other 
words, consider Fnij as a point in TL n. The space 
spanned by the column vectors of P is the nearest 
k-dimensional hyperplane to these points, rfiq. The 
rest of this proof extends the claim from the discrete 
sum over the column vectors of M i to the continuous 
integral over all views spanned by these vectors. Ac- 
cording to our assumptions, each matrix Mi contains 
an orthonormal set of column vectors. Replacing these 
vectors by another orthonormal basis for M i will not 
change the matrix P; that is, P is independent of the 
choice of orthonormal basis for the models. This is il- 
lustrated by the following derivation. To obtain a new 



Recognition by Prototypes 159 

orthonormal basis for the column space of Mi we can 
apply a k x k rotation matrix R to M i (namely ,  Mi R). 
P is the best vector space for the new set as well, since 

M i R ( M i R )  T = M i R R T  M~ = M i l M i  T = M i M f  . 

F therefore is constant for any choice of orthonormal 
vectors for M1 . . . . .  Mn, and so its eigenvectors that 
correspond to its dominant eigenvalues represent the 
best vector space for any orthonormal representation of 
the objects. Consequently, P minimizes the objective 
function regardless of choice of basis for the models, 
and therefore it also minimizes the required term 

l 

To summarize, we showed that given a class of ob- 
ject models, the optimal prototype for this class is given 
by the eigenvectors of the matrix F that correspond 
to its dominant eigenvalues, where F is constructed 
from the object models. Note that in proving The- 
orem 4 we showed that the prototype is independent 
of choice of basis for the models. This implies that, 
in order to construct the prototype, the object models 
MI . . . . .  MI do not need to first be brought into align- 
ment. The process above guarantees to output the same 
prototype object even if the models are not aligned in 
advance. An illustrative example for constructing an 

optimal prototype constructed using this procedure is 
given in Section 5. 

5. Implementation 

To test the ideas presented in the paper, we have imple- 
mented the scheme and applied it to several objects. In 
our implementation, the library of models included two 
classes. The first (Fig. 2) contained two four-legged 
chairs (denoted by A and B), and the second (Fig. 3) 
included two car models, a VW and a Saab. As we 
have used a simple categorization criterion (Eq. (14)) 
our program was applied to objects that belong to rel- 
atively distinct classes. Further experimentation with 
more sophisticated similarity measures is needed in or- 
der to distinguish between other, more similar classes. 

To demonstrate categorization, we used chair A as a 
prototype and matched it to an image of chair B. High 
curvature points (such as the ones marked in Fig. 1) 
were selected from both the image and the prototype. 
Correspondences between image points and prototype 
points were determined by applying a procedure similar 
to the one proposed in Fischler and Bolles (1981). First, 
quadruples of image points were matched to quadru- 
ples of prototype points providing an initial estimate 
for the prototype transform. Then, the estimated trans- 
form was used to extend the correspondence set. Fi- 
nally, the prototype transform was recomputed using 

Figure 2. Pictures of two chairs used as models. We refer to these chairs by A (leR) and B (right). Models for the two chairs were constructed 
from single images using symmetry (Poggio and Vetter, 1992). 
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Figure 3. Pictures of two cars used as models. Left: A VW model. Right: A Saab model. Models for the two cars were borrowed from 
(Ullman and Basri, 1991). 

Figure 4. Matching a prototype chair (chair A) to an image of chair B. This figure, as well as the rest of the figures, contain three pictures. 
Left: The image to be recognized. Middle: The appearance of the prototype following the application of the prototype transform. Right: An 
overlay of the left and the middle pictures. 

the extended correspondence set. (See discussion in 
the Appendix.) 

The results of  matching the transformed prototype 
with the image are seen in Fig. 4. It can be seen that 
the transformed prototype (middle figure) assumed the 
same orientation as the observed object (left figure), 
and that the match between the two is good considering 
that the objects have different shapes. Note that in 
this implementation we allowed the objects to undergo 
general affine transformations in 3D, including stretch 
and shear, and so the match between the prototype and 
the image was better than if only rigid transformations 
were allowed, Additional examples using chair B and 
the two cars as the prototypes are shown in Figs. 5-7. 

In Figs. 8-9 we match the prototypes to the im- 
ages while using wrong correspondences. The results 
of these matches are significantly worse than when 
the correct matches are used. This is consistent with 
the idea discussed in Section 3.2 that the quality of the 

match can be used as the objective function for resolv- 
ing the correct correspondence. 

Figure 10 shows the results of matching a prototype 
four-legged chair to a single-legged office chair. As is 
expected, the overall match is not very good. How- 
ever, the upper portions of  the chairs match relatively 
well, while the legs of the chairs do not find appropri- 
ate matches. This example demonstrates that evalu- 
ating a match according to distances between feature 
points and lines is insufficient to achieve full basic- 
level categorization. Evaluation procedures that ex- 
amine the overall shape and topology of  the compared 
objects may potentially improve the performance of the 
system. 

Figure 11 shows the result of matching a prototype 
chair to an image of a Saab car. Anecdotally, the hole 
below the back of  the chair was matched to the wind- 
shield of the car and the seat was matched to the hood. 
In general, regardless of  which correspondence is used, 
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Figure 5. Matching a prototype chair (chair B) to an image of chair A. 

Figure 6. 

<,?/ 
Matching a prototype car (Saab) to an image of a VW car. 

Figure 7. 

/ 

Matching a prototype car (VW) to an image of a Saab car. 

% 
.... -'-W] 

Figure 8. Matching a prototype chair (chair B) to an image of chair A with wrong correspondence. 
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Figure 9. 

Figure 10. 

Matching a prototype car (Saab) to an image of a VW car with wrong correspondence. 

Matching a four-legged chair to an image of an office chair. 

Figure 11. Matching a prototype to a chair (chair A) to an image of a Saab car. 

the two objects would match poorly relative to match- 
ing the prototypes to objects of their class. 

Figures 12 and 13 demonstrate the identification 
stage. In the library we first aligned the model for 
chair A with the prototype chair (chair B) using the 
prototype-to-model transform. Then, an image of chair 
A was categorized (Fig. 5) by matching it to the proto- 
type chair, and the prototype transform was computed. 
In the next step, the prototype transform was applied to 
the specific model of chair A. The result of this applica- 
tion is seen in Fig. 12. It can be seen that a near-perfect 
alignment was achieved in this process. A similar pro- 
cess was applied to the VW car in Fig. 13 using the Saab 

car as the prototype. (The result of the corresponding 
categorization stage is shown in Fig. 6.) These figures 
demonstrate that although a perfect match between the 
prototype and the image could not be obtained, the pro- 
totype transform can still be used to align the observed 
object with its specific model. 

Finally, an illustrative example demonstrating the 
process of constructing optimal prototypes is presented 
in Fig. 14. Two planar artificially-drawn lamp-shaped 
objects were used. The objects are modeled by images 
taken at different orientations. A prototype object was 
constructed using the process described in Section 4. 
The result prototype assumed the "averaged" shape of 
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Figure 12. 

Figure 13. 

Matching a model of chair A to an image of the same chair using the prototype transform computed in the categorization stage. 

- 

Matching a model of a VW car to an image of the same car using the prolotype transform computed in the categorization stage. 

Figure 14. Constructing the optimal prototype Iright) from images of two different lamp-like objects (left and middle) oriented differently. 

the two original objects. Conforming with our analysis, 
the process was oblivious to the orientation of the object 
in the model images. 

6. Summary 

A scheme for recognizing 3D objects from single 2D 
images under orthographic projection was introduced. 
The scheme proceeds in two stages: categorization and 
identification. Categorization is achieved by aligning 
the image to prototype objects. For every prototype, 
the nearest prototype view is recovered, and the sim- 
ilarity between this view and the image is evaluated. 

The prototype that most resembles the observed object 
determines its class identity. Likewise, identification 
is achieved by aligning the observed object to the in- 
dividual models of its class. At this stage the proto- 
type transform computed in the categorization stage is 
reused to align the models with the image. The model 
that matches the observed object determines its spe- 
cific identity. In addition, we presented an algorithm 
for constructing the optimal prototypes. 

An important issue conveyed by our scheme is that 
categorization can be used to facilitate the identifica- 
tion of objects. We showed that by first categorizing 
the object, the difficult stages of the alignment pro- 
cess, namely, the recovery of the object pose and the 
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correspondence between the image and the model, can 
be performed only once per class. Consequently, iden- 
tification is reduced in this scheme into a series of sim- 
ple template comparisons. 

The scheme presented in this paper differs from 
existing categorization schemes in two important as- 
pects. The existing schemes (e.g., Biederman, 1985) 
attempt to recover the part structure (geons) of the ob- 
ject from the image alone. This structure is assumed to 
be almost invariant both to rotation of the object and 
across objects of the same class. In contrast, our scheme 
does not attempt to recover any 3D information from 
the image alone. Moreover, it separates the two effects 
that determine the object's appearance: view variation 
effects and deformations due to class variability. View 
variations are compensated for by recovering the view 
of the prototype that most resembles the image, and 
the amount of deformation that separates the prototype 
from the specific object is evaluated by assessing the 
difference (in 2D) between the nearest prototype view 
and the image. Note that recovering the part structure 
of the object from the image may be useful also in 
our scheme since it can be used to guide the process 
of establishing correspondence between the image and 
the prototype. 

One of the limitations of our method is that it re- 
lies on matching the feature points of a prototype with 
points on the individual models of its class. By this 
we limit the scope of a class to include objects which 
share a fair number of feature points at proximate posi- 
tions. Additional research is required in order to con- 
struct recognition schemes that combine categorization 
with identification while using more complicated fea- 
tures (such as line segments, curve pieces, and regions). 
Such schemes will potentially extend the scope of our 
method and increase its robustness. 

Open problems for future research include develop- 
ing efficient method for recovering the correspondence 
between prototypes and images, combining the scheme 
with existing indexing approaches (e.g., to allow direct 
indexing to the relevant prototype), defining effective 
measures to evaluate the quality of matches, handling 
partial occlusion, automatization of the process of di- 
viding objects into classes, and extending the system to 
incorporate additional cues, such as color and texture. 

Appendix 

The categorization stage involves the recovery of the 
prototype view that resembles the image the most. A 

fundamental difficulty in computing this view is the 
need to recover the full correspondence between the 
feature points in the prototype and in the image. Unfor- 
tunately, enumerating all the possible correspondences 
is impractical since the number of possible correspon- 
dences is exponential in the number of feature points. 
To reduce this complexity we have implemented a 
matching procedure similar to the one proposed by 
Fischler and Bolles (1981). Below we analyze the va- 
lidity of this procedure and show that, when the pro- 
totype and the observed object are sufficiently similar, 
this procedure can be used to recover the correspon- 
dence between the prototype and the image. 

The procedure for establishing the correspondence 
between the prototype and the image is the follow- 
ing. Given a prototype P (assume P is n x k) and an 
image I, 

1. Arbitrarily select and match a subset ofk prototype 
features to a subset of k image features. (We refer 
to these matches as key correspondences.) 

2. Compute the transformation that aligns the key pro- 
totype features with their corresponding image fea- 
tures. Apply this transformation to the prototype. 

3. Compare the transformed prototype to the image 
and extend the set of correspondences by adding 
pairs of features that fall close to each other. The 
transformation can be re-estimated during this pro- 
cess so as to improve the match between the proto- 
type and the image. 

4. Compute the transformation that best aligns the 
extended set of prototype features with their cor- 
responding image features. Apply the new trans- 
formation to the prototype. 

5. Evaluate the match between the transformed proto- 
type and the image. If the match exceeds a prede- 
termined threshold (hence satisfying Eq. (14)) the 
object is categorized. Otherwise, select a new set 
of key correspondences and repeat Steps 2-5. 

Clearly, the complexity of this algorithm is polyno- 
mial in the number of feature points since we enumerate 
all the k-tuples of correspondences where k is indepen- 
dent of the number of features. 

There is one issue to be resolved, however. The 
Fischler and Bolles's algorithm was developed to solve 
an identification task, that is, to compare a model to an 
image of the same object. The algorithm, therefore, is 
built around the premise that the transformation deter- 
mined by any subset of key correspondences is identical 
to the transformation that aligns the entire model with 
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the image. In addition, the algorithm assumes that when 
this transformation is applied to the model the rest of 
the object's features will coincide (or fall near in case 
of reasonable errors) with their corresponding image 
features. Our case is different, however. In our case the 
prototype and the image may represent different ob- 
jects. Thus, different choices of correct partial corre- 
spondence will produce transformations which differ 
from the sought prototype transform, and the trans- 
formed prototype features cannot be expected to co- 
incide with their corresponding image features. Since 
in our algorithm features are matched according to a 
proximity criterion (Step 3) we have to verify that, at 
least for some choices of partial correspondence, corre- 
sponding features will indeed fall close to each other. In 
the rest of this appendix we analyze the effect of us- 
ing partial correspondence on estimating the prototype 
transform. Bounds on the position of the transformed 
prototype features are computed, and the conditions for 
obtaining good estimates of the prototype transform are 
derived. 

We follow Jacobs (1992) in this analysis. Jacobs 
analyzed the effect of errors on the predicted position 
of image features in an identification task of planar 
objects. He found that the deviations between the pre- 
dicted and actual positions of the points are the result 
of the errors in the key points amplified by the affine 
coordinates of the rest of the points with respect to the 
key points. Below we extend his analysis to the case of 
comparing a prototype to an object. Here the "errors" 
represent differences in shape between the prototype 
and the observed object. The analysis is extended also 
to objects of arbitrary dimension. 

Given an n x k prototype P and a corresponding 
image vector ~ ~ 7~ n, the sought prototype transform, 
b, defined in Eq. (9), is given by 

= P+~ (20) 

and the corresponding prototype view,/5, by 

/3 = Pb. (21) 

In our algorithm we initially estimate the prototype 
transform by matching k prototype and image fea- 
tures. Assume without the loss of generality that the 
k matched features are ordered in the top of P and 5. 
Denote the top k x k sub-matrix of P by Q (assuming 
Q is non-singular) and the top k components of fi and 
fi by ff and ~ respectively (2, ~ ~ 7~k). The prototype 

transform is estimated by 

~ = Q  l/;, (22) 

and the prototype view corresponding to this estimated 
transform is 

4 !  

p = P J  = P Q - ~ .  (23) 

In the next step, we attempt to extend the set of cor- 
respondences. At this stage it is necessary that the 
difference between the predicted prototype view and 
the actual image, lift' - 511, will be small. Below we 
derive a bound on 11/5' - 511. To derive the bound we 
will express the vectors/3 and/5'  with respect to their 
first k components. The first k components of the best 
prototype view,/5, were denoted by ~ E 7-4 ~'. The first 
k components of the estimated prototype view/5'  are 
identical to the first k components of the image, 5, and 
these components were denoted by ff ~ 7~ k. Below 
we show that both/5 and/5'  are related to their first k 
components (~ and ff respectively) by a single n × k 
matrix A, namely, 

/5 = A~ (24) 

and 

/5' = a ~ ,  (25) 

where A is given by 

A = PQ-~ .  (26) 

Equation (24) can be derived as follows. Recall that 
Q is the top k x k submatrix of P, and so Qb contains 
the top k components of/3, that is 

Qb = c~. (27) 

Consequently, 

fi = P(~ = PQ-~ Q(~ = a Qb = agl. (28) 

Equation (25) follows immediately from Eq. (23). 
Notice that A contains the affine coordinates of the 

prototype feature points. Every row l in A contains 
the k affine coordinates of the lth point with respect to 
the first k points. A therefore satisfies 

P = A Q. (29) 

Equations (24) and (25) simply reflect the fact that 
affine coordinates are invariant under affine transfor- 
mations. Therefore, whether we apply the prototype 



166 Basri  

transform, b, to P, or whether we apply its approxi- 
mated value, ~, to P, the affine coordinates of the/th 
point will remain unchanged. 

We now turn to estimating the difference between 
the estimated prototype view and the image, II/~' - ~ [[. 
First, we use the triangular inequality 

I 1 ~ ' -  ~11 ~ I1~'- /~11 + I 1 ~ -  ~11, (3o) 

Equations (24) and (25) imply that 

l i p ' - ~ 1 1  = IIA(~-~)11  ~ IIAIIIlff- ~11, (31) 

where II A II denotes the max-norm of A defined by 

Ilaxll 
max - -  (32) 
~ Ilxll 

Since ~ and c~ contain the first k components of g and 
respectively then 

[1~ - qll ~ I1~ - ~11, (33) 

and so 

[I/~' - ~11 ~ IIAIIII~ - ~11. (34) 

Equations (30) and (34) imply that 

l i p ' -  ~11 ~ ([[AII + 1 ) l l ~ -  ~11. (35) 

According to Eq. (35) the difference between the 
predicted position of the prototype points and their cor- 
responding image points is determined by two terms. 
One term, [1 ~ - / ~  II, represents the difference between 
the position of feature points in the image and their cor- 
responding points in the best prototype view. This term 
is small when the classes of objects are restricted to in- 
clude only relatively similar objects. The other term 
depends on the norm of the matrix A, which contains 
the affine coordinates of the prototype points. This 
term depends on the choice of key correspondences. 
In particular, the norm of A will be small when the 
prototype points lie within or close to the convex hull 
of the k key correspondences. 

This analysis is further emphasized if we consider 
the deviation in position of particular feature points. 
Suppose that the difference between every feature point 
in the best prototype view and the corresponding point 
in the image is bounded by some scalar, 3, namely, 
IPi - -  Vii < ~ (1 < i < n). Consider the difference in 

the/th point of the estimated prototype view and the 
image 

Now, 

[Pt' - vtl <_ IP[ - Pt[ + IPt - vii. (36) 

and, 

IPt' - ptl = 

IPt - v t l<  3, (37) 

k Pi) k 
Z all (Pi -- < E lali IS, 
i=1  i=1  

(38) 

where all are the components of A. Equations (37) and 
(38) imply that 

(k )  t - vtl < ~ latil + l 6. 
i=1  

(39) 

Note that if, for example, Pt lies inside the convex 
hull of Pl . . . . .  Pk then all >__ 0 ( l  < i _< k) and 
~-~=l ati = 1. Consequently, 

I P / -  vtl < 2& (40) 

To summarize, in this appendix we have analyzed 
the applicability of Fischler and Bolles's algorithm to 
the problem of recovering the correspondence between 
prototype and image features. We showed that this 
procedure can be applied successfully to classes that 
contain objects of relatively similar shapes. For these 
objects there exist "good" choices of key correspon- 
dences, which do not amplify the deviations between 
corresponding features beyond a certain bound. Enu- 
merating all the possible sets of key correspondences 
can in these cases guarantee the recovery of the corre- 
spondence between the prototype and the image. 
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