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Abstract 
A theory is presented for the computation of three-dimensional motion and structure from dynamic imagery, using 
only line correspondences. The traditional approach of corresponding microfeatures (interesting points--highlights, 
corners, high-curvature points, etc.) is reviewed and its shortcomings are discussed. Then, a theory is presented 
that describes a closed form solution to the motion and structure determination problem from line correspondences 
in three views. The theory is compared with previous ones that are based on nonlinear equations and iterative methods. 

1 Introduction 

The importance of the estimation of the three- 
dimensional motion of a moving object (or of the sensor) 
from a sequence of images in robotics (visual input to 
a manipulator, proprioceptive abilities, navigation, 
structure computation for recognition, etc.) can hardly 
be overemphasized. 

Up to now there have been three approaches toward 
the solution of the problem of computation of three- 
dimensional motion from a sequence of images: 

1. The first method assumes the dynamic image to be 
a three-dimensional function of two spatial argu- 
ments and a temporal argument. Then, if this func- 
tion is locally well behaved and its spatiotemporal 
gradients are computable, the image velocity or op- 
tical flow may be computed [1-3]. 

2. The second method considers cases where the motion 
is "large" and the previous technique is not appli- 
cable. In these instances the measurement technique 
relies upon isolating and tracking features in the im- 
age through time. These features can be microfea- 
tures (highlights, corners, points of high curvature, 
interest points) or macrofeatures (contours, areas, 
lines, etc.). In other words, operators are applied 
to both images which output a set of features in each 
image, and then the correspondence problem between 
these two sets of features has to be solved (i.e., find- 
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ing which features in both dynamic images are pro- 
jections of the same world feature) [4, 5]. 

In both of the above approaches, after the optic flow 
field, the discrete displacement field (which can be 
sparse) or the correspondence between macrofeatures 
is computed; algorithms are constructed for the deter- 
mination of the three-dimensional motion, based on the 
image flow or on the correspondence [6-13]. 

3. In the third method, the three-dimensional motion 
parameters are directly computed from the spatial 
and temporal derivatives of the image intensity func- 
tion. In other words, if f is the intensity function 
and (u, v) the optic flow at a point, then the equa- 
tion fxu + fyV + f = 0 holds approximately. All 
methods in this category are based on substitution 
of the optic flow values in terms of the three- 
dimensional motion parameters in the above equa- 
tion, and there is promising work in this direction 
[14-16]. Also, there is work on "eorrespondenceless" 
motion detection in the discrete case, where a set 
of points is put into correspondence with another 
set of points (the sets correspond, not the individual 
points [14[. 

As the problem has been formulated over the years, 
one camera is used, and so the number of three- 
dimensional motion parameters that have to be and can 
be computed is five: two for the direction of transla- 
tion and three for the rotation. 

In this paper we present a theory for the determina- 
tion of three-dimensional motion and structure from 
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line correspondences in three views, since it can be 
easily shown that from two views there are infinitely 
many solutions if one corresponds only straight lines. 
A line is represented by its slope and intercept (although 
we use an equivalent representation that has more uni- 
form behavior), and not by its end points, even if such 
points exist. 

2 Motivation and Previous Work 

The basic motivation for this research is the fact that 
optical flow (or discrete displacement) fields produced 
from real images by existing techniques are corrupted 
by noise and are partially incorrect [17]. Most of the 
algorithms in the literature that use the retinal motion 
field to recover three-dimensional motion, or are based 
on the correspondence of microfeatures, fail when the 
input (retinal motion) is noisy. Some algorithms work 
reasonably well, but only for images in a specific 
domain. 

A possible solution to this difficulty is as follows: 
Instead of using correspondences between microfeatures 
such as points, why not try to use correspondences of 
macrofeatures? In this case, on the one hand the retinal 
correspondence process will be much easier, greatly 
reducing false matches, and on the other hand the con- 
straint that relates three-dimensional motion to retinal 
motion will be different and perhaps not as sensitive 
to small perturbations resulting from discretization ef- 
fects. As macrofeatures, we can use lines or contours, 

since they appear in a rich variety of natural images. 
The contour-based approach has been examined in [14]. 
Research on the problem of motion interpretation based 
on line correspondences has been carried out by T.S. 
Huang and his colleagues [18, 19]. There, the problem 
of three-dimensional motion computation has been suc- 
cessfully addressed in the restricted cases of only rota- 
tional or only translational motion. In the case of 
unrestricted rigid motion some good results have been 
obtained in the above references, but the solution is 
obtained iteratively from a system of nonlinear equa- 
tions, and convergence of the solution to a unique value 
is not guaranteed if the initial value that is fed to the 
iterative procedure is not close to the actual solution. 

3 Statement of the Problem 

The problem we are addressing is to compute the 3D 
motion and structure of a rigid object from its successive 
perspective projections, using only line correspon- 
dences. So, from three views of a scene such as the 
one in figure 1 and using only line correspondences 
(where lines are represented with slope and intercept) 
we will be able, applying this theory, to recover the 
3D motion between the views and the structure of the 
scene. Since the structure can easily be computed when 
the motion is known, we will first derive the equation 
of a 3D line given the motion parameters and the images 
of the line in two successive frames. Then, we will show 
how to recover 3D motion from line correspondences. 

F/g. 1. 
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Fig. 2. Imaging geometry. 

The imaging geometry is the usual one (figure 2): 
The system OXYZ is the object space coordinate system 
with the image plane perpendicular to the optical axis 
(z axis) at the point o = [0, 0, 1] r, the focal length 
being 1. Let ox, oy be the axes of  the naturally induced 
coordinate system on the image plane (ox//OX, oy//OY). 
The focal point (nodal point of  the eye) is O and so 
an object point [X, Y, Z] r is projected onto the point 
Ix, y]T on the image plane, where 

X Y 
x = 2 y = ~ (1) 

Finding structure is equivalent to finding the equa- 
tions of all the 3D lines of interest. These equations 
have the following form: 

Ei: [X= AxiZ + Bxi, Y =  AyiZ + Bvi] i = l , 2  . . . .  

We use as motion parameters the rotation matrix R, 
representing a rotation around an axis that passes through 
the origin, and the translation vector T, where 

I r l  r4 r 7 1  [ t x ]  
R - r2 r5 rs T -= t v 

r3 r6 r9 tz  

rl, rz . . . .  , r9 are the elements of an orthnormal matrix. 
A point [X, Y, Z] T before the motion is related to itself 
IX', Y', Z ']  T after the motion by 

g' = R  Y + T  
Z '  Z 

The above is enough to describe any rigid motion. 
The images are known 2D lines of the form 

~il: Y = aitx + bil i = 1, 2, 3 . . . .  l: a, b, c 

Y d E 
=- ,,, 

X 

Fig. 3. A line in the image is represented either as its equation or 
as a 3D vector orthogonal to the line and to a ray from the origin 
to the line. 

Frames are denoted by letters. Also the lines eif and 
eir correspond to the same line Ei in space. 

We are also going to use another representation of 
the lines in vector form which, although dual to the 
equation form, can make the rotation computations look 
more natural (figure 3). We represent an image line by 
the vector normal to the plane defined by the origin 
and the object line (which also contains the image line) 

eil: Y = aitx + bil i = l, 2, 3 . . . .  l: a, b, c 

or in vector form 

~il: - -  1 
bil 

We use a displacement and a direction vector to repre- 
sent the object line: 

[ X = A x ~ Z + B x ~  
Ei :  A y i Z  + B y i  

or 

di = Alyi f =  

and Ei: f + Zd i. 
The first problem for which we propose a solution 

is that of  finding structure from motion and line corre- 
spondence, i.e., finding the equation, before the motion, 
of  a line in 3D given the equations of two successive 
images of  it, as well as its motion parameters R, T. We 
first consider the case of no rotation and then we intro- 
duce rotation. The second problem that we will solve 
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is that of finding the motion and structure knowing only 
the line correspondences over three frames, by solving 
the first problem twice, first for frames 1 and 2 and 
then for frames 1 and 3. Clearly we should obtain the 
same line representation. This is the only constraint 
on the motion parameters of the problem, and is enough 
to solve it if we have an adequate number of line cor- 
respondences. (We need a minimum of 6, as pointed 
out in [18, 19]; and in order to have linear equations, 
we need 13 according to our theory.) 

4 Structure from Motion and Correspondence in 
the Pure Translation Case 

A line E: 

X = A f Z  + Bx 

Y =  AyZ + By 

when translated by T: [tx, ty, tz] r becomes 

X = AxZ + Bx + tx - Axtz 

r = a y Z  + B y  + ty - A y t  z (2) 

The images are known to exist and are 

ea: y = a~x + ba (3) 

eb: y = abx + bb (4) 

for the two frames respectively. From the imaging 
geometry we find from (2) and the relations of perspec- 
tive projection (1), by eliminating X, Y, Z, that 

AxBy - ArBx (5) 
Y = X - ~ x  - Bx 

B r + ty - A yt z 
Y = X B x  + tx Axt z 

(6) 
_ Ax(Ov + t v - Aytz) - Ay(B x + t x - Axtz) 

(Bx + tx - A & )  

By equating thex, y coefficients of(3)-(5) and (4)-(6) 
we get four equations in four unknowns (the parameters 
of the 3D lines). Solving them we get only two solutions 
(one of the solutions is spurious). These solutions are 

ax = ~ h y  = ~ B x = O, B y  = 0 
t z  ' t z  ' 

and 

A x = b b  --  b a 

a b - a a 

a a b  b - a b b  a 
A y  -=- ab  _ aa 

Bx = - bbtz - ty + agx  
a b --  a a 

By = -- aa(bbtz -- t~ + abtx) 

a b - a a 

The first is the spurious one because it represents 
a 3D line that passes through the origin and is sliding 
along itself. Such a line does not give a line image in 
both frames, which contradicts the natural assumption 
that the camera sees a line as a line. The other solution 
is the one we want, and the only one we keep as valid 
in the rest of the presentation. This also proves the 
uniqueness of the solution. An alternative way to write 
the same result is the vector form we described above: 

d = ~a X C b (7) 

~-(~o x %) 

f = ( T '  6b)(6 a X Z) (8) 

~ ' ( c .  x co) 

where 2 is the unit vector along the z axis. 

5 Introducing Rotation 

The general case with both rotation and translation can 
be derived directly from the pure translation case quite 
easily. We first establish the following result which is 
also used in [18, 19]: 

An image line C a ( in  vector form)  o f  a line in space 

that is rotating with rotation R around the origin is 

transformed into an image line R • c a. 

Proof. The above result has appeared in the past and 
its rigorous proof is rather trivial. So instead of just 
repeating, we provide a more descriptive and self- 
explanatory version of the proof. The vector % is the 
normal to the plane defined by origin and the object 
line, which intersects the image plane along Ca. When 
the line rotates then the plane also rotates with the same 
rotation, and so does the normal of the plane, which 
then becomes R • Ca. 

The importance of the above result is that the rotated 
image can be found without any knowledge about the 
object line, which implies that no constraint can be 
derived from the pure rotation case to lead to a solution 
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similar to that in the pure translational case. So we 
consider now the general case of both rotation and 
translation. 

The movement of the line consists of a rotation fol- 
lowed by a translation. So if we rotate the first image 
% to R" e, a then we can solve the pure translation case 
with the image of the first frame being R • e'a and the 
image of the second being c0, and what we get is the 
object line rotated by R. All we need then is to rotate 
back by R r. This way equations (7) and (8) become 

R • d = (R • e.a) x e'b 
^ 

Z "  [(R • e'a) X eb] 

and 

(T" cb) [(R • Ca) X Z] 
R ' f =  

2" [(R" e,o) x e,b] 

from which we get, after some manipulations, 

d = ^ C a X ( R T ' c b )  (9) 

Z .  [c. x (R r "  Cb) ] 

( T "  Cb)(C a X Z) 
f = ^ (10) 

Z "  [c a X (R T" Cb) ] 

In the above expressions the z components of the vec- 
tors are 1 and 0 respectively. This not only makes the 
duality of the vector and equation forms obvious but 
is is also a sufficient property to guarantee that two 
equal lines are always represented by the same pair of 
vectors, a fact we use in the next section. 

6 Motion and Structure from Line Correspondences 

In the previous section we showed how to compute the 
structure given the line correspondences and the motion. 
Here we are concerned with finding motion from line 
correspondences alone, 

Given the images of one line in three successive 
frames (a, b, c), the solution (as a function of the R 
and T parameters) must be the same for both pairs of 
frames a - b  and a - c .  So 

d = e,. X (R T-  e,b) 
^ 

Z '  [e,. X (R, r "  e,o)] 
( l l)  

e,,~ x (R["  c~) 

Z" [C a X ( R [ "  e~)] 

and 

(To" e,p(e,, x 2) 
f = .: 

z .  [e,° x (RaT" e,b)] 

(Tb " Cc)(e,,:, X 2 )  (12) 

2 "  le'a X ( r [ "  e'c)] 

where cc is the image of the line in the third frame and 
Ta, Tb, R, ,  R b represent the translation and rotation for 
frames a - b  and frames a - c  respectively. We now sim- 
plify these vector equations since they represent four 
equations, only two of which are independent. The 
reason is the following: the vectorfrepresents the point 
where the line cuts the plane Z = 0. This point belongs 
to this plane and to the plane defined by the origin and 
the image line, which of course contains the object line, 
so it belongs to their intersection which we can find 
from the image alone. Thus given the x (y) component 
of thefvector, the y (x) component can be found. This 
implies that another equation in f is superfluous. For 
the d vector we know that it has x = 1 and is orthogonal 
to the image line vector. The only additional informa- 
tion we need to specify is one of the other two compo- 
nents. The rest can be found then. So we have only one 
independent equation in the d vector. 

Equations (11) and (12) can be expanded to 

(Ca, R T "  cb, fO 

(c a, RTa " Cb, 2)  

(C a, R f  " cb, 

(e,a, RTa ° e,b, Z )  

1 

(%, R~'ec, 
(Ca, R[" 2) 

= (Ca, a2"e' , 5 

(e' a ,  R~" e,c, Z) 

1 

I (Va.e-P(ea.ly 0 
R a" Cb, 2) 

- (T ."  ep(q 

(e'a, Ra " e'b, 

0 

where ( . , . ,  .) is the scalar triple product of vectors. 
From the above we choose the ones that come from 
equating the x components of the vectors. There is no 
reason for this, other than the fact that they lead to 
simpler equations and are independent. We can write 
them also as 

(To " el,) (T b " c,) 
= (13) 

(c., gra " eb, 2)  (c., e ~ "  c c, 2)  

(Yb  " e-c)(e-a " }') 

(co, Rf  " cc, 2) 

= -(Tb • Cc)(C, • 
(e,., R T"  E,c, 2)  

0 
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(Ta " ¢b) (Tb " ~c) = (14) 
Ra (0a, 

By simplifying the triple products and cross multiply- 
ing and then substituting 

K = ( T b "  R . ~ )  r - Ta" Rr~ 

L = (To" R.T2) r - Ta" R~2 

M = (Tb" RaT)  T - -  Ta" R~3 

where Ral is the first column of the matrix Ra, etc., 
we get finally 

aa(e  T "  L "  ec) + (eb T" K"  ec) = 0 (15) 

ba(e  T "  L "  Cc) + (e T" M" %) = 0 (16) 

from equations (13) and (14) respectively. The above 
equations are nonlinear in terms of the motion param- 
eters but linear in terms of the elements of the matrices 
K, L, M, and they come from considering just one line. 
By using 13 lines we can get 26 linear equations, set 
any of the 27 elements of the matrices to 1, and solve 
the 26×26 system; then we can find the elements of 
the K, L, M matrices (hereafter essential parameters), 
which in terms of the motion parameters are 

K = 

raltbx -- rbltax raltby -- rb4tax 

raatbx -- rbffar raatby -- rbatay 

ra7tbx -- rbltaz ra7tby -- rb4taz 

7 

rat tbz  - -  rb7tax I 

J ra4tbz - -  rb7tay 

raTtbz -- rbTtaz 

L = 

I ra2tbx -- rb2lax 

Fa5tbx -- rb2tay 

rastbx -- rb2taz 

ra2tby - rbst~x 

ra5tby - rbstay 

rastby - rbstaz 

ra2tbz -- rbstax 

raStbz -- rbstay 

rastbz -- rbStaz 

ra3tbx - -  rb3tax ra3tby - -  rb6tax 

M = ra6tbx - -  rb3tay ra6tby - -  rbotay 

ra9tbx - -  rb3taz ra9tby - -  rb6taz 

ra3tbz - -  rb9tax 

1 ra6tbz - -  rb9tay 

ra9tbz - -  rb9taz 

In this way it is easy to find the numerical values of 
the three matrices• By equating their values with the 
functions of the motion parameters that they represent 
we get 27 nonlinear equations involving the motion 
parameters only. By setting one of the values to 1 we 
actually set the scale factor of the solution to some value. 

If we want to increase the robustness of the computa- 
tion of the elements of the matrices K, L, M, there is 
a heuristic that is widely used and proven good experi- 
mentally [13]. The heuristic is to use the least-squares 
technique that is proven optimal under some conditions 
(one of which is the independence of the unknowns and 
is clearly violated here). So by just using least squares 
we are not guaranteed optimality, but there is consider- 
able improvement that can be justified intuitively and 
experimentally. 

Another way to solve the system is by using Singular 
Value Decomposition (SVD). The SVD is defined by 
the following theorem [20, 25]: 

Any m x n  matrix A (where m >_- n) can be factored into 

the product  o f  three matrices Umxn, the diagonal 
matrix ~'n×n and  V~× n (the U, V being orthonormal) 

such that EIL]I wlw2 
A = U . . .  v r 

Wn 

The elements of the diagonal matrix are called singular 
values. 

We can take equations (15) and (16) for a set of at 
least 13 lines and form the matrix A. The 7/×27 matrix, 
where r/is at least 26 can be supplemented by rows 
of zeros to a minimum of ~ = 27. The solution for the 
27 essential parameters then are the elements of the col- 
umn of Vthat correspond to the smallest singular value. 
In the absence of noise this singular value is exactly 
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zero. But when noise is present it is not zero. Moreover 
if the configuration of lines we used for constructing 
matrix A is a pathological one I then there are going 
to be at least two very small and almost equal singular 
values. By means of some thresholds we can detect 
when such singular values appear, in which case we 
know that we are dealing with an ill-conditioned 
problem. 

This solution is equivalent to a least-squares [25] one 
and has one more advantage. In order to take care of 
the indeterminate scale factor, instead of arbitrarily set- 
ting one element of the vector of  the unknowns to 1, 
we set the length of the vector to 1 (since it is a col- 
umn of an orthonormal matrix). This way we avoid the 
ill-conditioning that occurs if  we choose to set to 1 an 
element that is meant to be zero. These a re the  main 
reasons why the SVD method behaves better. 

7 Solving for the Motion Parameters 

The three matrices contain all the information the 
motion parameters themselves contain but they are not 
that useful a representation. So we present here a 
method to compute the motion parameters up to a scale 
factor for the translations. The three matrices are them- 
selves known up to a scale factor since we either set 
one of their elements to one or they are computed as 
an eigenvector of length one. 

The three matrices can be written as 

K = 

L = 

tax ral 

tay ra4 

taz ra7 

ta~ r~2 

tay ra5 

t~z ra8 

1 
-rbl  --rb4 --rb7 I 

] tbx tby tbz 

--rt, 2 --rb5 --rbs ] 
(17) 

J tbx tby tbz 

M = 

t~ 

lay 

ra3 

ra6 
--rb3 --rb6 --rb9 

tbx tby tbz 
taz r~9 

matrices are all singular so at least one of their These 
singular values must be zero. The singular vectorf~ of 
K that corresponds to the zero singular value is orthog- 
onal to the Rbl and T b (assume singular values distinct 

tone for which no unique solution exists. 

for the time being). The other two matrices yield simi- 
lar relations between the corresponding singular vectors 
f2 andf~ and the translation vector. So it is easy to com- 
pute the direction of the line the translation lies on [21]. 
The cases where this does not work can in principle 
be identified and treated separately. But it is not at all 
easy to decide that two values are equal in the presence 
of noise. Here it is even worse because we have to check 
nine pairs in order to decide how to treat the problem. 
Programming and verifying such a thing is very diffi- 
cult. The following observations are helpful in develop- 
ing a simple algorithm to find the direction and the 
magnitude of the translation (but not its polarity, which 
is computed last). 

• There is degeneracy in computing the singular vectors 
only when the two smallest singular values (remem- 
ber all are non-negative) are almost equal to each 
other (and almost equal to zero), and not all three 
of them can effectively be zero. 

• In order for K to have two zero singular values either 
Ral and Ta must be collinear or Rbl and T b must be 
collinear. The same for the other two matrices and 
columns of  R a and Rb respectively. 

• There can be at most two matrices out of three that 
are degenerate: one due to a collinearity of  the a 
motion parameters and one due to a collinearity of  
the b parameters. From the third matrix we can com- 
pute the singular vector we are interested in. 

• The sum of  the squares of the projections of a unit 
vector on the three columns of the rotation matrix 
equals one. 

We can define the vectorsf~, etc., through the singular 
value decomposition of the three matrices, which looks 
like this: 

i o  IE ,,I 
o ,, 

(18) 

We now compute the products K.f~,  L .fj and M-f~. 

K " f~ = 0 = - Ta(Rbl " f l )  (19) 
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because Rbl is normal to f~, 

I' ra  I, • 
L " f l  = tay rasl " --rb2 

tbx 
[ taz ra8_] 

= lay ra51 " 

I_taz ra8 l 

= -- Ta(Rb2" f l )  

and similarly 

M " A = - Ta(Ro3 " A)  

I 

rb5 -rbs I . 

tby tbz J 
I f, 

(20) 

(21) 

The sum of the squares of the above is 

( K ' f 0  z + (L " f 0  z + ( M ' f , )  z 

= ~ [ ( R o l " f l )  = + (R62 "fO z + (Ro3 " f  l) 2] (22) 

= ~ a ~ 0  

where ~ is the inner product of Ta with itself. Equa- 
tions (19)-(22) have two consequences. One is that we 
can compute the magnitude of the translation. The other 
is that from even a single singular vector f we can 
compute the direction of the translation vector; it is 
parallel to any nonzero product K -  f~, L • f~, M .  f~. 
Since the sum of their squares is nonzero (Ta, Tb can- 
not be zero because in this case the problem itself is 
ill-posed and can have infinitely many solutions as 
described below) at least one of them is nonzero. 

The procedure of finding T a up to a sign is the fol- 
lowing: Find one matrix for which the computation of 
the smallest singular value is furthest away from making 
the matrix degenerate and find the corresponding singu- 
lar vector. Multiply the vector by the three matrices, 
and the vectors that result are parallel to Ta and the 
sum of their squares is the square of the length of Ta. 
Do the same with the transpose to find T0. If  noise is 
present we get the direction of Ta by averaging the 
three vectors. 

It is worth noticing that the only property of the f 
vectors we need is their orthogonality to the Tb vector. 
In order to proceed to the computation of the columns 
of the rotation matrices we need a set of at least two 
noncollinear unit vectors orthogonal to Tb (and another 
such set for Ta), which is always trivial to find. We 
show the derivation using the f vectors which are or- 
thogonal to To and not coUinear (otherwise the columns 

of the rotation matrix would be coplanar). In case of 
degeneracy the ~ ' s  cannot be computed; instead we 
construct a set of three noncoplanar vectors that are 
orthogonal to Tb but not necessarily orthogonal to the 
columns of the rotation matrices. 

As we already saw 

K "  f ,  = - Ta(Rol • f , )  

L "  f l  = - Ta(R#2 " f , )  

M "  f ,  = - Ta(eb3 " f , )  

and in exactly the same way 

Define 

K 'A  

L ' f 2  

M ' f 2  

K ' f 3  

L ' f 3  

M ' f 3  

=-Ta(ebl  A) 

=-Ta(Rb2 A) 

=-Ta(Rb3 A) 

=-Ta(gb~ A) 

=-To(Rb2 A) 

=-To(Rb3 f3) 

G = l f ,  AA]  

We can now compute up to a sign a matrix A b such that 

Ab = sbRE" Fb 

The s b represents the sign ambiguity inherited from 
the computation of the translation vector. Matrix Fb is 
composed from vectors fl, f2, and f3 whose length is 
the unity. In fact, any choice of length or sign of these 
vectors will do. 

Leaving the Sb aside for the time being, 

A b ' A ~  = R ~ ' F  b ' F ~ ' R  b = V b ' r  2" V~ 

A~" A b = F~" F b = V b" E2 . F~ 

This implies that the SVDs of the matrices A b and Fb 
can have the same Vb. 

a b = U b . F , . V ~  F b = X b ' F , ' V  ~ 

Since the SVD is not unique the Vb'S might be differ- 
ent. So we compute the SVD of the Fb matrix from 
the SVD of the Ab. 

Xb" E = Fb" Vb = Xb = [+_Xb, Xb 2 Xb,] 

The ambiguity in the sign comes from the zero singular 
value. There is only one zero singular value because 
the f ' s  are not collinear. 
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So 

Aa = R ~ .  Fb = Ua .  E . V ~ =  R ~ .  X r .  Z . V ff 

Premultiplying and postmultiplying by U~" and V b, 

z : U .R2.Xb.Z 
Now it is obvious that 

u£. Xb = t L _  

where 

% 

1 
(23) 

a b = det (U b) " det (Xb) (24) 

The ab takes on the values +1 or -1 and equation (23) 
gives the one that results in a right-handed rotation 
matrix. So (23) and (24) yield 

Ra = X  b • 1 • U~ 

1 

The matrix A b is known up to a sign. So the two solu- 
tions for the rotation matrix are 

Rb = Xb" sb • Ub r (25) 

Sb 

where so is +1. Which of the two is to be determined. 
The same with the other matrix 

I" 1 R a = X a " s a " O 2 (26) 
Sa 

There are two possible solutions for each rotation pair 
and each translation pair. By constructing the matrices 
K, L, M from the candidate solutions, only one yields 
the three initial matrices. In the next paragraph we prove 
that there is only one out of the four that yields the ini- 
tial ones except when there is not a unique solution at all. 

7.1 Uniqueness o f  the solution 

We observe that if R b is the actual solution and Rg is 
the solution with the opposite sign option then 

R~" Tb = Ub" ~ b .  X~"  T b 

= U b ' ~ b "  0 = R ;  r ' T b  

0 

The information we used to find the solution for the 
rotation and translation is the products of thefvectors 
by the three matrices. The ambiguity of the signs is due 
to the lack of information along the direction of T. The 
ambiguity can be proved resolvable if we make use of 
this fact. 

t z 1 

• I - - rb l  
Satbx 

Sbtax Pal 

Sbtay ra4 

Sbtaz ra7 

--rb4 --rbv 

Satby Satbz 
tby 

tbz 

=E I  l'a 
= SaT2b • (Ra l  • Ta) - SbT~a • (Rbl  • Tb) 

For simplicity of the above expression we did not spec- 
ify which of the two candidate solutions for the rotation 
matrices we used because when multiplied by the trans- 
lation vectors they yield the same result. There are four 
solutions that correspond to the four different combina- 
tions of +1 or -1  for s a and so. In the following three 
equations 

T r "  K "  T b = soTS" (Ral • ra) - sbT2a • (Rbl • Tb) 

Tra " L "  T b = saT~ " (Ra2 • Ta) - SbTZa • (Rb2 " Tb) 

TTa " M "  T b = saT~ " (Ra3 " Ta) - SbTZa " (Rb3 " Tb) 

(28) 

we can compute TaT. K .  Tb, etc. Also due to (27) we 
can compute (Ral " Ta), etc. In the 3z3  matrix that is 
formed from (28), 

[ -T~  r ' K "  Tb T~-(R,~ l "  Ta) 

-Tra L ' T  b T~ (Ra2 Ta) 

- T  T M ' T  b T~ (Ro3 Ta) 

-T~" (RbI " Tb) 1 
-Ta  2 (Rb2 Tb)l 

-T~ z (Rb3 Tb)_] 
(29) 

we know all the elements. At least one of the three 
singular values must be zero. 

Case 1. The matrix has only one zero singular value. 
The corresponding singular vector then gives the solu- 
tion for Sa and sb. 
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Case  2. The matrix has two zero singular values. Then 
almost always the problem has a solution: Let two sin- 
gular vectors be v~ and v2. And let si = [1 _1 +1] T, 
i = 1 . . . . .  4 be the four possible sign combinations. 
The solution must be parallel to one of  them and it lies 
in the plane defined by the vectors vl, v 2. This suggests 
that the vector si that satisfies (si, Vl, v2) = 0, where 
( . , . ,  -) is the triple scalar product, is the solution if 
there is only one such vector. When two of the ;i sat- 
isfy the condition then the rows of the matrix (29) are 
multiples of either [1, +1, 0] or [1, 0, +1] or [0, 1, _+1]. 
The first four possibilities are impossible because they 
suggest that either the second column is zero and the 
third is not, or the reverse, which cannot happen be- 
cause if the second column is zero then one of the trans- 
lation vectors is zero and so is the third column. The 
last two possibilities are possible and in this case if we 
multiply all equations in (28) by Sa, Sb then 

0 = (SbTa) T"  K "  (SaTb) 

= (SaTb) 2 • [Ral • (SbTa) ] 

-- (SbTa) 2 .  [Rbl " (SaTb)] 

0 = (SbTa) T"  L " (SaTb) 

= (SaZb) 2 " IRa2 • (SbTa)] (30) 

-- (SbTa) 2 .  [Rb2 " (SaTb)] 

0 = (SbTa) T"  M "  (SaTb) 

= (SaTb) 2" [Ra3"(SbTa)] 

- (soTa) z" [Rb3 " (SaTb)] 

Equation (30) implies that either 

T a = O  or T b = O  or 

Rra • (sbTa) = R ~ "  (saTo) (31) 

This is the condition for the problem not to have a 
unique solution when the matrix (29) has two zero sin- 
gular values (figure 4). 

Case  3. I f  there are three zero singular values then the 
matrix is all zero. This implies that either T a or T b are 
zero. Of course then the problem has no unique solution 
as above. 

For all three cases condition (31) is necessary and 
sufficient for the problem not to have a unique solution. 
In case (31) holds then there is not only ambiguity in 
the signs but the problem cannot be solved at all. The 

[L-I,O] st 

10,-1,11 ~v'//z [o, 1, 21 

¥ 

Fig, 4. The solution of the system (28) can be one of &...$4. In 
case we have a degeneracy in the two smallest singular values the 
solution exists if the plane of the corresponding singular values con- 
tains only one of the Si's. If it contains two of them then the rows 
of the matrix (29) must be parallel to the diagonal bisectors of the 
yz plane, which implies equation (31). 

reason for this is that we need three views a, b, c to 
solve the problem. If  the problem could be solved even 
when (31) holds then we could solve it from two views 
as follows: construct the c view by rotating either view 
a by some rotation (in this case Tb is zero) or by rotat- 
ing view b by some rotation (in this case SbRraTa = 

saR~Tb holds) and then solve the problem. 
There is also another issue regarding uniqueness. We 

proved that there is one solution for the motion param- 
eters given the three matrices. The solution is correct 
up to a scale factor which cannot be determined. Its 
sign, though, can be determined from the fact that a 
line image is visible only on one side of its vanishing 
point. An opposite sign in the scale factor makes the 
line visible from the other side of the vanishing point. 
Rewriting (9) and (10) in a more convenient form, 

d = e a × ( R r ' e b )  

( T "  eb)(dd x Ca) 
f 

we see that the direction vector d of the line does not 
depend on the scale factor. The vanishing point depends 
only on d so it does not depend on the scale factor 
either. The procedure to find if the sign of the scale 
factor is correct then is: first find a visible pointpl  on 
the actual line image (this is a point that the edge detec- 
tor located in the first place), then a visible point P2 
of the image of the computed line (the projection of 
a point of the line that is in front of the image plane), 
and check the sign of 
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d p l  • d p 2  

If  it is positive the scale factor is correct. If  it is negative 
the scale factor is wrong and if it is zero then pick 
another line or other points for the test. 

8 Experimental Results 

We performed several experiments with artificial data 
in order to study the sensitivity of the algorithm to 
noise. The input was lines in a random configuration 
and the rotation and translation were also random. After 
the images of  the lines (three) were computed, noise 
was added; the algorithm was executed; and the results 
were compared with the actual. Table 1 shows the re- 
sults. In table 1, the first column shows the error in 
the input as a fraction of the focal length. When we 
say that a line is in error we mean that we haven't found 
exactly the position of the line, i.e., the operators that 
will extract the images are not perfect [22, 23]. Since 
we represent the image lines throughout the paper with 

Table 1. 

the vector e (see figure 3, where e is perpendicular to 
the plane defined by the world line E, the image line 

and the nodal point), when we say that we add noise 
to the image lines we mean that we add noise to their 
corresponding vectors. When E has noise e', then the 
new (noisified) E will be e + e'. However note that these 
vectors are three dimensional, i.e., we can add e '  per- 
pendicular to e in any direction (see figure 5 which illus- 
trates a pictorial description of the error). 

When the error in input is 1.0e - 03, for example, 
this means that the length of the error vector is 0.If/100, 
where f is the focal length (in a random orientation). 
This means that in the image the line of interest would 
be in a zone of width 1 pixel ( i f f  = 500 pixels for 
example) (see figure 6). 

To give another example, if the error in input is 
1.0e - 02, this means that the image line can be any- 
where in a zone of width 2f/lO0 = 10 pixels ( i f f  = 500 
pixels). Since the lines are macrofeatures we assume 
that we don't have any error in corresponding lines. The 
only noise in the input is the uncertainty in the position 
of the lines. 

Angle Between Angle Between 

Error  in Computed and Computed and 

Input as Number  of  Actual Error  in Rotation Actual Error  in Rotation Percent Error  Percent Error  

Fraction Lines in Least Rotation Axis Angle for a' Rotation Axis Angle for b' in a '  in b '  

of Unity Squares for a '  Motion Motion for b '  Motion Motion Translation Translation 

1. 0e - 03 1. 4e + 01 3. l d -  01 5. 9e - 01 2. 9e - 01 5. 0e - 01 1. 7e + 00 1. 7e + 00 

3. 2e - 03 1. 4e + 01 1. 0e + DO 2. 3e + DO 7. 4e - 01 9. 0e - 01 3. 9e + DO 4. 4e + 00 

1 . 0 e  - 02 1 . 4 e  + 01 9. 5e + 00 3 . 4 e  + 01 4. 9e + 00 2. 5e + 01 1. 5e + 01 1 . 4 e  + 01 

3. 2e - 01 1. 4e + 01 1. 7e + 01 3. 4e + 01 1. 8e + 01 5. le  + 01 3. 6e + 01 2. 5e + 01 

1. 0e - 01 1. 4e + 01 1. 6e + 01 8. 6e + 01 2. 4e + 01 8. 8e + 01 3. 9e + 01 2. 2e + 01 

1. 0e - 03 2. 2e + 01 6, 8e - 02 1. 3e - 01 6. 6e - 02 9. 8e - 02 3. 0e - 01 2. 8e - 01 

3. 2e - 03 2. 2e + 01 2, 2e - 01 4. le  - 01 2. le  - 01 3. le  - 01 9. 6e - 01 9. 0e - 01 

1. 0e - 02 2. 2e + 01 7. 2e - 01 1. 3e + 00 7. 6e - 01 I. 0e + DO 3. le  + DO 2. 8e + 00 

3. 2e - 02 2. 2e + 01 4. 9e + DO 2. 0e + 01 4. 8e + DO 1. 6e + 01 i.  2e + 01 1. 3e + 01 

1 . 0 e  + 01 2, 2e + 01 1. 8e + 01 8 . 4 e  + 01 1 . 4 e  + 01 8. 7e + 01 8 . 4 e  + 01 2 . 2 e  + 01 

1. 0e - 03 3. 0e + 01 5. le  - 02 7. 0e - 02 4. le  - 02 7. 3e - 02 1. 9e - 01 1. 8e - 01 

3. 2e - 03 3. 0e + 01 1. 6e - 01 2. 2e - 01 1. 3e - 01 2. 2e - 01 6. 0e - 01 5. 7e - 01 

1. 0e - 02 3. 0e + 01 5. le  - 01 6. 8e - 01 4. 0e - 01 7. 4e - 01 1. 8e + DO 1. 7e + 00 

3. 2e - 02 3. 0e + 01 2. 8e + 00 9. 3e + 00 1. 2e + DO 3. 0e + DO 5. 5e + 00 6. 3e + 00 

1. 0e - 01 3. 0e + 01 1. 5e + 01 1. 7e + 01 1. 7e + 01 6. 9e + 01 3. 5e + 01 4. 3e + 01 

1. 0e - 03 3. 8e + 01 3. le  - 02 5. 7e - 02 3. 6e - 02 7. 8e - 02 2. 0e - 01 1. 4e - 01 

3. 2e - 03 3. 8e + 01 1. 7e - 01 2. 4e - 01 2. 2e - 01 2. 9e - 01 4. 5e - 01 3. 6e - 01 

1. 0e - 02 3. 8e + 01 3. 2e - 01 5. 4e - 01 3. 5e - 01 5. 7e - 01 1. 9e + DO 1. 3e + 00 

3. 2e - 02 3. 8e + 01 1. 2e + DO 1. 9e + DO 1. le  + DO 2. 0e + DO 5. 6e + DO 4. 5e + DO 

1. 0e - 01 3. 8e + 01 1. le  + 01 5. 5e + 01 1. 0e + 01 6 . 6 e  + 01 2. 6e + 01 2 . 3 e  + 01 

1. 0e - 01 4. 8e + 01 1. 6e + 01 6. 8e + 01 1. 4e + 01 6. 0e + 01 2. 6e + 01 2. 5e + 01 
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Fig. 5. The noise vector e '  can be in any direction perpendicular to e. 

E 

\ 

Fig. 6. The line would be in a zone of uncertainty of width at most 

2(0.If/100) = 1 pixel, f o r f  = 500 and I1~'11 = 0.1f/100. 

Every row of table 1 has been calculated by consider- 
ing the error vector e' in several directions and averag- 
ing the results. The second column shows the number 
of lines used in the input. The third column shows the 
angle (in degrees) between the computed and actual 
rotation axes for the first motion and the fifth column 
shows the same thing for the second motion. The fourth 
and sixth columns show the error in the rotation angle 
(in degrees) for the first and second motion. Finally, 
the last two columns show the percent error in transla- 
tion for both motions. 

As a summary of the experimental results we can say 
that: 

• The algorithm is unstable for a small number of lines 
in the input but becomes stable as the number of lines 

increases. Increasing the number of lines above 30 
gives a little improvement. For example, in a case 
where there is uncertainty in the image lines such 
that a line can be anywhere in a zone of width 10 
pixels--which is something that current line finders 
and edge detectors can guarantee [22, 23, 24]--when 
30 lines are used, the results are 0.5 o, 0.6 o, 0.40, 0.7 o 
and 1.8% and 1.7%. These results are considered very 
satisfactory and our extensive experimentation shows 
that the algorithm is robust is a practical sense, if 
several lines are used. 

• The algorithm has two parts: the computation of the 
elements of the three matrices and from these the 
motion parameters. The first part exhibits instability, 
while the second is quite stable and partly makes up 
for the instability of the first. The reader might wish 
to compare our results (table 1) with results from the 
algorithm by Tsai and Huang [1984] (tables 2 and 3). 
This algorithm computes 3D motion from point cor- 
respondences in two views, in a two-step process. It 
computes the entries of a matrix (essential param- 
eters) and then from these the motion parameters. 
The error in the input is the error in the correspon- 
dences. Clearly the line-based algorithm is more 
stable than the point-based one, as is shown from the 
experiments. 

• The computing time is about 5 seconds on a VAX/785. 

Table 2. Error of motion parameters vs. error of point correspon- 
dences; 8 point correspondences are used. This table is from Tsai 
and Huang [1984]. 

Error of point 
correspondences 0% 0.1% 0.5% 1% 2% 

Error of E (essential 
parameters) 0% 7.30% 29.36% 47.13% 67.54% 

Error of rotation 
parameters 0% 1.36% 6.96% 14.32% 30.28% 

Error of translations 0% 0.51% 20.66% 53.97% 94.63% 

Table 3. Error of motion parameters vs. number of point correspon- 
dences for 2.5 % error on point correspondences. This table is from 
Tsai and Huang [1984]. 

Number of point correspondences 8 20 

Error of E (essential parameters) 73.91% 19.49 % 

Error of rotation parameters 38.70% 2.40% 

Error of translations 103.6% 29.66% 



Structure f rom Motion Using Line Correspondences 183 

9 Conclusions and Future Directions 

We have presented a theory for the computa t ion  of  

structure and 3D motion f rom line correspondences  in 

three views. The  solution comes  in c losed form and 

not f rom iterative methods,  The  uniqueness  o f  the 

essential parameters,  i.e., classification of  pathological 

cases for which the essential parameters cannot be com- 

puted, is an open research issue. We also consider  as 

an interesting future research issue the theoretical stabil- 

ity analysis o f  the present theory. Also,  the applicat ion 

of  the theory to the problems of  camera  calibration and 

pose determinat ion  for objec t  recognit ion.  
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