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ABSTRACT 

Engineers are often confronted with boundary value problems of plane elastostatics where the boundary 
tractions or displacements or their derivatives have a jump. The discontinuities represent by no means 
impediments to treating the problems economically with the aid of integral equations. However, it is 
necessary to know the structure of the solutions before starting numerical calculations. 

In this paper singular and regular integral equations of the second and of the first kind are investigated 
by methods which are based mainly on mechanical ideas. The essential terms of the solutions are 
determined for boundary values with a jump or a jumping derivative. The solutions contain both 
discontinuous or discontinuously differentiable terms and also logarithmically diverging terms. 

Particular attention is paid to the most frequently applied integral equation of the indirect method for 
the plane problem with prescribed tractions. The solutions of this equation for elastic slices loaded by 
concentrated forces and moments are deduced as special cases of the general results. 

(For an extensive survey of this paper: see Chapter 1.) 

ZUSAMMENFASSUNG 

Ingenieure werden oft mit Randwertproblemen der ebenen Elastostatik konfrontiert, bei denen die 
Randspannungen oder Randverschiebungen oder deren Ableitungen Spriinge aufweisen. Die Unstetig- 
keiten stellen keine grunds~itzlichen Hindernisse dar, die Probleme auf 6konomische Weise mit Hilfe von 
Integralgleichungen zu behandeln. Jedoch ist es dazu unabdingbar, die Struktur der LSsungen zu kennen, 
bevor man mit den numerischen Rechnungen anfiingt. 

In diesem Aufsatz werden singul~ire und regul~ire Integralgleichungen zweiter und erster Art mit 
Methoden untersucht, die haupts~ichlich auf mechanischen Gesichtspunkten basieren. Die wesentlichen 
Terme der L6sungen werden f/Jr Randwerte mit einem Sprung oder einer unstetigen Ableitung bestimmt. 
Die L/Ssungen enthalten sowohl unstetige als auch unstetig differenzierbare Summanden und dariiber 
hinaus auch logarithmisch divergierende Terme. 

Besondere Aufmerksamkeit wird der am h~iufigsten benutzten Integralgleichung der indirekten 
Methode fiir das ebene Problem mit vorgeschriebenen Spannungen geschenkt. Die L6sungen dieser 
Integralgleichung werden far elastische, durch Einzelkriifte und Einzelmomente belastete Scheiben als 
Spezialfiille der allgemeinen Resultate hergeleitet. 

(In Kapitel 1 befindet sich ein ausfiihrlicher Oberblick fiber den Aufsatz.) 
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1. Introduction, survey 

U. Heise 

Boundary  value problems of plane elastostatics can be formulated in various 
manners as integral equations. In this paper  we consider integral equations repres- 
enting indirect boundary element method (see [1-12]) statements. The equations are 
of the first and of the second kind and have regular kernels or kernels with poles of 
the first order.  Integral equations with logarithmically singular kernels are not 
investigated at all and equations representing direct boundary element  method (see 
[13-18]) statements are only investigated concisely by the example of Rizzo's 
equation for the problem with given boundary tractions. 

Dealing with practically occurring engineering problems the prescribed boundary 
tractions or boundary displacements or their derivatives are generally not continu- 
ous. As a consequence, the solutions of the integral equations or their derivatives 
contain discontinuous and even singular terms. In this paper the discontinuities and 
singular summands of the solutions are calculated. The impulse for the investigations 
originates in a paper by Kompi~ [19] in which the solution of an integral equation for 
the circular elastic disc with discontinuous boundary tractions is given. 

The aim of Chapter  2 of this paper is to demonstrate that the continuity properties 
of the solutions of integral equations for elastostatical boundary value problems are 
not only of theoretical interest but  that to know them in advance can be advantage- 
ous for effective numerical t reatment  of the problems. 

Chapter  3 deals with a well-known and frequently used singular integral equation 
of the second kind for the circular elastic disc with prescribed boundary tractions. 
Kelvin's solution represents the kernel and the sought function of the equation can 
be interpreted physically as a layer of forces. Since in this particular case the 
eigenvalues and eigenfunctions of the integral operator  are well-known [2, 20] we 
succeed in representing the solution as an integral transformation of the boundary 
tractions. 

In Chapter  4 we prescribe tractions with a jump of the n-th derivative (the special 
case n = 0 constitutes a discontinuity of the tractions) at the boundary of the circle 
and determine the corresponding solution of the integral equation with the aid of the 
formula deduced in Chapter  3. The solution does not only contain a summand, the 
n-th derivative of which is discontinuous, but also a term with a logarithmically 
divergent n-th derivative. 

In Chapter  5 we prove that the results obtained in the preceding chapter are not 
only valid for the circular disc but  also for arbitrarily shaped slices with the boundary 
analytical in the neighbourhood of the point at which the boundary values have a 
discontinuity. In Chapter  4 the solution of a special integral equation for the statical 
boundary value problem has been deduced. In Chapter  5 we investigate a whole 
class of integral equations for the problems with prescribed boundary tractions and 
with prescribed boundary displacements the kernels of which have a pole of the first 
order  or are regular. 

In Chapter  6 the results of Chapter  5 are interpreted extensively. Fur thermore the 
solution of the inverse problem is given, i.e. the formula for the tractions caused by a 
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layer of forces with a prescribed discontinuity of the n-th derivative. 
In Chapter  7 the solutions of the integral equations are determined for boundary 

loads containing concentrated forces and concentrated moments.  
Chapter  8 contains a short remark on the t reatment  of the three-dimensional 

problem. 
In Chapter  9 the solution of Rizzo's integral equation (i.e. of an integral equation 

of the direct method) for prescribed boundary tractions with a jump of the n-th 
derivative is discussed. 

2. Purposes for application of the results of this paper 

For the t reatment  of elastostatical boundary value problems with the aid of an 
integral equation it can often be of decisive importance to know the structure of the 
solution before beginning with numerical calculations. It is true that a finished 
program almost always yields a solution but by no means in every case is this 
solution determined in an economic manner,  i.e. often the accuracy of the results 
does not justify the expense of the evaluations. 

The most frequently used numerical methods coincide in various aspects with 
ordinary quadrature procedures.  For  discretization of the problem the boundary of 
the elastic body is divided into a number  of elements and the sought f u n c t i o n - a  
layer of forces or other  singulari t ies-  is interpolated piecewise over each element. 
The individual numerical methods differ by the degree of the interpolating functions. 
In general the calculatory expense increases with the degree, and programming 
becomes more complicated. The greater expense can only be justified if the accuracy 
of the results increases appropriately. However,  it is by no means obvious that 
polynomials of a higher degree automatically entail more precise results, or even 
that they yield reasonable results at all. (The circumstances are similar as in ordinary 
integration. For  example: the midpoint rule yields less accurate results than Simp- 
son's rule for analytical integrands (error order: O(h 2) and O(h 4) respectively). 
However ,  in the case of So ~ ~x dx the midpoint rule is superior to Simpson's rule 
(error order  O(h 3/2) for both rules) and Euler 's  formula even fails completely.) Up to 
now the degree of interpolation for the numerical t reatment  of integral equations for 
elastostatical problems has been chosen mostly at will. In order  to settle the question 
as to which degree of polynomials is to be most economically applied the differentia- 
bility properties of the solution must be predicted. 

As in ordinary integration the Richardson extrapolation can be applied effectively 
for the determinat ion of extremely accurate solutions. To that end the integral 
equation is not only solved once but several times with interpolations of the same 
degree but with differently fine divisions of the boundary into elements. By suitable 
linear combination of these approximative solutions one obtains an " improved 
solution" which is generally far more accurate than the best of the directly calculated 
solutions. For application of the Richardson extrapolation one has to know which 
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kinds of terms occur in the asymptotic expansion of the error of the numerical 
solution. In turn, the knowledge of the discontinuous and singular summands of the 
exact solution is a significant presupposition for establishing the asymptotic expan- 
sion. 

If the differentiability properties of the solution are well-known another  promising 
approach to the problem suggests itself. The  solution can be split up into a 
well-known part containing the discontinuities and singularities and an unknown 
part. The  numerical determination of the unknown part  does not involve particular 
difficulties because of the smoothness of the interesting functions. 

In the preceding has been revealed the great importance of knowing the differen- 
tiability properties of the exact solution of the integral equation. In the following are 
described in brief the causes of the discontinuous and singular terms of it. The 
solution is determined firstly by the shape of the boundary of the elastic body and 
secondly by the boundary tractions and displacements. If the boundary and the 
boundary values are analytical the solution is too arbitrarily often differentiable. 
However ,  in engineering problems the boundary generally does not represent an 
analytic curve. It may have corners. At  points at which two circular arcs with 
different radii join each other  tangentially the curvature of the boundary is discon- 
tinuous. Also the boundary values or its derivatives are generally not prescribed 
continuously. Often the boundary tractions have a jump or even the boundary is 
charged by concentrated forces or moments.  Consequently, it must be settled in 
which manner  discontinuities of the boundary and of the boundary values influence 
the exact solution of the integral equation. In anticipation of the results of the 
following chapters we already mention here that a discontinuity of a certain 
derivative of the boundary or of the boundary values not only entails a discontinuity 
of the corresponding derivative of the solution but also a singular term. In this paper 
we investigate only the effects of discontinuities of the boundary tractions and 
displacements and of their derivatives on the solution and presuppose that the 
boundary is analytical at, and in the neighbourhood of, the point at which the 
boundary values are discontinuous. 

At  the end of this chapter we warn about a fairly frequently used trick to 
seemingly circumvent the difficulties caused by discontinuities of the boundary or the 
boundary values. The essence of this trick consists of, for example, replacing a 
corner of the boundary by a circular arc with a small radius or a jump of the 
boundary tractions by tractions with a large but  finite gradient. The  solution of the 
so constructed substitute problem has finite values where that of the original one 
diverges. Now, it is true that the difference between the stress fields of the substitute 
problem and the original problem can actually be tolerated in many cases. However,  
the artificially finitely made values are generally still much larger than those of the 
solution at other  parts of the boundary. Therefore  the numerical determination of 
the solution of the substitute problem often turns out to be problematic. 

In some cases it may even be advantageous to apply the trick the other way round, 
i.e. to replace, for example, boundary tractions with a large gradient by tractions 
with a jump. 
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3. Solution of an integral equation for a circular elastic disc with prescribed 
boundary tractions by an expansion into eigenfunctions 

We consider the following singular integral equation of the second kind for the 
statical boundary value problem of plane elastostatics (plane stress) 

½8ikR~(s) + I ~ I (llR)i.u(x,(s), ~q(g))R~(~) dg = Hi(s) (3.1) 

which has been explained extensively in [10] (see [20] Eqs. (3.45), (3.16)). The 
symbol [~;I means that the integral is defined as the Cauchy principal value. On the 
right hand side of Eq. (3.1) the given boundary traction H i is prescribed as a function 
of the arc length s of the boundary. The sought function R~ can be interpreted as a 
layer of forces. The tensorial kernel (IIR)~.k describes the stress vector caused by a 
concentrated force acting at a point of the infinite elastic medium (Kelvin's solution). 
It depends on the difference of the position vectors x, and ~ of the field and of the 
source point: 

(IIR)** (x,, ~) = -{(n,q,/o)[(rn - 1)8i~ + 2(m + 1)qiq~] 

+ (e,~n~qdp)(m - 1)ei~}l(4~rm), (3.2) 

~. = x~ - ~,  p2 = ~.~., q, = ~/#. (3.3), (3.4), (3.5) 

8,j is the identity tensor and e~ the permutation tensor 

811 = 822 = e 1 2  = - - e 2 1  = 1, 812 = 821 = e l l  = e 2 2  = 0 (3.6), (3.7) 

and. n, is the normal vector of the boundary at the field point and m is Poisson's 
ratio. 

Figure 1. Problem geometry. 

In the special case of a circular boundary Eqs. (3.1) and (3.2) change into (see [20] 
Eqs. (3.63), (3.54)) 

a~rm I I - ( 3m - 1) sin ( $ -  40 + (m - 1) ctg R~(4~) d4, = n~(4,) 

(3.8a) 
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1 I~l { (3 rn -1 ) s in  (~--th)-(rn--1)ctg~-~-~}Rl(~b)d4~ ½R2(~)- 8--~m 

1 ~{ (3m-1)cos(q~-4,)+2m}.2(~)d4S=n2(4~) 
87rrn (3.8b) 

where ~b is the central angle. The bold-face types Ri and lI~ shall indicate that the 
vector components are not related here to a space-fixed Cartesian co-ordinate system 
but to a local basis. For example, II1 is the normal component and 112 is the 
tangential component of the stress vector (see [20], Fig. 3). If R1 and R2 are 
functions of the form sin (p~qS) or cos (/x~b), (~ > 1 integer) some integrals in Eqs. 
(3.8a), (3.8b) vanish (see [20], Eqs. (4.11)-(4.13)) and we obtain: 

-- 

1 " " m - 1  ~[c tg~__~R2(~)d4~=i l l (4) )  ' ~RI(O).- 8--~m I - - -  (3.9a) 

m 
-- 

1 1 ~  I c tg  ~ ~ 1 ( ~ ) d ( ~  = I12((~). (3 ,9b)  ½~2(6) + ~ 

The eigenvalue problem corresponding with Eq. (3.1) for the circular disc with 
radius a (i.e. the problem corresponding with Eq. (3.8)) reads as follows: 

½~j(4') +1~1 (nR),.k(6, ,~)~k(,~) " a dt~ = ARi(6) i.e., (3.10) 

n~(4~) = A/~(4~), Rj(4) = n~(4,)/A. (3 .11a) ,  (3.11b) 

In [20] the eigenvalues A and the vectorial eigenfunctions R~ have been calculated 
(see [21] Eq. (13)). The vector components of the eigenfunctions are trigonometric 
functions of the argument /x~b where ~ is a non-negative integer. There exist four 
eigenfunctions for each number /x ~ 1 and two eigenfunctions for t~ =0.  The 
eigenvalues are compiled beneath the corresponding eigenfunctions in (3.12). The 
eigenvalues do not depend explicitly on the parameter ~ and apart from that most of 
them coincide. 

[ s i n / x ~ l  [cos [ s in~th]  [ cost~b] 
cos tsin ~ ]  I_- cos pxh J L-sin /x~b J 

3 m - 1  m + l  m + l  3 m - 1  
4m 4m 4m 4m 

r n + l  r n + l  
0 0 

4m 4m 

[;] 
m + l  

0 
2m 

for 

for 
t* = 1 I (3.12) 

We expand the boundary tractions llj prescribed on the right-hand side of Eq. (3.8) 
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into a Fourier series and rearrange the terms into summands representing eigen- 
functions: 

ils(4,,~_[ao]+[ a~c°s4,+b'sin4,] +.f.2 [a-  c°s 1*4, + b- sin t.4,] 
tCo a I_cl cos 4, + d~ sin 4, J = c.  cos ~4, + d.  sin 1*4, 

[,] [0] 
= ao 0 + Co 1 + (b~ + q)  cos 4, 

r s i n  4, 
q- ( b  1 - Cl) | 

L--COS 4, 

] + ( a ~ + d a ) [  cos4, ] 
sin 4, 

+ ( a l -  dO r cos 4, 
L-sin 4, ]} 

+ ~ ~{(b~+%)[  sin i x t ] + ( % + d ~ ) [  cos/z4,] 
, =2 cos/~(0 J sin ~ 

_[ sin ~ q  ~ c o s ~  
+ ( b , - c , ) [ _ c o s ~ J + ( a , - d , ) [ _ s i n  ~ ] } .  (3.13) 

The eigenfunctions corresponding with zero eigenvalues vanish in (3.13) if the 
resultant and the resultant moment of the boundary tractions ~, vanish (see [20]), 
i.e.: 

Co = b~+c~ = a~-d~ =0. (3.14) 

For determining the solution R, of integral equation (3.8) we have to divide- 
according to Eq. (3.11b)- the eigenfunctions in the expansion (3.13) of the bound- 
ary tractions ~, by the corresponding eigenvalues: 

2m f [1] d~)[cos~]+(b~ .[  s in&]~ 
R*(~) ~ { a ° [ 0 J + ( a a  + ksin . ~  - q ) [ - c o s  ~]~  

f 2m b [ s i n ~ ]  2 m + ~  [ c o s ~ ]  
+ ~ ~ ( ~ + % )  . ~ ]  m+l (% +d~) sin ~ ~ =2 COS 

r a . r  c o s . 6  
- . JJ" (3.15) 

~ ~ m - ~  

We obtain from Eq. (3.15) by rearranging the summands and by comparison with Eq. 
(3.13): 

] R s = A  - I l j - T r - B  - %  sin/x4,+d, cos~4, +2~-Va0 , 
, = 1 a ,  sin ~4, - b~ cos ~4, 0 

(3.17) 

1 m 
V -  (3.16) 

~ r 3 m - l '  

8 m  2 1 m -  1 
A - B = - -  A. (3.18), (3.19) 

( 3 m - 1 ) ( m + l ) '  2rr m 

If the tangential component I12 of the boundary traction vanishes, i.e. if c, = dw = 
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0 (see Eq. (3.13)) we obtain from Eqs. (3.17), (3.9) and (3.8): 

RI(t~) = A -  Fll(~b) + V $  IIl($)  dq~ 
d m - 1  

RE(tfi) - 4~rm - - I ~ 1  c t g ~  ---~ A "  II1(~) dq~. (3.20) 

Analogously we have for 11~ = 0: 
~1 P i / 

- -  

R2(~b) = A "  ll2(~b), Rl(~b) = ~-~--~ [~1 ctg ~-~--~ A (3.21) 

Superposition of Eqs. (3.20) and (3.21) yields the solution for the case that both 
components 111 and lla are different from zero: 

B ~1 ctg ~ II~(~) d4~ + V~ II,(~b) d~b. Ri(~b) = A -  I I i ( & ) - 7  ejk I (3.22) 

Using Eq. (3.22) instead of Eq. (3.17) we do not need to expand the boundary 
values II~ into a Fourier series. The determination of the solution R~ of integral 
equation (3.9) is reduced to ordinary quadrature. 

4. Solution ot the integral equation tor the circular disc with discontinuous 
tractions or tractions with discontinuous derivatives prescribed on the boundary 

The n-th derivative of the boundary tractions Ilj ( n = 0  or 1 or 2 o r - - . )  is 
presupposed to have a discontinuity of magnitude &II~ ") at the point ~b*, i.e. we can 
split it up in the interval [~b* - e, ~b* + e] (e << 2~r) into two summands: 

II~")(~b) = fl~"}(th) + H(~b - ~b*)AII~ "}, (4.1) 

Ilj (tk) = I~lj (~b) + H ( 6  - ~b*) AII~")(6 -- dO*)"/n!. / (4.2) 

Outside the direct neighbourhood [~b* - e, 4~* + e] of the critical point 4~* we do not 
need to specify the second summand. The first summand 1"I~. is analytical (infinitely 
often differentiable) in the neighbourhood of ~b*, i.e. it contributes an analytical term 
to the solution and we may omit it from the beginning from our considerations: 

n~(6) = H ( 6  - 6 * ) a n ~ ( ~ b  - ek*)'~/n!. (4.3) 

&II~ "~ is the jump of the n-th derivative of the normal component and AII(z "~ that of 
the n-th derivative of the tangential component.  H is Heaviside's function: 

H(4~-~b*) 0 for ~b<~b* 
= 1  for 4~>~b* (4.4) 

Figure 2. Heaviside's function H(4~- 4~*). 
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i.e. we have 

0 0 for 4~*- e <4~ < 6 "  
IIj(6) = or o r .  • • (4.5) 

AIIj AII~" (~b-6*) for 6 * < t h < ~ b * + e .  

Since we are only interested in those summands of the solution which are non- 
analytical at the point 4~* we have only to extend the integration in Eq. (3.22) over 
the interval [6* - e, 4~* + el, and because of the factor H ( 6  - 6*) in Eq. (4.3), even 
only over the interval [6" ,  4~* + e]. The value of the integral at the upper limit 6* + e 
of integration is of no importance. Eqs. (3.22) and (4.3) yield: 

i i 2 n ! -  - v f  AII, , d*. 

. . . .  

Rj( th )=A 'n~(4~) - -~e jk  I .ctg ( . ) ( & - 4 ~ )  - 
J4~* tl. 

(4.6) 
Inserting the expansion 

ctg ~ -  4~- 2 ~ - t f i  (~-4~)  3 . . .  (4.7) 
2 4~ - & 6 360 

we obtain 

In order not to overdo formalism we will denote in the following different functions 
anN~ical  at the point s* by the expression analyt.(s) and sometimes we will even 
totNly omit these unimportant functions. 

Eqs. (4.6) and (4.8) yield: 

1 
Ri(~) = A -  n~(~) + B -  e~ .  ~n~ ~ ~ ( ~ -  ~*)~ In I~ - ~*~. (4.9) 

5. Proof that the preceding results are valid for arbitrarily shaped slices; 
treatment of more general types of integral equations 

Up to now we have determined the structure of the solution of integral equation 
(3.1) for a circular disc loaded by discontinuous boundary tractions or tractions with 
a discontinuous derivative. In this chapter we will generalize the investigations with 
respect to two aspects. First, we will show that the results are not only valid for the 
circular disc but also for arbitrarily shaped slices. We presuppose that at the points at 
which the boundary values are discontinuous the boundary itself is analytical. (Jumps 
of the derivatives of the boundary necessitate particular investigations.) Secondly, we 
will explain how to easily predict the structures of the solutions of other integral 
equations similar to Eq. (3.1) for boundary values with discontinuities. The results 
can be used for the numerical treatment of the singular and regular integral 
equations of the first and second kind [10] Eqs. (9.1)-(9.8), [20] Eqs. (3.45)-(3.52). 
In the preceding chapters we have extended the integration only over an infinitesi- 
mally small interval in the neighbourhood of the field point 4~*, i.e. the shape of the 
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boundary and the boundary values in those parts of the boundary far away from the 
field point have no influence on the calculations. Hence  we may conclude that the 
derived formulae are also valid if the boundary values do not fulfill conditions (3.16) 
and this applies even when the elastic body is not a circular disc. However ,  we can 
only generalize the results so simply without further calculations if the field point is 
situated on a part of the boundary representing a circular arc. The validity of the 
following considerations is not restricted by such presuppositions. With the abbrevia- 
tions 

1 r n - 1  
a=½,  b =  4-rr m (5.1),(5.2) 

integral equation (3.1) (see Eq. (3.2)) reads as follows: 

a . 8jkR~(s)+ b . eik I~1 e'*n~qt Rk(~) d~ 
O 

1 ~ n , q i [ r n - 1 6  r n + l  ] 
4~- O [ m ~ + 2  m q~q~ R~(g)dg=II~(s) ,  (5.3a) 

a- e~(s)÷ b. I~l etin~q, (g) dg+ ~ ( g )  (g) dg = (s) 6~k e~ R~ regular termjk $, R~ II, 
.~ p 3 

We presuppose that the given right-hand side of Eq. (5.3) has the structure: 

IIj(s) = 8jkH(s - s*) . AII(~ n~ ~.  (s - s*) n + analyt.(s) 

By analogy with Eq. (4.9) we prescribe the solution Rk in the form: 

(5.3b) 

(5.4) 

R ~ ( s )  = a • a~N(s-  s*)~n~ -~ ~ (s - s*) n 

+ B • ek, AII~ "~ ~ (s -- s*)  '~ In Is -- s* I + ana ly t . ( s )  (5.5) 

If the solution actually has this structure it should be possible to determine the 
unknown constants A and B. This will be our  task in the following. 

The  factors of the kernel of integral equation (5.3) can be expanded as follows 
(see Fig. 1): 

e,n, (s)q, (s, g)/O(s, g) = 1/(g - s) + do + d l ( g  - S) + d2(g - s) 2 +"  • ", (5.6) 

n~ (s)q~ (s, g)/ O(S, ~) = eo + el ( ~ -  s) + ez ( ~ -  s) 2 + .  • •, (5.7) 
\ 

r,o 11 (5.8) 
kq2(s, kgo + gl(~--S)+ g2(~--S)2 + "a" 
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d~, e~, f~ and g~ are analytical functions of the arc length s and are determined in 
detail by the shape of the boundary. The  factor e~n~q,/o diverges for g --~ s whereas 
n~q~/o tends to eo(s)= K(s)/2 (K is the curvature of the boundary).  Therefore  the 
summand of the kernel with the factor e~n~q¢/o is called the singular part of the 
kernel and that with the factor n~q~/o the regular part. It is of fundamental  
importance for the following considerations that the first term of the expansion (5.6) 
does not depend on the shape of the boundary. 

Inserting the expansions (5.6)-(5.8) and the prescribed solution (5.5) into integral 
equation (5.3a) we see that we have to deal with integrals of the form: 

Is s*+~ I s*+e H ( g -  s* ) (~ -  s * ) " ( g -  s)" dg = ( ~ -  s*) ~ ( g -  s) p dg = analyt.(s), (5.9) *_g * 

~ *+~(g- s*)" (ln I~ - s*l)" ( g -  s) p dg = analyt.(s), (5.10) *--E 

~[]*+~ H ( ~ - ~ ) ( g - s * ) " d g - [  - dg 
as*-~ g-- S -- -s* S -- S 

= --(S -- S*)" In ~s -- s*l + analyt.(s), (5.11) 

- 

I ~._~ -S*~s -sln Is-  s*l d~ = ( s .  s.)~ I[~ **~.,~._~ In s-sl~- s*l dg + analyt.(s) 

= ~2(s - s*)"H(s - s*) + analyt.(s). (5.12) 

where n, p = 0, 1, 2 . . . .  (see appendix and [19], eq. (7')). The  integrals (5.9) and 
(5.10) represent  analytical functions of the arc length s which are unimportant  for 
our  considerations. Consequently we may totally omit the regular part  of the kernel 
and replace the characteristical factor e,n~q,]p of the singular part by the first term of 
series (5.6). So, equation (5.3) changes into: 

a . 6ikRk(s)+ b . eik [II Rk(g)g_s dg=II j ( s ) .  (5.13) 

Hence,  our  considerations are not only valid for integral equation (3.1)--(5.3a) but 
also for other  integral equations of the form (5.3b) with an arbitrary regular part  of 
the kernel and the factors a and b of the non-integral term and of the singular part 
of the kernel being allowed to assume values different from those stated in Eqs. 
(5.1), (5.2) (see e.g. [10] Eqs. (9.1)-(9.8)). On the right hand sides of these integral 
equations other  physical quantities than boundary tractions may be prescribed and 
the sought functions need not represent  layers of forces as in the case Of integral 
equation (3.1), which has formed the starting point of our  considerations. 

Inserting the solution (5.5) and the right hand side (5.4) into the reduced equation 
(5.13) we obtain with the aid of the identity 

%kekr=--~ir (5.14) 
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and of the integrals (5.11), (5.12): 

a .  A .  H ( s -  s*)AII} "~ ~ .  ( s - s * ) "  + a .  B -  e,, AII~"' n~ ( s - s * ) "  In I s -  s*[ 

1 r **+~ ( g -  s*)" 
+ b .  A • e, k A I I ~ i l / I  * ._. H ( g - s * )  - -  dg 

f t . . l  s - e  g - -  S I!-,,-s.,. 
e~kek, a ,  ~, [ - In Ig-- s*l dg 

• _ ~  S - -  S 

- b . A .  -~(~ ~ e , , ~  (s - s*)" In Is - s*[ 
~ .  

1 
- b • B • AH} ~ ~ ~=(s - s*)"H(s  - s*) + analyt.(s) 

= H( s  - s*)AH} "~ ~ (s - s*) ~ + analyt.(s).  (5.15) 

Comparison of the coeNcients of the identical functions on the right and on the left 
hand side of Eq. (5.15) yields the system of equations 

a • A - b • g 2 B  = 1, 

with the solution 

[ A = a/(a 2 -  rr2b2), 

- b  • A + a  • B = 0  (5.16) 

B = b/(a 2 -  q r 2 b  2 )  . (5.17),(5.18) 

In order  to check the results we insert the particular values (5.1), (5.2) into Eqs. 

(5.17), (5.18): 

8m 2 1 r n -  1 8m 2 
A - B - (5.19), (5.20) 

( 3 m - 1 ) ( m + l ) '  2rr m ( 3 m - 1 ) ( m + l )  

i.e. the solution coincides with that which has been determined in Chapter  4 (see 
Eqs. (3.18), (3.19), (4.9)). 

To  finish this chapter we consider an integral equation which differs from Eq. 
(5.3b) by one sign and by the fact that the tensors 8~ i and e~i are exchanged: 

- a  . eikDk (s) + b . ~3ik l ~ l e~no~q' Dk(g) dg + (~ regular termik(s, ~)Dk(g) dg = Ei(s)  

(5.21) 
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where 

Ej ( s )  = H ( s  - s*)AE) "~ -~. (s - s*)"  + analy t . (s )  

(see e.g. [20] Eqs. (3.46), (3.48), (3.49), (3.51)). Eq. (5.21) has the solution: 
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(5.22) 

1 - s * ) "  O k ( s )  = A " ek ,H(s  -- s*)AE~ ") ~!  (s 

- B .  8krAE~ "~ n~ (s - s*)" In [s - s*[ + analy t . ( s )  (5.23) 

with the constants A and B according to Eqs. (5.17), (5.18). 

6.  Interpretat ion  o |  the  results  

The vector components of the solution have the form (see Eqs. (5.5), (5.6), (5.17), 
(5.18)): 

R x ( s )  = A . Ha(s)  + B . AII(~ "~ ~ .  (s - s*)"  In Is -- s*[, (6.1) 

R e ( s )  = A "  I I z ( s ) - B -  AII(~ ") n~. ( s -  s*)" In I s -  s*l (6.2) 

with 

IIl(S) = H ( s  - s*)AII(~ "~ ~.~ (s -- s*)", (6.3) 

H2(s) = H ( s  - s*)AII(~ "~ n~ (s - s*)", 

A = a / (a  2 - "rr2b2), B = b/(a 2 - "rr2b 2) 

(6.4) 

(6.5), (6.6) 

where n = 0  or 1 or 2 o r - - ' .  
The solution R , ( s )  consists of two summands. The first one differs only by a 

constant factor A from the given boundary values H,(s). So the n-th derivative of 
the solution has a jump of magnitude A • AH~ ") at the point s*; AII~ "~ is the jump of 
the n-th derivative of the boundary values. The second summand represents a 
logarithmic singularity of the n-th derivative of the solution. To be more precise, the 
n-th derivative of the component Ra(s )  of the solution diverges if the n-th derivative 
of the component II2(s) of the boundary values is discontinuous. Analogously a 
jump of H~"~(s) causes a discontinuity of R(2'°(s) (see Fig. 3). 
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n=O n=1 
arctgdl-I',l ~ 

~ s ~ s 

Rlfs) 

orctg (A.z~/7~] 

3a. 3b. 

Figure 3. (The elastic body is above the s-axis. B is a negative quantity.) 
3a. Top: Boundary tractions with a jump of the normal component and vanishing tangential 

component. Middle: Normal component of the solution. Bottom: Tangential component of the 
solution. 

3b. Top: Boundary tractions with discontinuous first derivative of the normal component and 
vanishing tangential component. Middle: Normal component of the solution. Bottom: Tangential 
component of the solution. 

The  first summand  is essentially determined by the factor a of the non-integral 
te rm and the second summand  by the factor b of the singular par t  of the kernel of 
the integral equat ion (see Eq. (5.3b)). The  kernels of regular integral equations have 
no singular par t  i.e. the constants b and B vanish (see e.g. [10] Eqs. (9.2), (9.6), 
(5.46), (5.51)). Consequently,  the solutions of regular equations are discontinuous 
for discontinuous boundary  values, however  they do not diverge. On the contrary, 
the solutions of singular integral equations of the first kind of the type dealt with in 
this paper  (see e.g. [20] Eqs. (3.46), (3.49)) contain only the logarithmically singular 
te rm because of a = 0 and A = 0. 

The  curves of Fig. 3 should not be mixed up with those of similar looking 
diagrams (see e.g. [22]) which, however,  have a completely different meaning. In Fig. 
3 the solution Ri(s) of the integral equat ion is presented for discontinuously 
prescribed boundary  values IIi(s). On the contrary,  in [22] the inverse problem is 
considered, i.e. the boundary  values IIi(s) are determined for a prescribed solution 
R,(s) with discontinuous first derivative. Physically this means calculating the trac- 
tions which are caused by a layer of forces acting at a curve (in [22] at a straight line) 
in the infinite elastic medium. For a layer Rr(s) of forces the n- th  derivative of which 
has a jump AR~ '~ at the point  s* one obtains the following tractions (see Eqs. (5.1), 
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(5.2)): 
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IIj(s) = a .  6jrRr(s)-  b 1 eirAR~"~(s -s*)" In Is --s*l. (6.7) 

Formula (6.7) yields the means of understanding an interesting phenomenon  which 
has not to do directly with the subject of this p a p e r -  i.e. with discontinuities of the 
boundary va lues -  but is caused by the artificially enforced structure of the approxi- 
mate  solution. We consider an analytical part  of the boundary with analytically 
prescribed boundary tractions. The exact solution is an unknown analytical layer of 
forces. Now, for the numerical t reatment  of the problem the solution is prescribed, 
for example, as piecewise constant or linear function, i.e. by no means analytically. 
The node values of this interpolation are determined by fulfilling the boundary 
conditions at a number  of discrete points. The interesting fact is that the tractions 
caused by the layer of forces which represents the approximate solution are not at all 
as smooth as the actually prescribed tractions. It is true that they coincide with those 
at the collocation points, but, however,  they or at least ' their derivatives diverge (see 
Fig. 4). 

Figure 4a. Top: - -  exact solution R2(s ) (layer of forces); - - -  approximate solution (piecewise 
constant interpolation). Bottom: prescribed boundary tractions Ill(s);  - - -  boundary tractions 
caused by the approximate solution. 

× Collocation points. The vector components  Rl(s) and II2(s ) are generally different from zero and 
behave similarly to R2(s ) and IIl(S ) respectively. 
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Figure 4b. Top: - -  exact solution R2(s ) (layer of forces); - - -  approximate solution (piecewise 
linear interpolation). Bottom: - -  prescribed boundary tractions Hi(s);  - - -  boundary tractions 
caused by the approximate solution. 

× Collocation points. The vector components  R~(s) and Ha(s ) are generally different from zero and 
behave similarly to Ra(s) and Il l(s)  respectively. 

7. Treatment  o i  concentrated forces and m o m e n t s  

The vector of a concentrated moment  is perpendicular to the plane of the slice, i.e. 
in the plane theory the moment  is a scalar quantity. Since this paper  deals with 
vectorial equations we identify formally the concentrated moment  with a vector in 
the plane of the slice perpendicular to the boundary, the modulus of which is equal 
to the value M of the moment:  

LFI2J 

We confine ourselves to moments  applied at straight parts of the boundary. 
A concentrated force Ps represents a jump of the integral of the given boundary 

tractions Hi(s), a moment  M~ a jump of the integral of the integral of the tractions. 
(These facts can be understood easily by recollecting the notions of elementary beam 
statics as lateral force, longitudinal force and bending moment.)  The integral of a 
function can be interpreted as the minus first derivative of this function. Hence,  a 
concentrated force Pi represents a jump of the - l s t  derivative and a concentrated 
moment  M/ a jump of the - 2 n d  derivative of the boundary tractions IIs(s), i.e. we 
are dealing with the cases n = - 1  and n = - 2 :  

AI-I) -1) = Pi, AH) -2) = M~. (7.2) 

By analogy with Eq. (5.4) we express the boundary values Hi(s) in terms of Dirac's 
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del ta  funct ions ~(1) and ~(2) of  the  first and second  order :  

I I j ( s )  = ~ i k S ( l ) ( s -  s*)Pk  + ana ly t . ( s ) ,  (7.3) 

I I i ( s )  = ~3j~(2)(s - s * ) M ~  + ana ly t . ( s ) .  (7.4) 

T h e  cor respond ing  solut ions of  integral  equa t ion  (5.3) are ascer ta ined by  formal  
general izat ion of  Eq.  (5.5): 

1 
R k ( s )  = A • a~/5(1)(s - s*)Pr + B • ek,Pr s - s * '  (7.5) 

1 
R k  (S) = A • 8k~(2)(S -- s*)M~ -- B • ek~Vi~ (s - s*) 2" (7.6) 

The  solut ion consists of  a concen t ra ted  force  and a concen t ra ted  m o m e n t  respec-  
tively which is A t imes as large as the force  and the m o m e n t  respect ively by  which 
the  b o u n d a r y  of  the elastic slice is charged.  Besides,  the solut ion contains  a layer  of  
forces with a pole  of  the  first and second  order  respect ively at the poin t  s* (see Fig. 

5, c o m p a r e  Fig. 5 with Fig. 3). 
Seggelke [23] has de te rmined  the  solut ion of  integral  equa t ion  (5.3a), (5.1), (5.2) 

for  a circular disc charged  by  two concen t ra ted  forces perpendicu lar  to the b o u n d -  
ary. W e  men t ion  this interest ing formula  since it has no t  ye t  been  publ ished:  

R~ = - -  ~- A{~(1)(~b) + ~(1)(~b - ~-)} -~1, xl~ 2 = - B  • ctg ( ~ b ) - l ~  1 . (7.7) 
qr 3 m - 1  

I t  contains,  except  for  an analytic funct ion,  the  two terms given by  Eq.  (7.5). 

n= -1 n= -2 

., 
n~ (s) !, "~ ~,. "~ 

Rl Cs) 
A.M 

. 9 
! 

\ 
I ~ _ _  

I ! 

5a. 5b. 

Figure 5. (The elastic body is above the s-axis. /3 is a negative quantity.) 
5a. Top: Elastic body charged by a concentrated force perpendicular to the boundary. Middle: 

Normal component of the solution. Bottom: Tangential component of the solution. 
5b. Top: Elastic body charged by a concentrated moment. Middle: "Normal-component" of the 

solution. Bottom: Tangential component of the solution. 



310 U. Heise 

8. Three-dimensional problem 

The integral equation (3.1) presented in Chapter 3 and investigated extensively in 
Chapters 4-7 serves for the solution of problems of plane stress. The corresponding 
equation for the state of plane strain can be obtained by replacing Poisson's ratio m 
by m -  1 in the kernel (3.2). Now, the state of plane strain represents a special but 
genuine three-dimensional state of deformation. Hence the results of this paper 
should also be applicable to three-dimensional problems. 

9. Rizzo's integral equation 

In the preceding chapters we have investigated the properties of the solutions of 
integral equations of the indirect method for discontinuous boundary values. How- 
ever, effects similar to those described below can also be observed with integral 
equations of the direct method. As an example we consider here Rizzo's equation 
for the statical problem [13] (see also [15] Eqs. (6.2), (11.1)). The unknown 
boundary displacements represent the solution of this equation. If we prescribe the 
boundary tractions H~ with a jump AH~ ") of the n-th derivative (n = 0 or 1 or 2 
o r - -  .) according to Eq. (5.4) the essential terms of the solution are of the form: 

1 m 1 
2G m + 1 (n + 1)! *~("ui") 

x {~ 6~j(s-s*) "+11n Is-s*l+m-lm e~j(s-s*)"+lH(s-s*)}" (9.1) 

It is noteworthy that not the n-th but the (n+  1)-th derivative of the solution 
contains a logarithmically diverging and a discontinuous summand (compare Eqs. 
(9.1) and (5.5), (5.23)). Hence also application of integral equations of the direct 
method entails the described problems though in a less difficult form. 

10. Appendix 

We investigate the integral 

I(a, c) = - I ( -a ,  c) = [I(a, c ) -  I(-a, c)]/2 = I I i  
In [xl 

dx 
J c  x - - a  

= ~ I dx = a I dx 
c k X - - a  X d - a  - -  

= 2 a l  ~ d x  
~x, 

I (a ,~ )=~ /2  for a > 0  . 

(lO.1) 

00.2) 
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(see [24] Eq. 4.231.10), i.e. 

I(a, ~) = ~r=[H(a)-½]. 

Since for c > [a[ the integral 

( I_-f + I ~) ln lxl a 

is analytical we have 

I(a, c)=I(a, oo)+analyt.(a) for c>[a[. 
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(10.3) 

(10.4) 

(10.5) 
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