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Abstract 

A new formulation of the image partitioning problem is presented: construct a complete and stable de- 
scription of an image--in terms of a specified descriptive language--that is simplest in the sense of being 
shortest. We show that a descriptive language limited to a low-order polynomial description of the inten- 
sity variation within each region and a chain-code-like description of the region boundaries yields in- 
tuitively satisfying partitions for a wide class of images. 

The advantage of this formulation is that it can be extended to deal with subsequent steps of the image 
understanding problem (or to deal with other attributes, such as texture) in a natural way by augmenting 
the descriptive language. Experiments performed on a variety of both real and synthetic images 
demonstrate the superior performance of this approach over partitioning techniques based on clustering 
vectors of local image attributes and standard edge-detection techniques. 

I Introduction 

The partitioning problem is one of the most im- 
portant unsolved problems in computer vision. In 
its broadest sense, the task is to delineate regions 
in an image that correspond to semantic entities 
in the scene, such as objects and/or coherent 
physical processes. We shall refer to this as the 
scene partitioning problem. In this sense, the scene 
partitioning problem is almost isomorphic to the 
entire image understanding problem and prob- 
ably cannot be solved unless a solution to the 
image understanding problem in its entirety is 
achieved as well. 

In the narrower sense used here, the partition- 
ing problem is to delineate regions that have, to a 
certain degree, coherent attributes in the image. 
We will refer to this as the image partitioning prob- 
lem. It is an important problem because, on the 
whole, objects and coherent physical processes in 
the scene project into regions with coherent 
image attributes. Thus, the image partitioning 

problem can be viewed as a first approximation to 
the scene partitioning problem, and hence a criti- 
cal first step in solving the image understanding 
problem. Crucial to the utility of image partition- 
ing in subsequent steps, of course, is the precise 
definition of "coherent image attributes." 

Until recently, most image partitioning techni- 
ques took coherent image property to mean 
homogeneous image property. That is, most par- 
titioning techniques were designed to identify 
regions that are homogeneous in some set of local 
image attributes, such as intensity, color, and tex- 
ture [8, 13, 21], or to detect the boundary between 
regions with the assumption that the attributes 
were locally constant on either side of the bound- 
ary [5, 11]. 

Although homogeneous regions are a useful de- 
scription for a certain class of images, there is a 
much wider class that is more usefully described 
as having piecewise-smooth image attributes, that 
is, attributes that are almost everywhere con- 
tinuous and differentiable up to some specified 
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low order [1, 4, 10, 12, 14, 16, 17, 19, 20, 26, 27]. For 
example, images of objects with piecewise- 
smooth surfaces and albedos are well described 
in this manner. (For simplicity, we shall restrict 
our discussion henceforth to a single image at- 
tribute, namely, intensity, although the partition- 
ing technique developed here is directly appli- 
cable to any attribute that can be represented as 
either a sparse or dense scalar "image.") 

Before we can address the problem of comput- 
ing a piecewise- smooth description of a real 
image, we must first define precisely what we 
mean by such a description. This is nontrivial 
because real images are spatially discrete and 
quantized, so that the standard definitions of con- 
tinuity and smoothness do not apply. The solu- 
tion proposed here is to model a real image as the 
corruption of an underlying piecewise-smooth image 
and to define this underlying piecewise-smooth 
image as the desired description. 

Intuitively, the underlying piecewise-smooth 
image is meant to model the image we would have 
obtained if we had used a perfect pin-hole 
camera, and if the scene had actually been com- 
posed of objects with piecewise-smooth surfaces 
and albedos. The corruption is meant to model 
both deviations from this idealized piecewise- 
smooth model of the scene and corruptions in- 
herent in image sensors. In particular, we model 
the corruption as convolution with a known 
point-spread function (to model the point-spread 
function of the lens of a real camera), followed by 
sampling, quantization, and the addition of white 
noise (whose variance is unknown and which 
might also vary in a piecewise-smooth fashion). 
The white noise is an approximate model of both 
the deviations from the piece-smooth model due 
to small-scale texturing of the objects (which is 
why we assume that the variance is not uniform ) 
and sensor noise. We will refer to the difference 
between the real image and the underlying image 
(after convolution, sampling, and quantization) 
as the residuals. 

Unfortunately, complete information about the 
underlying image is necessarily lost because of 
the discrete spatial sampling and intensity quan- 
tization. Hence, one can generally hypothesize an 

infinite number of underlying images that can be 
corrupted to produce the same real image. The 
stochastic component of the corruption, of 
course, only makes the ambiguity worse. 

The basic problem addressed here, therefore, is 
to define criteria by which we can select a unique 
underlying image for a given real image, and to 
specify a computationally efficient algorithm for 
finding this image. We shall call the unique un- 
derlying image and its associated corruption the 
"best" description of the real image (the associ- 
ated corruption is the one that maps the underly- 
ing image to the real image). 

The formalism in which we pose the problem 
of finding the best description is that of finding 
the simplest description of an image, in terms of a 
specified descriptive language, that is both stable 
and complete. The formalism is defined in detail 
in the next section, but, roughly speaking, we take 
simplest to mean shortest description length, stable 
to mean that minor perturbations in the viewing 
conditions or descriptive language parameters 
should not alter critical aspects of the description, 
and complete to mean that it should be possible, 
given the description, to reconstruct the image ex- 
actly. The principal components of any solution 
thus include the specification of the descriptive 
language and a computationally feasible pro- 
cedure for selecting a best (i.e., simplest, stable 
and complete) description. 

Our principal contributions in this paper are 
(1) a formal set of criteria for defining a best de- 
scription that is applicable not only to image par- 
titioning, but also to much of computer vision; (2) 
the specification of a descriptive language for 
piecewise-smooth image partitioning that is very 
simple, yet yields intuitively satisfying partitions, 
largely avoiding the gross errors typical of local 
techniques, even for images with a nontrivial 
amount of texturing; and (3) a computationally 
feasible procedure that not only finds the sim- 
plest description, but also provides a measure of 
the stability of the description with respect to per- 
turbations in the image and/or language parame- 
ters. It is my hope that the procedure developed 
here is general enough to be useful for subsequent 
steps in the computer vision problem. 
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2 General Framework 

The general framework of our approach can be 
described intuitively as constructing the best de- 
scription of an image in some specified descrip- 
tive language. The choice of descriptive language 
and what is meant by "best" is, of course, strongly 
task dependent. However, not all choices are 
reasonable. We argue that the following criteria 
are important, and, perhaps, even necessary con- 
straints on the choice of language and the inter- 
pretation of best. These criteria constitute the 
foundation on which rests the specific image par- 
titioning technique developed here and which, we 
hope, will be the basis for future work on subse- 
quent steps of the computer vision problem, ul- 
timately leading to complete three-dimensional 
descriptions of a scene and to recognition of the 
objects contained therein. 

2.1 The Criteria 

The first criterion is a constraint on the descrip- 
tive language alone, namely, that the descriptive 
language must be complete. That is, all descrip- 
tions in the language must exactly determine a 
single image. Thus, what one usually describes as 
"noise" must be included as part of the descriptive 
language. Note that completeness means that a 
given description yields only one image; however, 
there may be many descriptions of a given 
image. 

The second criterion is a constraint on both the 
language and the definition of best, namely, com- 
putational feasibility. This means that the best de- 
scription of an image (or at least something very 
close to it) must be constructible in a reasonable 
amount of time. 

Of crucial importance to any system that pur- 
ports to find the best description of an image is 
the ability to determine when the image (or, more 
generally, some portion thereof) lies outside the 
range of the descriptive language. This leads to 
two further criteria, which must be satisfied for all 
(or at least a very large fraction) of the images for 
which the language is appropriate. Failure to 

satisfy either of these criteria is a strong indica- 
tion that the language is inappropriate. 

The third criterion, then, is that the best de- 
scription of an image must be stable. The simplest 
definition of this criterion is: a description of an 
image is stable when it is unaffected by certain 
changes in that image. This cannot be used here, 
however, because descriptions are complete. 
Hence, any change in the image necessarily 
causes some change in the description. Instead, 
we say that the best description is stable when 
some specified portion of the best description is un- 
affected by certain specified classes of image 
changes. 

The fourth and final criterion is that the best 
description of an image must be efficient. A weak 
form of this criterion is that the best description 
must be shorter than the image itself, as suggested 
by Georgeff and Wallace [9]. A stronger form, 
which can be defined here only approximately, is 
that the complexity of the description should not 
exceed the complexity one would expect for the 
given image. 

2.2 Motivation for the Completeness and Stability 
Criteria 

Although the above criteria are used here only for 
the development of a specific image partitioning 
technique, their motivation is much more gen- 
eral. For this reason, and because of its intuitive 
nature, we use the following example as motiva- 
tion for the completeness and stability criteria. 
The final criterion, simplicity of description, is 
treated in the following subsection. 

Consider a complete three-dimensional de- 
scription of a scene, including a complete camera 
model, that has been computed from a single 
image. Clearly, we should expect the volumetric 
(three- dimensional shape) portion of the descrip- 
tion to almost always remain the same, given a 
new image of the same scene differing only slight- 
ly in, say, lighting, surface coloration, or view- 
point. In other words, we should expect the 
volumetric portion of the description to be stable 
with respect to the class of image changes corre- 
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sponding to the aforementioned scene changes, 
but not, for example, to those corresponding to 
changes in the shapes of objectsJ 

When supplied with a single image, we cannot 
test directly for stability by analyzing another 
image of the scene with slightly different char- 
acteristics. (Indeed, for changes like surface 
coloration, this is not feasible even if we had the 
opportunity to take a newpicture!) Instead, we are 
left with a somewhat weaker but still crucial ex- 
pectation: that the volumetric portion of the de- 
scription should remain the same, given a syn- 
thetically generated image derived from a new 
description--one in which the portions of the 
new description relating to, say, lighting, surface 
coloration, or viewpoint are slightly different 
from the first. This expectation is precisely an ex- 
ample of the stability criterion defined above. 
Furthermore, we now see the motivation for the 
completeness criterion: without it, we could not 
have generated a unique new image from the 
modified description and hence could not have 
tested for stability. 

Now, it is clearly infeasible to test directly for 
stability in the above fashion because that would 
entail generating and analyzing a large number 
of synthetic images. Instead, one must demand 
that the language and the algorithm that com- 
putes the best description be designed in such a 
way that together they guarantee stability for the 
class of images for which the language is 
designed. Or, at least, they should allow for a com- 
putationally inexpensive determination of some 
measure of stability of the description (perhaps 
on a part-by-part basis). 

To summarize in the abstract, the motivation 
for stability and completeness is that typical im- 
ages are the product of a complex combination of 
many independent (or quasiindependent) pro- 
cesses (i.e., physical processes such as illumina- 
tion, as well as concrete objects), and our descrip- 
tions of images should reflect this. That is, the 
description should take into account all of the dif- 
ferent processes, describing each of them as in- 

lln effect, Binford [2] calls stability with respect to change in 
viewpoint the "assumption of general position." In this sense, 
general position is a special case of our notion of stability. 

dependently as possible so that changes in one 
process in the scene are reflected only in changes 
in the description of that one process. 

The above criteria impose constraints on the 
type of descriptive languages we should strive for, 
but are not generally sufficient to determine a 
unique description in a given language for a given 
image. The criterion we have adopted for the pur- 
pose of determining a unique description is that 
of simplicity, formally called the minimum- 
description-length (MDL) criterion [24]. As we 
shall see, this criterion is related to the maximum- 
6kelihood and maximum-a-posteriori (MAP) cri- 
teria, but is a more natural criterion when prior 
probabilities are not well defined. 

The use of the MDL criterion is a significantly 
more general approach than that of regulariza- 
tion theory [22]. Regularization theory deals with 
so-called ill-posed problems (inverse problems 
that do not have a unique solution) by adding a 
measure of the s01ution's smoothness. In the MDL 
approach, smoothness is only one of many possi- 
ble measures of simplicity. 

3 Motivation for the Simplicity Criterion 

The idea that simpler descriptions are better than 
more complex ones is a strongly intuitive notion 
that was first enunciated as Occam's razor, which 
counsels us "not to multiply entities beyond 
necessity." It reflects not only the intuition that 
simpler descriptions are better because they are 
easire to use in many ways, but also the body of 
scientific and personal experience that tells us 
there is almost always a simpler description of a 
set of observations than their mere tabulation. 

There are two important assumptions behind 
this notion. The first assumption is that the data 
are observations of an underlying structured pro- 
cess, and that we could describe these obser- 
vations in a much simpler fashion by describing 
them in terms of that process. The second as- 
sumption is that the simpler the description, the 
more likely we are to be describing that underly- 
ing process or, at least as far as the observations 
are concerned, something equivalent to that 
process. 

However, the idea that simpler is better is quite 
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vague: what exactly does it mean for one descrip- 
tion to be simpler than another? One possible 
answer is that the number of degrees of freedom, 
or of distinct and independent variables in the de- 
scription, should be the measure of simplicity. 
Take, for example, the classical curve-fitting 
problem, in which one is presented with an or- 
dered set of numerical observations that can pur- 
portedly be described as points along some 
mathematically defined curve. The simplest de- 
scription, then, should be the one that requires 
the fewest parameters to define the curve. But, 
even for such a simple problem, one immediately 
sees that the definition, as stated, is still somewhat 
vague. 

First, the number of parameters required to 
define a curve depends very much on the 
vocabulary of curves one brings to bear. For ex- 
ample, if the observations were actually equally 
spaced points on a quadratic curve, but one at- 
tempted to describe them as the sum of sinusoids 
(as in a discrete Fourier transform), one would re- 
quire as many parameters as there are obser- 
vations. However, a polynomial representation 
would require only six parameters (three specify- 
ing the number of observations, spacing, and 
order of the polynomial; and three specifying the 
coefficients of the polynomial), independently of 
the number of observations. Thus, one would be 
inclined to say that the polynomial description is 
the simpler of the two for these observations. 

However, if one is allowed to use any possible 
mathematical curve, one must first specify which 
of the infinite classes of curves the parameters 
refer to (polynomials versus sinusoids ver- 
sus . . .  ). That is, we must first specify the language 
in which the description is expressed. Since this 
clearly requires an infinite number of parameters, 
one is left with the inescapable conclusion that 
the vocabulary of curves (or, more generally, the 
language in which the description is expressed) 
must be restricted in some sense, or else more 
parameters than observations will always be 
needed. 

A second fundamental problem posed by this 
definition of simplicity is that almost all phe- 
nomena, and hence observations of them, have 
an inherent stochastic component. At the very 
least, the observations will be corrupted in some 

stochastic manner, even if the underlying phe- 
nomenon is purely deterministic. Thus, for our 
curve-fitting example, even if we could specify the 
underlying curve with a few variables, we would 
still need to describe the point-by-point devia- 
tions from the curve (either directly or in some ap- 
propriate parameter space) to obtain a complete 
description, and this would require at least as 
many variables as observations! Again we are left 
with more variables than observations. 

The information-theoretic answer to this quan- 
dary is to reduce the idea of an independent vari- 
able to its simplest form: a bit. The measure of 
simplicity then becomes the number of bits in the 
description that some computationally effective 
procedure can use to reproduce the observations. 
This is the minimum-description-length (MDL) 
criterion mentioned above. This criterion, of 
course, demands prior specification of the com- 
putationally effective procedure, which is equiva- 
lent to specifying the language in which the de- 
scription is expressed. Thus, in this formalism, 
the notion of simplicity is a relative one that 
depends strongly on the choice of descriptive 
language. 

The necessity of providing an a priori descrip- 
tive language is a very important and fundamen- 
tal point. It means that, for a finite number of ob- 
servations, there is no such thing as an absolute 
measure of the simplicity of a description; simp- 
licity is inescapably a function of one's prior 
assumptions. 

For example, suppose we assume that the un- 
derlying process generating the observations in 
our curve-fitting problem is the sum of a poly- 
nomial (of unknown order) and zero-mean white 
noise (of unknown variance), and that we wish to 
find the polynomial with the smallest number of 
nonzero coefficients compatible with this model. 
A good descriptive language might then have two 
components: the first to specify the number of 
nonzero coefficients and each of their values; the 
second to specify the variance and point-by-point 
values of the added white noise. The curve-fitting 
problem then becomes that of finding the sim- 
plest description (the one with the fewest bits) 
such that the two components add up to the given 
observations exactly. 

One natural choice for the first component is to 
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assign a fixed number of bits for the specification 
of the order and for each nonzero coefficient of 
the polynomial. (The number of bits required is a 
function of the logarithm of the number of obser- 
vations, their range, and their precision.) Thus, 
for this choice of language, polynomials of lower 
order are simpler to describe than those of 
higher order. 

Since there are provably optimal languages for 
describing stochastic processes such as white 
noise, such a language is the natural choice for 
the second component. 2 With this optimal lan- 
guage, the number of bits required for the second 
component is roughly proportional to the num- 
ber of observations times the variance of the 
point-by-point values. 

Thus, with the above descriptive language, 
there is a natural trade-offbetween the complexi- 
ty of the deterministic component (the number of 
nonzero coefficients) and the complexity of the 
stochastic component (the variance of the noise): 
a smaller number of nonzero coefficients reduces 
the complexity of the first component, but in- 
creases the variance of the noise and thus also in- 
creases the complexity of the second component; 
conversely, a larger number of nonzero coef- 
ficients increases the complexity of the first com- 
ponent while reducing that of the second. 

Rissanen [23] has shown that such a scheme 
not only produces intuitively pleasing results for 
observations of real-world processes (when the 
underlying process is actually unknown), but it is 
also a MAP solution for a particular class of prior 
distributions on the parameters of the poly- 
nomials. 

4 Relationship Between the MAP and 
MDL Criteria 

The advantage of the MDL approach, as I see it, is 
the uniform manner in which one can combine 
purely stochastic models (such as white noise) 
with deterministic models (such as the poly- 
nomials above). The approach is very general, 

2An optimal descriptive language is one that minimizes the 
average number  of bits of descriptions per bit of input. This 
will be discussed in detail shortly. 

and, it is hoped, can be used in subsequent stages 
of the solution to the computer vision problem. 

To see this advantage, and to see the relation- 
ship between the MAP and MDL criteria, let us 
first consider the more traditional MAP criterion. 
In the abstract, the criterion is to choose the i 'h 
model M,. that maximizes the conditional prob- 
ability of the model, given the data: P (M~O). An 
application of Bayes' rule yields 

P(MiID) = P(DIMi)PMi) 
P(D) 

Since P(D) is constant, the MAP strategy is to 
choose the M~ that maximizes 

P(D]Mi)P(Mg) 

For the image partitioning problem, M~ corre- 
sponds to the i th piecewise-smooth image (in the 
set of all possible underlying images), and/~Mi is 
the associated corruption. 

The first term, P(/~M~) is straightforward to 
compute. It is the conditional probability of ob- 
taining the real image, given the underlying 
image and our model for the corruption. This is 
simply the probability that the residuals were pro- 
duced by a white-noise process. Since the noise is 
uncorrelated, and if we assume, for the purposes 
of this discussion, that the variance of the noise is 
known and spatially invariant, this is simply the 
product of the probabilities of the point-by- 
point residuals. 

The second term, P(M~), is not as straightfor- 
ward because it requires specification of the prior 
probabilities of the piecewise-smooth images. 
The simplest specification of the prior pro- 
babilities is that they are all the same, i.e., P (M+) is 
a constant. This leads to the simpler maximum- 
likelihood strategy of choosing the M+ that max- 
imizes P(DIM+). Unfortunately, the set of piece- 
wise-smooth images is so rich that there is an in- 
finite number of underlying images for which 
P(DIM,) is arbitrarily close to one. Thus, the 
maximum-likelihood strategy is inadequate, and 
we must find a way of specifying the prior 
probabilities. 

How, then, are we to decide if one piecewise- 
smooth image is more probable, a priori, than 
another? We cannot estimate the distribution em- 
pirically because the set of all possible piecewise- 
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smooth images (or equivalently, the set of all pos- 
sible scenes from which these images are derived) 
is much too large. We are therefore left with sim- 
ply defining the prior probabilities in order to 
meet some criterion or other that we choose. For 
example, we could attempt to define the prior 
probabilities in such a manner that the MAP 
criterion selects the smoothest underlying image 
with the fewest discontinuities for which the 
residuals are indistinguishable from white noise. 
As we shall see, this is equivalent to defining a 
descriptive language and using the MDL criterion. 

To see this, let us denote the language for de- 
scribing the models M~ as Sr, (Mr), the language for 
describing the data, given a model, as ~ (DIM~), 
and the number of bits in a description as l" I. The 
MDL strategy, then, is to choose the M,. that 
minimizes 

I~/~(DIM,)I + I~,(M,)I 

When we know the prior probabilities of the 
thing we are describing, information theory tells 
us that we can design an optimal descriptive 
language that minimizes the expected number of 
bits per description [23]. For such optimal 
languages, the number of bits in the description 
equals the negative base-two logarithm of the 
probability of the thing being described. For ex- 
ample, if we knew the prior probabilities of the 
models above, and if Ira is the optimal descriptive 
language, then 

IS~M/)I = - log2 P(M,) 

Similarly, 

1~;7(DIM,)I = - log2 P(DIM,) 

and the MDL strategy can be rewritten as choos- 
ing the M~ that minimizes 

- log:  P ( D [ M ~ )  - log2 P(M3 

This is equivalent to the MAP strategy of max- 
imizing P(D~)P(Mi). 

Thus, we see that, by choosing optimal descrip- 
tive languages for given prior probabilities, the 
MDL strategy is equivalent to the MAP strategy. 
Conversely, if one assumes the prior probabilities 
implicitly specified by the given descriptive 
languages, the MAP strategy is equivalent to the 
MDL strategy. The choice of strategies depends 

on whether it is easier or more natural to specify a 
descriptive language directly or to specify prior 
probabilities. 

For the image partitioning problem, it is more 
natural to specify a descriptive language for the 
underlying piecewise-smooth images (namely, 
the discontinuities and low-order derivatives of 
the underlying image), but it is more natural to 
specify the prior probabilities of the residuals 
(since the unknown component is a well-under- 
stood stochastic process, namely, white noise). 
Consequently, our strategy is to choose the M,. that 
minimizes 

- log2 P(DIMi) + 1:/2(M,)I 
That is, we choose the M~ that minimizes the num- 
ber of bits required to describe the residuals (as 
defined by the statistical distribution of the 
residuals, P(DtM,.)) plus the number of  bits re- 
quired to describe the underlying image (in terms 
of discontinuities and low-order derivatives). 

It is not necessary to actually describe either the 
residuals or the models in their optimal lan- 
guages. All we need do is compute the number of 
bits it would have taken to describe them had we 
actually used the optimal languages. This is in 
fact what we do for the image partitioning 
algorithm described in the following sections. 

5 The P iecewise -Constant  Case  

An an introduction to the more general piece- 
wise-smooth image partitioning problem, and as 
a tutorial on the steps involved in solving the 
more general problem, let us consider the simpler 
case in which a real image is the sum of an un- 
derlying piecewise-constant image and white 
noise with known variance. 

We denote the real n×m image by the vector z 
indexed by i E I -- 1 , . . . ,  nm. Using a single index 
like this significantly simplifies the notation for 
this and the more general piecewise-smooth case. 
One can think of i either as an integer represent- 
ing the i th pixel in the image for some ordering of 
the pixels, or as a vector belonging to the set 
{1, . . . ,n} × {1 . . . . .  m}. 

For computational reasons, we represent the 
underlying image u(x,y) by a grid of square 1 × 1 
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elements, with each element centered at the coor- 
dinate (x~y~) of the i lh pixel in the real image. The 
1 × 1 square centered at (xi, y~) is the spatial domain 
.'~/of the :h element, and the value of the element is 
u, Thus, 

u(x,y)  = u, V (x , y )E  ~; i E I 

and the underlying image is completely repre- 
sented by the vector u = {u~, i E I}. 

Similarly, we represent the noise by the vector r. 
Thus, the statement that the real image is the sum 
of the underlying image and the noise can be writ- 
ten as 

z = u + r (1) 

A consequence of this choice of representations is 
that discontinuities in the underlying image can 
occur only along the vertical and horizontal 
boundaries between the grid elements. One ad- 
vantage of this is that the underlying image is 
uniquely specified when tlaere is no noise (name- 
ly, u = z). However, a more sophisticated rep- 
resentation in which elements have variable 
shape is also possible. This is an excellent avenue 
for future research. 

Using the above definitions, the problem of 
finding the simplest description is therefore: 

(u*, r*) = min I-7~(u)l + ]-7;(r)l 
( u , r ) : z = u + r  

where ~7~ and L/i denote the languages used to de- 
scribe u and r. From equation (1), the equivalent 
problem is 

* ( )  
u = min iLZ~(u)I + IL/',(z - u)l 

There are two steps involved in solving this 
problem. First, we must define the languages ~/~ 
and ~/i. Second, we must specify a computational- 
ly feasible procedure for finding u* and for deter- 
mining the stability of the solution. 

5.1 Defining Descriptive Languages 

The first task, then, is to define a language for de- 
scribing the underlying piecewise-constant image 
u. By definition, u is composed of regions of con- 
stant intensity. Thus, for each region, we need 
specify only the shape and position of the region 
boundaries and the constant intensity within the 

region. Clearly, if we had strong prior expec- 
tations about the shape of these region bound- 
aries (e.g., we might know that they are composed 
of long straight-line segments only), or about 
relationships among regions, then we could use 
these prior expectations to define the language for 
describing the regions. This is a topic I hope to ex- 
plore in future work. For this paper, however, a 
very simple yet general-purpose language is used. 

Specifically, the region boundaries are de- 
scribed by a chain code of unit-length line 
segments located between adjacent elements; 
each line segment corresponds to the boundary 
between adjacent square grid elements. The 
number of bits required to describe each region is 
thus proportional to the number of elements in 
the chain plus a constant to specify the constant 
intensity and the first element of the chain. The 
total number of bits required to specify the under- 
lying image is thus proportional to the number of 
regions plus the total length of the region 
boundaries. 

Since region boundaries occur only when 
spatially adjacent elements of u are different, 
their total length can be determined locally by 
counting all adjacent elements (ug, u:) that have a 
nonzero difference and dividing by 2 (since 
region boundaries will be counted twice this way). 
Thus, the total length of the region boundaries is 

j C N i 

where 

Ni = the set of 4(or8)-connected 
neighbors of the i th element 

8(x) = the Kronecker delta = ~ 1 if x = 0 
( 0 otherwise 

When the regions are relatively large, a good 
approximation to the number of bits required to 
describe u is thus 

]2j,(u)l ~ b E E (1 - 8 ( u , -  uj)) (2) 
1 j ~  N i 

where b is the sum of (1) the number of bits re- 
quired to encode each element in the chain code 
and (2) the number of bits required to encode the 
constant intensity and starting element, divided 
by the average region-boundary length. For ex- 
ample, for 4- connected elements, there are only 3 
possible directions for each new element of the 
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chain code. Each chain code element can thus be 
encoded by using somewhere between log23(~ 
1.585) and two bits (the lower limit can only be 
achieved when encoding infinitely long chain 
codes). Thus, for 4-connected elements, b should 
be at least as large as iog23, but not much more 
than two. 

The disadvantage of 4-connected elements is 
that diagonal boundaries are more expensive to 
encode than horizontal or vertical boundaries of 
the same Euclidean length. This rotational asym- 
metry can be approximately countered by using 
8-connected elements and weighting the diagonal 
discontinuities by l/V/2. The cost of encoding a 
region boundary is then more closely propor- 
tional to the Euclidean length of the boundary, 
which is rotationally invariant. Eight-connected 
elements with this weighting scheme are used for 
all of the examples here. For simplicity, however, 
the notation of equation (2) is retained. 

As for describing the noise, recall that the 
fewest bits required to describe data generated by 
a stochastic process is the negative base-two 
logarithm of the probability of observing that 
data. Since we assume the noise to be uncorrelated, 

I~ / ; ( r ) [  = - -  l o g 2  P(r) = - l o g 2  ~iP(ri) 
= - ~ log,_ e(ri) 

iGl 

Furthermore, we assume the noise to be quan- 
tized white noise, where the elements are drawn 
from a normal distribution and then quantized to 
the nearest q, the precision of the pixels in the real 
image. Thus, 

Ir'lq 1 ( -x2 ) 
P(ri) = exp dx 

--r? 
~ q e x p ( ~ )  

when q < o 

and 

- log2 P(r) ~ nmc + a ie ~I ( ~ ) 2  

where 

1 
2 log 2 

(3) 

(4) 

c - log 2n + log P - log q (5) 
log 2 

Thus, for u and r satisfying Equation 1, an ap- 
proximation to the total number of bits required 
to describe u and r is 

I~"u(u)l + I~;(r)l ~ n m c  + L(u)  

where 

L(u) = 

+ Z Y ( l -  .,)) 
i ~ /  j G N  t 

Dropping the additive constant, the minimiza- 
tion problem can thus be written as 

u = minL(u) 
u 

To re-emphasize the origins of this function, 
note that the term on the right of L depends on the 
equality of adjacent elements only. Thus, every u 
can be characterized by the regions of contiguous 
equal-valued elements in the image. For a given 
set R = {R,} of such regions, where, by definition 

UR~ = I 

and u, is the intensity within regionR~,L(u) can be 
written as 

+ b ~ (length of boundary of Rr) 

Thus, for a fixed set of regions, L(R) is a quadratic 
with the unique global minimum 

U; ~- ZiG'RrZi V r 

Zi~R1 

That is, the intensity of the ideal image within 
each region equals the mean of the real image 
within that region, as we would expect for a prob- 
lem involving white noise. 
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5.2 Def ining a Computa t iona l& Feasible Procedure 

The simplest, direct way of finding the global 
minimum of L(R) is to search through all possible 
sets of regions, calculating the cost for each set, 
and choosing the set with the smallest cost. Un- 
fortunately, the number of possible sets of regions 
grows exponentially with the number of elements 
of u, rendering such a search completely infeasi- 
ble. Even dynamic programming-like algorithms 
require at least the evaluation of the cost for every 
possible simple region, which is an exponential 
in n m  when n and m are greater than 1, again ren- 
dering such a search computationally infeasible. 

Furthermore, because of the Kronecker delta 
term, L(u) has many local minima. Thus, stan- 
dard descent-based optimization techniques are 
useless. Also, the simulated-annealing style of 
algorithms exemplified in Geman and Geman [8] 
are inappropriate, because the time complexity is 
much too high for this type of function [3]. In- 
tuitively, the reason that stochastic gradient- 
descent algorithms are inappropriate for this par- 
ticular objective function is that the function has 
extremely narrow (in fact, infinitesimally narrow) 
valleys, so that even stochastic sampling of the 
surface provides no guidance for the search. 

Instead, I have devised an algorithm that yields 
something very close or equal to the optimal solu- 
tion for a large class of inputs. It belongs to a class 
of optimization techniques generally called con- 
tinuation methods [6, 29]. This algorithm is 
similar in spirit to the algorithm described in 
Blake and Zisserman [4] as the "graduated non- 
convexity," or GNC algorithm. 

As used here, a continuation method embeds 
the objective function in a family of functions 
L(u, s) for which there is a single local minimum 
at some large s, and for which the number and 
position of the local minima converge to those of 
L(u) as s approaches zero. The steps of the con- 
tinuation method are straightforward. First, find 
the unique local minimum u ° ofL(u, s °) for some 
sufficiently large s o . Then, track the local mini- 
mum in u as a decreasing function of s, as follows. 
Ford  +~ = d, let u '+~ by the result of taking a single 
step of a descent algorithm, as applied to the ob- 
jective function L(u, s t+l) started at u = ft. When 
the descent algorithm converges, let s '+~ = rd for 
some 0 < r < 1, and repeat until d is sufficiently 

small. For an ideal embedding, there will be no 
bifurcations along this path, and the value of u t 
for a sufficiently large t (and hence a sufficiently 
small st) will be close or equal to the global 
minimum of L(u). 

The specific embedding used here replaces 
8(u~ - uj) with an exponential, 

8(ui  - uj) --* ei[i(u, s)  - exp [ - 

so that 

i-c=/ ~ 

+ b  Z Z ( 1 - e i j ( u , s ) )  
iG l  j G N  i 

( u  i - -  u i )  2 

(s~) ~ ] 

(7) 

This is an appropriate embedding because 

lim e id (U ,  s )  = ~)(u i - -  u j )  s-,.o 

so that 

lim L(u, s) = L(u) 
s--~0 

and hence the local minima of L(u, s) approach 
the local minima of L(u). Furthermore, there ex- 
ists a unique local minimum of L(u, s) for suf- 
ficiently large s, namely u = z. This is so because 
(1) L(u, s) > 0 V u; (2) u = z is the unique point for 
which the first summation of equation (7) is iden- 
tically zero; and (3) the second summation 
vanishes for arbitrarily large s when u is bounded. 
Thus, for s approaching infinity, u = z is the 
unique point for which L(u, s) = 0, the unique 
local (and global) minimum. 

Intuitively, the exponential term introduces 
broad valleys whens is large, and converges to the 
narrow valleys in the limit as s goes to zero. Thus, 
the continuation method creates a kind of"scale 
space" representation of the objective function 
L(u) (in analogy to Witkin's scale-space represen- 
tation of a signal [28]) and tracks a local 
minimum from the coarsest scale (where there is 
only one local minimum) to the finest scale 
(where there are many). A complete discussion of 
the bifurcations that may occur along the path of 
the local minimum, and a direct comparison of 
the results of this continuation method with the 
global optimum when n or m is one (where a 
dynamic-programming solution is feasible) is 
presented in [15]. Briefly, the comparison shows 
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that for sufficiently large signal-to-noise ratios 
(where "sufficiently large" is a function of the dis- 
tance between discontinuities), the continuation 
method always finds the global minimum. In any 
case, the encoding cost found by the method is 
almost always within 2-3 percent of  the cost at the 
global minimum. Experimental results for larger 
images are discussed in the next section. 

Although any iterative descent algorithm can 
be used for the continuation method (see, for ex- 
ample, the wide variety described in Luenberger's 
excellent book [18]), the following algorithm has 
proven to be quite efficient for the objective func- 
tion examined here. 

By definition, local minima of L(u, s) occur 
when, for all i C L 

OL(u,s) _ 2a ( u i -  zi) 
Ou i (~2 

(8) 

+ 2b ~, e i j ( u , s ) ( u i -  uj) = 0 
( s~ )  ~ J-~, 

which can be written in vector notation as 

OL(u,s) _ b + A(u,s )u  = 0 (9) 
Ou 

VL(u, s) = 

where 

ai,i(u, s) - 
2a 2b 
c2 t- ~ ei,/(u,s) 

(so): J-~, 

{ - 2 b  eij(u,s) i f j C N i  
aij(u, s) = (s~) 2 

0 otherwise 

bi - - 2 a z i  
(y2 

zi + b -~. % u~ 
a(s ,+l)  2 j~2~i 

= v i C  I 
1 + b ~. e~j 

a(s,+l)2 jeer, 

where 

eli -- eij(u', s '+') 

( lo)  

The above is repeated until [u~ +~ - u'il is suf- 
ficiently small (less than 0.1s'+~o) for all i; only 
one or two iterations are typically required to 
achieve this accuracy. Once convergence has 
been achieved, s is decreased (d +t = rd, 0 < r < 1), 
and everything repeated until d +~ is sufficiently 
close to zero. Ideally, r should be arbitrarily close 
to one to guarantee that the correct local mini- 
mum is tracked. Also, the closer r is to one, the 
closer the starting point u' will be to a local 
min imum after decreasing s, and hence the fewer 
Gauss-Seidel iterations will be required. How- 
ever, making r closer to one increases the number  
of times s must be decreased to achieve a given 
small value. A good compromise between ac- 
curacy and computat ion time, as we shall see 
below, is r = 0.95. 

When the interaction strength ~a falls below 1/e 
(i.e., when [u'i - u~[ < d+lo), we say that a (tentative) 
discontinuity between adjacent elements has 
been found at time t. The discontinuity is called 
tentative because it is possible (though relatively 
rare) for the interaction strength to oscillate a few 
times before converging to a stable value. The 
word "tentative" will be dropped unless ambigui- 
ty would result. The first value o f d  +~ for which 
this occurs is called the stability, su, of the discon- 
tinuity (we shall shortly see why). 

At each step of the iterative descent algorithm, 
we linearize the above set of  equations by setting 
s TM = s' and fixing A' - A(ff, s'+~). Since A' is 
diagonally dominant ,  a Gauss-Seidel iterate can 
be used to provide a step in the direction of the 
solution: 

( Y'') UI+I -- --tl bi + a i ju j  
ai,i j¢ i  

5.3 Discussion 

To arrive at an intuitive understanding of both 
the objective function and the continuation 
method, recall from equation (8) that at a local 
min imum (i.e., for those times t at which the de- 
scent algorithm has converged), u satisfies 

ui - z, + b ~, e[j(ui - uj) = 0 
a(s'+t) 2 jcui 
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Whenlu~ - L/jq ~<~g+lo  for all i, then dij ~ 1 for all i, 
and the above equation is the discrete form of the 
Euler-Lagrange equation 

u ( x )  - z ( x )  - X 2 V 2 u ( x )  = 0 

for ~2 = b/a(s,+l)2. Far from the boundaries of the 
image, the Green's function (or impulse response 
function) for this equation is [4] 

G ( x , x ' , X ) -  1 ( , x - x ' , )  
2jTX 2 Ko ~ 

Thus, far from the image boundaries, local max- 
ima in L correspond approximately to the con- 
volution of the image data with G(x,x',~.), which is 
a strictly positive circularly symmetric function 
whose spatial scale is inversely proportional to s ~. 
Hence, as s t becomes smaller, the spatial scale of 
G increases, and ff becomes smoother. 

Near those elements where the interaction 
strength is significantly less than one (i.e., near 
the discontinuities in u~), the functional form of 
the Green's function is complex, but it can be 
determined numerically from equation (9) as a 
column of (At) -1. As before, the spatial scale of the 
Green's function is inversely proportional to #+~. 
However, the function is not circularly symmet- 
ric; instead it is "adapted" to the interaction 
strengths, so that smoothing does not directly 
"spill across" discontinuities. 

In other words, we can view the continuation 
method as a kind of adaptive smoothing of the 

real image. At first, the spatial scale of the 
smoothing filter is small and the filter is spatially 
invariant. As the iterations proceed, the spatial 
scale increases, but the filter adapts itself to dis- 
continuities found at previous iterations; the 
adaptation being to not smooth across these 
discontinuities. 

To see the above points graphically, consider 
an application of the continuation method to a 
synthetic piecewise-constant image (figure 1), of 
which several steps are illustrated in figure 2. 
Note how u' becomes smoother as s t decreases, ex- 
cept at discontinuities. Also observe that the 
stability of a discontinuity is a function of both 
the local contrast in the image and the size of the 
two regions to which the discontinuity belongs. 
For example, the stability of the boundary be- 
tween the fight square and the background, as 
well as most of the boundary between the middle 
square and the boundary, is approximately equal 
to the ratio of the local contrast to o. Thus, when 
the contrast is sufficiently large relative to c, or 
when the boundary is between large regions, the 
stability measure corresponds approximately to a 
local measure of the signal-to-noise ratio. 

For smaller regions, or when the contrast is 
less, the stability measure can be significantly 
lower than the local signal-to-noise ratio. In fact, 
discontinuities can disappear entirely when the 
signal-to-noise ratio is sufficiently small for a 
given region size. In a sense, then, the stability 

(a) (b) (c) 

Fig. 1. A piecewise-constant function embedded in white noise. (a) The actual underlying piecewise function. The background, left, 
middle,  and right squares have intensity 0.0, 5.0, 10.0, and 20.0, respectively. (b) White noise with o = 1.5. (c) The sum of  (a) 
and (b). 
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Fig. 2. (a) Several steps of the continuation-method. Each step shows the current estimate of the underlying image, the residuals, 
and a graph of the center row. 
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Fig.2. (b) Reducing the intensity ofthe left and right squares alters only the less stable boundaries. (c) Tripling the enc°ding c°st °fa 
discontinuity similarly alters only the less-stable boundaries. 

measure corresponds to the ease with which a dis- 
continuity can be found. By and large, this seems 
to correspond to the perceptual ease of seeing the 
discontinuity for this class of images (modulo 
global-grouping processes such as subjective 
contours). 

A second and more important point is that sij is 
also a good measure of the stability of a discon- 
tinuity with respect to changes in: the image, the 
parameters of the objective function, and the 
parameters of the continuation method. For ex- 
ample, reducing the intensity of the left and right 
squares by 3.0 (figure 2b) alters the less stable 
boundary between the left square and the back- 
ground, but the more stable boundary of the right 
square remains unaffected. Tripling parameter b 
in L (figure 2c) has a similar effect. 

This style of local, parallel, and iterative 
algorithm is ideally suited to massively parallel 
computer architectures, or even to special-pur- 
pose VLSI hardware, because it requires com- 
munication between neighboring elements only. 
Furthermore, this algorithm (and all of the 

generalizations presented below) can be pipe- 
lined for real-time applications. That is, each step 
in the computation involving a decrease in s can 
be performed by a separate layer of parallel pro- 
cessors in a chain of such layers. Thus, each layer 
l computes u' given u '-~ and z t-~ from the preced- 
ing layer, and layer 0 computes u ° as a function of 
the time-varying input image. Although the total 
time to process a single image remains the same 
in such a scheme (namely the time for the image 
to propagate through the entire chain), a new 
image can be dealt with in only the time it takes to 
compute a single step. 

6 Generalizing the Piecewise-Constant Case 

The piecewise-constant case described above was 
an important special case in that it allowed us to 
see several aspects of the approach advocated 
here, but with a minimum of complications. This 
special case must be generalized significantly, 
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however, before it can be applied to a wide variety 
of real images. 

We shall describe three significant generaliza- 
tions in this section. The first is a generalization 
of  the underlying image to include piecewise- 
smooth images. The second is a generalization of 
the noise model to include white noise whose 
variance is both unknown and spatially varying. 
The third is a generalization of the sensor model 
to include a point-spread function. 

These generalizations correspond to either the 
modification of a component  of the descriptive 
language or the addit ion of  a new component.  
These, in turn, correspond to either the modifica- 
tion of a term or the addition of  new terms to the 
basic cost function. For  the sake of  simplicity, 
each component  is examined in isolation in a 
separate section, and the most general case com- 
bining all of  these components  is present in the 
final section. The results presented following this 
are all based on the most general case. 

6.1 The Piecewise-Smooth Case 

First, we generalize the underlying image to in- 
clude an approximation to piecewise-smooth 
functions. As in the piecewise-constant case, the 
underlying image is represented by a grid of 
square elements, but now each element has a 
smooth function within its spatial domain. This 
function is defined in terms of  Taylor coefficients, 
and these coefficients are represented by the vec- 
tor ui = {ui, k, k = 1 . . . .  ,kma J associated with each 
element. Thus, the underlying image is of the 
form 

kmax ( X  - -  X i ) ~ k ( y  - -  yi) ak 
u(x,y) = ~ Ui.k 

k=l ~k! f~k! 

V (x,y) E .~, i E I 

where ct0 = O, etk+~ > ak. The underlying image is 
completely represented by the vector of  vectors 
u = {u~, i C I}, and  zj = u(x~y~) + r~ = ug.0 + rg. Con- 
trary to the piecewise-constant case, however, 
removing the noise does not completely specify u 
as a function of  z; only the subset u~,0 = z~ vi C / i s  
specified. Thus, even in the noiseless case, we 

must turn to the simplicity criterion in order to 
determine the underlying image. 

When kmax is infinite, u(xy) is a general piece- 
wise-smooth function (in fact, it is piecewise- 
analytic), with the constraint that discontinuities 
in the function and its derivatives occur only at 
the boundary  between adjacent elements. When 
kmax is finite, u(xy) is merely piecewise-polynomi- 
al. This, perforce, is the case we examine here. 

Although the square grid elements preclude 
this representation from being precisely invariant 
to rotation and translation, it is important  to 
choose the exponents (ak,13~) in such a way that a 
rotation or translation of the coordinate system 
does not require the use of a different set of ex- 
ponents. To ensure this, we combine the coeffi- 
cients into groups for which the sum of the expo- 
nents is a constant 

~p = {k." 0t k + [3 k = p} ,  p = 0 , . . .  ,Pmax 

and consider only underlying images of the 
form 

Pma~ (X -- Xi)~k(y -- yi) ~k 
u(x,y) = Z • Ui.k 

p=0 kG~p cq! 13k! 

V (x,y) E ,~i; i E I  

We call Pmax the order of u(xy) within each ele- 
ment, and say that u(xy) is piecewise order- 

Pmax" 
There are now two components  required to de- 

scribe u(xy): the first to describe the nonzero 
coefficients within each region; the second to de- 
scribe the boundaries of the regions. 

The first component  for each region is propor- 
tional to the number  of nonzero Taylor coef- 
ficients in that region. To compute this number  at 
a single element, we must count all coefficients up 
to the highest-order coefficient that is nonzero. 
Moreover, we must group them as we did above to 
rule out accidental alignments with the coor- 
dinate system of the grid. Thus, the number  of  
nonzero coefficients in a region, as computed at a 
single element, is 

p~>o np [ l - kI~ ~8(u+, k)] 

where ne is the number  of  elements in :~, and the 
notation k).~p is shorthand for {k :k E ~,Vp ' )p} .  
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Note that the order-zero coefficient is not count- 
ed, to ensure that this measure is unaffected by 
the addition of a constant to the real image. 

Thus, a local approximation to the number of 
bits required to encode the coefficients in a region 
is 

• e > o  k> :: 

where d is the number of bits required to encode a 
nonzero coefficient, divided by the average region 
size. 

The second term in the description length is 
proportional to the number of discontinuities in 
the function and its derivatives (up to orderpmax) 
between adjacent elements. To compute this 
term, note that the k 'h derivative of the polynomial 
within the i 'h element, evaluated at the boundary 
between itself and an adjacent neighbor, is 

O u ( x , y )  ~x y) 

Di.j.k(U) --Ox,~kOyf~ k , =(:,L_~.,~i,y,~yZ) 

= Z di,j,k,lUi,I 

where 

dij,k,t  
=,~ct / (a t -  l ) . . . ( a / -  Ctk+ 1) 

( ct~! 

Xj -- X i cLI-eLk 

{ - l ) . . . - + 1 )  

Yj -- Yi } 

are fixed constants. Since a discontinuity occurs 
whenever there is a nonzero difference between 
Du.k(u ) and D:i.~(u), an approximation to the sec- 

- D:-u.,~ (u)) ] (12) 

ond term in the description length is 

?>o k< :: 

Again we have grouped the coefficients to ensure 
rotational symmetry. Additionally, we define the 
product over k < .:p so that discontinuities of a 

lower order impose discontinuities at a higher 
order. 

Combining equations ( 1 l) and (12) with the en- 
coding length of the residuals, we arrive at the 
following approximation for the total encoding 
length 

b 
+ Y . , ,  

' j C J q  i p>O 

k<.:p 

+ d~ p~>onp [ 1 - ~  8(ui,k)] 

where all additive constants have been removed. 
As before, the embedding for the continuation 

method is defined by replacing Kronecker deltas 
with exponentials to obtain 

L ( u , s )  = a o 

z z . , ( l  - 
' j~q: p>0 

+ d ~ ~ n,, (I - ei:(u,s)) (14) 
i p>O 

where 

[ 1  eiu,p(u,s) = exp - ~-p ~ p  

Oi,Lk(U ) -- D i j , k ( U ) )  2 
x (TW ] 

eip(u,s) = exp 1 ~, u 2 
np k> :~ ( f s o )  2 

Note that products of Kronecker deltas have been 
replaced by the geometric mean of the exponen- 
tials, and that equations (13) and (14) reduce to 
equations (6) and (7) for piecewise-order-0 
surfaces. 

Again, any standard descent algorithm may be 
used for the continuation method, but the follow- 
ing variant ofa  Gauss-Seidel iterate has proved to 
be quite efficient for this problem. 
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First, note that the elements of the gradient 
of L are 

OL(u,s) 
OULk 

+ 

_ 2a  (u;.0 - z,)6(k) 

2b ~ ~ eij.,,(u,s) 
(so) 2 j~; e>0 

x lO, . j . , , ( . ) -  k'< 5 

Dj,,i,~'(u)ldu,r,~ 

2d , 
+ ( f ~ ) .  ~ ei,,(u,s) p>0 
x ~ u , , , , 8 ( k - k ' )  

k'> ,~,, 
(15) 

which is of the form 
kmax 

OL(u,s) - ~ ai,ck,r(U,S)U;,r 
OUi, k k'=O 

I( kmax )1 + bi., + ~ ~ aij,k.,,(U,S)Uj.,, 
i~i k' =0 

or 

OL(u,s) _ Aci(U,S)Ui + c/(u,s) au; 

The variant on Gauss-Seidel is to solve for all of 
the elements of u; at time t + 1 directly by fixing 
A';.i- A;,,(ff,st+'), c: -= ci(ff,d +1 ), and solving the sys- 
tem of equations 

A';.;u'; + '  + c'; = 0 

in parallel for each i, namely 

u'; + '  = - ( A ' ; , ; ) - ' c l  

One advantage of using an explicit representa- 
tion of the Taylor coefficients can now be seen: 
the minimization procedure requires informa- 
tion only from the immediate neighbors of an ele- 
ment, rather than information from elements 
within a given radius, as required for implicit 
finite-element representations such as in [26]. 
This is especially advantageous for massively 
parallel architectures in which the communica- 
tion cost between nonadjacent units is high. A 
second advantage is that the value and derivatives 
of the underlying image can be evaluated at any 

given point by using only linear combinations of 
the coefficients, which is computationally in- 
expensive. 

6.2 Images with Known Spatially Varying Noise 

The discussion so far has assumed that the 
variance of the noise is both constant and known 
a priori. We can deal with known variance that is 
different from point to point simply by changing 
o to o; in the first summation of the encoding 
length functions (equations (6) and (13)). 

For example, equation (6) becomes 

+b~ ~ (I -6(u;-uj)) (17) 
i C-I j CNI 

and the exponentials in the embedding become 

= exp { - ( u i -  uj) 2 e;j(u,s) 

Note that the average of o; and % is used to get 
symmetric interaction strengths. Analogous 
changes can be made for the piecewise-smooth 
case. 

6.3 Images with Unknown Spatially Varying Noise 

The more interesting case, of course, is when the 
o;s are unknown. Then, according to the minimal 
encoding-length criterion, we must find those 
values of the ois that minimize the overall encod- 
ing length, including the cost of encoding the o;s 
themselves in some descriptive language. 

One possible model for spatially varying noise 
is for the variance to be piecewise-constant, with 
the variance boundaries constrained to coincide 
with the intensity boundaries. The motivation for 
this model is that, for real images, the residuals 
are due not only to sensor noise (which is roughly 
spatially uniform) but also to small-scale textur- 
ing of the objects. Hence, we should expect the 
variance to differ from region to region. Piece- 
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wise-smooth-variance models are also possible, 
but will not be examined here. 

For the piecewise-constant-variance model, the 
cost of encoding a region boundary will now be 
slightly higher (since the cost of  the boundary 
subsumes the cost of encoding the parameters 
within the region, which must now include the 
cost of  encoding the variance), and we need to in- 
clude a term that ensures that a~ = cj for all adja- 
cent elements not crossing a region boundary. 
Again, using the piecewise-constant-intensity 
model for simplicity, and reinserting the term in- 
volving log o that was removed for convenience 
when ~ was fixed (see the definition of a and c, 
equation (5)), the encoding-length function be- 
c o m e s  

L(u,a) - - -  

+ 

log 2 - oi 

. . . ( ~  - ~ ( u ,  - u j ) )  

1 ~ log o~ 
+ log 2 • 

+ g ~ . ~  5(u,-- uj) 

x (1 - 5( , , ,  - , , ; 9  ( 1 9 )  

where b is now slightly larger than before and 
g>>b. 

We could find the global minimum of this 
function by defining an embedding as before, but 
the derivative with respect to o cannot be effec- 
tively linearized, making the descent algorithm 
computationally expensive. Instead, we use the 
following line of reasoning. Observe that at a 
local minimum (u', o') of  equation (19), and for a 
sufficiently largeg, ~ = ~j whenever uj = u~. That 
is, c:  is constant within the contiguous regions 
that u ° is constant, as we demanded, and the last 
summation is identically zero. To make this ex- 
plicit, let R, denote the set of indexes of the ele- 
ments within the r th region, let u, and ~, denote the 
constant values ofu and ~ within this region, and 
letR = {R,}. Thus, equation (19) can be rewritten at 
a local minimum as 

L(R) 

_ l z , -  u ,12 ~,] 

+ ~ ( b o u n d a r y  length of  R,) (20) 
r 

To compute the minimal values (u', &) for a given 
set R, note that since the boundaries are fixed by 
definition, equation (20) is minimal when each 
term of the first summation is itself minimal. 
Thus, since each term is now differentiable, we 
can determine (u',&) by differentiating and set- 
ting to zero, which yields the unique solution 

. 1 
Ur "~ -- Z Z i 

fir iC-Rr 

1 y .  ( u :  - z , )  ~ 

where n, is the number of elements in R,. In other 
words, as we might have expected, the minimal- 
length encoding occurs when the intensity es- 
timate within each region equals the region aver- 
age, and the variance estimate equals the region 
variance; the unknown being what the regions 
are. 

Thus, if we knew the region variance, we could 
minimize equation (19) by substituting oi = ~ for 
i ~ R, and defining an embedding exactly as 
before. Of  course, this is not directly possible 
without already knowing the solution to the prob- 
lem, but we can come close by noting that the 
region variance is approximately equal to the av- 
erage of  local estimates of the variance within the 
region: 3 

1 ( ~ : ) 2 =  1- Y .  (u:-~,) ~ - Z  (,2, 
~'lr iC-Rr r~r iC-Rr 

where 

~. (u ;  - : j )2  
jCNif~Rr 

jC-NinRr 

Y~ 8(u', - u;)(u; - zj7 
_L~Ni 

Y.  ~ ( u ,  - u j )  
] C-N~ 

3The inequality occurs only because of boundary conditions. 
Thus, the approximation is best for large regions, where the ef- 
fects of boundary conditions are minimal. 
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Thus, by defining an embedding in which the log 
oi term is replaced by one that converges to the av- 

erage of ~ within each region, we should come 
close to the global minimum. 

The descent algorithm alternately finds a local 
minimum in u, then in ~, and then decreases s 
as before. 

6.4 Including the Point-Spread Function 

To achieve this, the embedding is defined 
recursively by starting with local estimates of the 
variance based directly on the data, and improv- 
ing these estimates by basing them on the local 
minimum (u*'-~,~ °'-1) of the previous iteration. 
(The superscript • t - 1 indicates the last time in- 
stant at which the descent algorithm converged to 
a local minimum.) Let 

U~ ° ==. Z i / Z (uT"-zj) } 
jc.Ni 

d, .° -= max q, ~ .  1 

and for t > O, let 

(u;'-'- u ; ' - ' )  2 - 

eo"-' = exp{ -  [s,(c;,_~+  212. } 

{? } e?.- qu*t- I _ Y ,, . ,  zs) 2 
72_ 

67'-1 _ max q. V .,~ 
Z., ecj 
j gNi 

Note that the local estimate of the variance is con- 
strained to be greater than q to satisfy equation 3, 
thereby avoiding quantization problems. The 
embedding is 

(~ , S t) "~- a . c 7 ' - '  

+ 2  ~"c-~u' [ 1 -  exp{ - [ s ' ( a : ' - '  + c , - ' ) , 2 ]  

+ a  . o7'-' / + g ~ i c '  ~N, ei'~'-' 

X [ 1 - e x p { -  (_oo/-~)~ 

Finally, we can include our model for the point- 
spread function of the image sensor, namely con- 
volution with some known kernel. Since we 
model the underlying image by using square grid 
elements with a fixed shape, we can model the 
point-spread function as a discrete convolution. 
Thus, ifKij,j E & are the elements of the convolu- 
tion kernel, with Si being the spatial support of the 
kernel for the :h element, then equation (1) can be 
rewritten as 

Zi ~- E K i , j u j  q- ri  
jc-st 

o r  

ri = zi - ~ Kiju; (21 ) 
jGSi 

This definition of the residuals can then be direct- 
ly substituted into the cost functions and embed- 
dings defined above. 

6.5 The General Case 

In the most general case examined here, which is 
the one used for all of the examples in the follow- 
ing section, all of the modifications and additions 
are included. Thus, the approximation to the cost 
of encoding the underlying image and residuals 
becomes (with additive constants removed) 

( L(u,o) = a icl ~ ~i / 

i jGNi p>O k< :p 

+ d  

+ 

- 

1 ~ l o g  ~ + g ~j~N 5(D~,j.o(u) 
log 2 i 2 " "- i 

- Dj.;,o(U))(1 - 8(o; -  oj)) 
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and the embedding becomes 
u*t-I (][*t- l, L ( u , o ,  , st) 

Zi - -  Z Ki, j i2j ,o 

= a ,*t-I 
0 i i jGNi 

1 
X [ 1 - e x p { - n p  

×Z 
k<.~p 

Z np 
p>O 

×[,_exp{ 
+dZZ 

i p > O  

(Diu,k(U) - D j , i , k ( U ) )  2 /q 
[s'(o:'-' + o;'-1)/2] ----------5 J~J 

Oi - O~ t-I "~2 g *,-I 
o; '- '  ] ~ ,~ZZjc-u~ e'u'° 

((~i - -  (~j)2 

{ - , [  ,, )} x 1 _1___ Z ;,k 
k>*: ( f s ' 0 7 ' - ' )  2 

where  (u "-1, ~.,-1) is the local minimum found at 
t -  1, 

• ,-1 = exp f 1 ei,j,P ~ - -  lip 

× Z (Oi'j'k(U't-1) 7~ Oj'i'k(u*t-l))2~ 

k</~p [S'((~; t-1 + 0~'-1)/212 J 

0/-1 = m a x { q ,  ~ u ,  ei,*].o l 

X(z: Z Z -  .,-,,2. 5" e"-d  ~} - -  ai, j ,  kUi,k } "g- ~ id,O l 
p>O te,~p jGN i .J 

d q  k = (xj  - xi)~k(yj -- y i )  ~k 

"' ~k!  f~k! 

(i.e., the local estimate of the variance is com- 
puted by extending the :h element out to the cen- 
ter point of its neighbors), and the recursion is 
grounded at t = 0 by defining 

*0 
U i , o ~ Z i  

U~.k ° =  O, k > 0  

^ *0 J 
oi -- max q, xT~ 

jeN~ 

The descent algorithm alternately finds a local 
minimum in u, then in o, and then decreases s 
as before. 

7 Results  

All of the results in this section were obtained by 
using the most general form of the encoding- 
length function, in which the underlying image is 
piecewise smooth, the variance of the noise is un- 
known and piecewise constant, and the sensor 
model includes a point-spread function. A key 
point about these examples is that they were all 
obtained by using precisely the s a m e  parameters,  
with the following exceptions. First, a Gaussian 
point-spread function with o = 1 was used for all 
of the real image, but no point-spread function 
was used for any of the synthetic images (taking 
advantage of our a priori knowledge about how 
these synthetic images were created). Second, for 
demonstrative purposes only and as noted for 
each example, several values ofp .... the order of 
the underlying image, were used. The conclusion 
that emerges from these and many other exam- 
ples not presented here is that a piecewise- 
second-order underlying image is appropriate for 
a large class of real images. 

The first example is a series of synthetic images 
with decreasing signal-to-noise ratio. Each image 
is the sum of the 39×39 piecewise-constant image 
of figure 3a and the white-noise image of figure 3b 
multiplied by a constant. The piecewise-constant 
image has unit contrast, and the white-noise 
image is the output of a pseudo-random white- 
noise generator with zero mean and unit vari- 
ance. Thus, the inverse of the multiplier just men- 
tioned is simply the local signal-to-noise ratio. 
We use the same white-noise image in each case 
to make the comparisons as similar as possible. 

The leftmost images of figures 3c-f are the 
input images, with signal-to-noise ratios of 8.0, 
2.0, 1.0, and 1/2, respectively. For this example, 
Pmax = 0 and the procedure was stopped at a very 
low stability value of 1/16. The result of the pro- 
cedure is illustrated by the image of u' with 
overlaid discontinuities (in the center of each 
figure), as well as by the graph of the data and el- 
ements of the middle row (on the right). All of the 
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Fig. 3. A series of synthetic images with decreasing signal-to-noise ratio. Figures 3(c)-(f) show the input synthetic images, the result- 
ing underlying images and discontinuities, and a graph of the center row of the procedure's output. (a) The underlying piecewise- 
constant image, with unit contrast. (b) White noise with o = 1.0. (c) The sum of(a) and 1/8 times (b). (d) The sum of(a) and 1/2 times 
(b). (e) The sum of (a) and (b). (0 The sum of (a) and 2 times (b). 

(continued) 
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results were obtained with fewer than 100 iter- 
ations. For the sake of completeness, the pro- 
cedure was also applied to the noise image alone. 
No discontinuities were found. 

The above series of examples illustrates the 
behavior of the procedure as a function of the 
signal-to-noise ratio. In particular, when the 
signal-to-noise ratio is sufficiently high, every 
detail of the discontinuities in the underlying 
image is preserved. As the image is degraded, the 
precise details are sometimes lost, but the pro- 
cedure continues to find two distinct regions in 
the underlying image. (Eventually, of course, the 
two regions are lost entirely. The precise point at 
which this occurs depends on the total size and 
shape of the regions, and, to a lesser extent, on the 
vagaries of the noise.) 

The second example illustrates the power of 
global optimization compared with purely local, 
noniterative, operations. Figure 4a is the 20×20 
input image, which is the sum ofa  piecewise-first- 

order image and zero-mean white noise with unit 
variance. The outer region of the underlying 
image has intensity 0.0, the center ramp has a 
slope of 1.0, and the contrast at either end of the 
ramp with the outer region is 4.0. Of course, the 
contrast of the center of the ramp with the back- 
ground is 0. 

Figures 4b and 4c illustrate the result of the pro- 
cedure fOrpmax = 1 and 2, respectively, stopping at 
s ~ = 1/4. First, note that the entire ramp is 
separated from the background, even in the cen- 
ter where the local signal-to-noise ratio is 0 (the 
thinner line separating the ramp from the back- 
ground near the center indicates that the discon- 
tinuity is only of  order 1, i.e., a discontinuity in the 
first derivative of the underlying image). This is in 
contradistinction to the output of the Canny edge 
detector [5]. For a small spatial scale (figure 4d), 
the Canny operator leaves a gap (not to mention 
the introduction of spurious discontinuities due 
to the assumption that edges are locally piece- 
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Fig. 4. An illustration of the power of global optimization. (a) 
The input synthetic image. (b) The result of the procedure for 
Pmax -- 1. (c) The result of the procedure forpmax = 2. (d) The 
output of the Canny operator, mask size = 4. (e) The output of 
the Canny operator, mask size = 8. 

wise-constant), whereas a larger spatial scale 
(figure 4e) simply makes the artifacts worse. (The 
operator was unable to find the correct outline for 
any parameter settings.) Second, note that the el- 
ements of  the ramp have been determined to be 
order I (as indicated by the number  immediately 
above each element, no number  means that the 
element is order 0), whereas the elements of  the 
outer region have been determined to be order 0. 
Thus, the procedure has not only located the dis- 
continuities correctly, but has also determined 
the correct order for each region. 

To achieve the above results, the procedure was 
stopped at fairly low stability values. This re- 
quired a value o f t  (the ratio #-l/st) equal to 0.95. 
Typically, the lower the final stability value, the 
closer r must be to 1.0. This is because smaller 
values of  d require higher accuracies in the 
calculation of  u t (since the interaction-strengths, 
du, are a function of  the difference in adjacent ele- 
ment values relative to d), and cumulative errors 
are a function of  how close r is to 1.0. 

Stopping the procedure at low stability, as we 
did above, was reasonable only because it was 
known that the descriptive language correspon- 
ded fairly closely to the manner  in which the im- 
ages were generated. For real images, on the other 
hand, the elements of  the descriptive languages 
we have just defined are only extreme sim- 
plifications of  the processes that form an image. 
There is no direct notion of  the three-dimensional 
nature of objects, their interaction with il- 
luminants,  or even any notion of  texture. Thus, if 
we wish to obtain a description whose discon- 
tinuities are invariant to the precise nature of  the 
simplifications and approximations, we must 
stop the procedure at higher stability values. 
Doing this means that we necessarily lose discon- 
tinuities with low signal-to-noise ratios, but this is 
rarely important. A different strategy might be to 
stop at a much lower stability value, thereby pro- 
ducing completely closed regions, but then take 
into account the stability of  the individual discon- 
tinuities in the further processing of  the image. In 
the examples below, we stopped at s' = 1/4. 

Figure 5 illustrates an application of  the pro- 
cedure to an aerial image of  a house, withpma~ = 1. 
Figures 5b and  5c show the resulting underlying 
image and discontinuities. Figure 5d is an image 
of  the stability measure for these discontinuities, 
with the darkest lines indicating the most stable 
discontinuities. Two interesting points emerge 
from this example. First, the four bushes in the 
upper-left comer  are almost completely deline- 
ated, even though the contrast along that part of 
their boundaries is virtually nil. This is an exam- 
ple of  the "zero contrast" situation similar to the 
previous synthetic ramp image. Second, the ma- 
jority of  discontinuities that form closed regions 
have high stability measures. This is a fairly 
strong indication that the piecewise-first-order 
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Fig. 5. An application of the procedure to an aerial image of a house, withPmax = 1. (a) The input image. (b) The resulting underlying 
image. (c) The underlying image with overlaid discontinuities. (d) The stability measure of the discontinuities; the darkest discon- 
tinuities are the most stable. 
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6c 

Fig. 6. Same as the prior figure, but with Pmax = 2. (a) The 
resulting underlying image. (b) The underlying image with 
overlaid discontinuities. (c) The stability measure of the 
discontinuities. 

pie, about half  the discontinuities have a fairly 
low stability measure. This indicates that the 
language is probably not appropriate for this 
image. This is especially evident in the cheek and 
chin areas where a higher-order model is clearly 
more appropriate. Even so, the discontinuities 
with high stability measures appear to be good 
candidates for region boundaries. Figure 8 shows 
the results fOrpmax = 2, in which the artifacts due 
to using too low an order are entirely absent. 

8 Relation to Previous Work 

(or higher-order) model is appropriate for this 
image. To verify this conclusion, observe that the 
discontinuities obtained usingpmax = 2 (figure 6) 
are virtually identical; the only exceptions being 
the few very low stability discontinuities. 

Figure 7 illustrates an application of  the same 
model with Pmax = 1 (using precisely the same 
parameters) to the image of  a face. In this exam- 

Much work has been done recently on the prob- 
lem of reconstructing piecewise-smooth surfaces 
in one or more dimensions, given corrupted sam- 
ples of  the surface [1,4, 10, 12, 17, 19, 20, 25,27]. 
There are several especially difficult aspects to the 
problem. The first is to determine automatically 
the appropriate degree of smoothness of  the sur- 
face as a function of  the given data. The second is 
to determine automatically both the position and 
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Fig. 7. An application of the procedure to the image of a face, withpmax = 1. (a) The input image. (b) The resulting underlying image. 
(c) The underlying image with overlaid discontinuities. (d) The stability measure of the discontinuities. 
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(c) 

Fig. 8. Same as the prior figure, but with Pmax = 2. (a) The 
resulting underlying image and discontinuities. (b) The un- 
derlying image with overlaid discontinuities. (c) The stability 
measure of the discontinuities. 

order of the discontinuities. The third is to ascer- 
tain when such a description is appropriate for 
the data. We have resolved these difficulties by (l) 
posing the problem as an optimization problem 
in which the objective function is based on the 
information-theoretic notion of minimum-length 
descriptions, and (2) defining an algorithm that 
balances simplicity of description against stabili- 
ty of description by finding the most stable as- 
pects of the description first. 

Perhaps the closest in spirit to the work presen- 
ted here are the excellent book and papers of 
Blake and Zisserman [4], Marroquin et al. [19], 
and Mumford and Shah [20]. In these works, the 
problem is posed as an optimization problem 
that resembles ours, in kind, but one in which the 
data are weighted uniformly, in essence indepen- 
dently of the data. In other words, the algorithms 
do not adapt to the diverse conditions that obtain 
in different parts of an image, thereby resulting in 
the heuristic setting of various parameters. Fur- 
thermore, no method of determining the appro- 
priate amount of smoothing (i.e., the order of the 
smoothing term in their cost functionais) is men- 
tioned. The advantage of these simplifications, 
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however, is that the authors of [4, 20] were able to 
prove that their algorithms found the global 
minimum for restricted classes of one-dimen- 
sional signals, something that has not yet been 
possible for our method. No proofs were given for 
two- dimensional signals. Finally, it is difficult to 
see how these approaches can be extended to sub- 
sequent stages of the vision problem without ex- 
plicitly bringing to bear some of the notions of 
descriptive languages, simplicity, and stability 
(notions that are effectively implicit in the forego- 
ing authors' work). 

The works of Besl and Jain [1], Grimson and 
Pavlidis [10], Langridge [12], Lee and Pavlidis 
[17], and Terzopoulos [27] view the problem as 
one of smoothing (or regularization) with embed- 
ded discontinuities, but for which the discon- 
tinuities are first "detected" in some way from the 
data, with perhaps some attempt at improving the 
results iteratively. The heart of the problem--  
formally including the cost of introducing dis- 
continuities as part of the optimization process-- 
is missing (although Terzopoulos [27] devotes 
some attention to the problem). 

Finally, Saint-Marc and Medioni [25] present a 
simple adaptive smoothing technique that bears 
a certain resemblance to our special case of a 
piecewise-constant underlying image with known 
variance. While it lacks the true adaptation to 
spatially varying noise, and depends on a heuris- 
tic parameter, it may nevertheless be possible to 
derive a formal relationship between their ap- 
proach and ours. 

9 Summary 

We have presented a new approach to the image- 
partitioning problem: construct a complete and 
stable description of an image in terms of a des- 
criptive language that is simplest in the sense of 
being shortest. We have presented criteria on 
which to base formal definitions of completeness, 
stability, and simplicity, and have embodied 
these criteria within the theory of minimum- 
length descriptions. This formalism is very 
general and is likely to be applicable to other 
stages of the scene-analysis process. 

For the specific image-partitioning problem, 
we described real images as the corruption of 
ideal (piecewise-polynomial) images by blurting 
and the addition of spatially varying white noise. 
We defined a language for describing both the 
ideal image and the corruptions, and presented 
an algorithm for finding the simplest description 
of an image, in terms of this language, for a given 
measure of stability. This measure has proved 
crucial because we are interested in descriptions 
that are not only as simple as possible, but that are 
also as invariant as possible to the severe approx- 
imations embodied in any low-level descriptive 
language. The algorithm not only determines the 
position of discontinuities in the ideal image, but 
also determines both the order of the discontinui- 
ty and the order of the polynomial within the 
regions; all of this is done without the need to ad- 
just any parameters. Furthermore, the algorithm 
is local, parallel, and iterative, making it ideally 
suited to massively parallel computer architec- 
tures. 

Applications of this formalism to real images 
indicate that, even though the descriptive lang- 
uage we have defined is extremely simple (with no 
models of three-dimensional shape, lighting, or 
texture, for example), the simplest and most 
stable descriptions in this language yields ex- 
cellent image partitions. 
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