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Abstract 

A stochastic optimization approach to stereo matching is presented. Unlike conventional correlation 
matching and feature matching, the method provides a dense array of disparities, eliminating the need 
for interpolation. First, the stereo-matching problem is defined in terms of finding a disparity map that 
satisfies two competing constraints: (1) matched points should have similar image intensity, and (2) the 
disparity map should vary as slowly as possible. These constraints are interpreted as specifying the poten- 
tial energy of a system of oscillators. Ground states are approximated by a new variant of simulated an- 
nealing, which has two important features. First, the microcanonical ensemble is simulated using a new 
algorithm that is more efficient and more easily implemented than the familiar Metropolis algorithm 
(which simulates the canonical ensemble). Secondly, it uses a hierarchical, coarse-to-fine control struc- 
ture employing Gaussian or Laplacian pyramids of the stereo images. In this way, quickly computed 
results at low resolutions are used to initialize the system at higher resolutions. 

1 Introduction 

Few problems in computational vision have been 
investigated more vigorously than stereo. Com- 
pared to other modes of depth perception, stereo 
vision seems relatively straightforward. The im- 
ages received by two eyes are slightly different due 
to binocular parallax; that is, they exhibit a dis- 
parity that varies over the visual field, and that is 
inversely related to the distance of imaged points 
from the observer. If we can determine this dis- 
parity field, we can measure depth and mimic 
human stereo vision. 

This paper describes an approach to stereo in 
which the matching problem is posed as com- 
putational analogy to a thermodynamic physical 
system. The state of the system encodes a dispari- 
ty map that specifies the correspondence between 
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Research Projects Agency under contracts DCA 76-85-C-0004 
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the images. Each such state has an energy that 
provides a heuristic measure of the quality of the 
correspondence. To solve the stereo-matching 
problem, one looks for the ground state; that is, 
the state (or states) of lowest energy. 

The remainder of this section briefly discusses 
the major approaches to stereo matching. In sec- 
tion 2 the model system for a stochastic optimiza- 
tion method is defined. Section 3 describes how a 
stochastic technique called simulated annealing 
can be used to perform the optimization and in- 
troduces a new, more efficient variety of simu- 
lated annealing that operates over a sequence of 
increasingly finer scales. Several experimental 
results are given in section 4. Section 5 concludes 
with some observations. 

1.1 Background 

The development of computational models of 
stereo vision has been guided by both scientific 
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and technological motivations. The modularity 
of stereopsis in the human visual system, con- 
clusively demonstrated by random-dot stereo- 
grams, indicates that this perceptual function can 
be studied in isolation. If the same computational 
principles used for stereo also apply to other 
modes of perception a successful model of stereo 
could suggest models for other vision problems. 
Stereo finds important practical applications in 
mapping and robot sensing. 

1.2 Correlation 

Perhaps the most obvious approach to stereo 
matching, loosely called "correlation," is to 
choose intensity patches in one image and then to 
search for the best matching location in the other 
image, typically using normalized cross-correla- 
tion as a measure of similarity or mean-square 
difference as a measure of dissimilarity. Many 
variations of this basic theme have been explored. 

This general approach suffers from some dif- 
ficult problems. 

1. The size of the patches affects the likelihood of 
false matches. A patch must be large enough to 
contain the information necessary to specify 
another patch unambiguously; or, failing this, 
some additional means of disambiguating 
false matches must be used. 

2. At the same time, the patches must be small 
compared to the variation in the disparity 
map. If the patches are too large the system will 
be insensitive to significant relief in the scene. 
These problems have motivated the use of 
scale hierarchies. (See 1.4 below.) 

3. In typical images much of the area consists of 
uniform or slowly varying intensity, and cor- 
relation will not be sensitive in such cases. In 
practice, a correlation method can provide 
only a relatively sparse set of correspondences, 
from which a dense map must then be inter- 
polated. 

1.3 Feature Matching 

Another approach is to attempt matching only on 
information-rich points. Even in correlation 

methods, an interest operator is often used to 
screen patches. The feature-matching approach 
seeks to establish correspondences directly be- 
tween discrete sets of points--typically, the out- 
put of an edge detector, such as zero-crossing 
contours. 

This approach suffers from similar difficulties: 

1. The support of the feature detector affects the 
likelihood of false matches. Zero-crossings 
from high-frequency bands will probably have 
many ambiguous matches for significant 
ranges of disparity. 

2. The support of the feature detector must be 
small compared to the variation in the dispari- 
ty map (caused by relief in the scene) if the 2D 
features are to locate 3D features accurately. 

3. Feature matching provides sparse matches 
by definition. 

1.4 Scale Hierarchy 

Disparity scales linearly. This suggests that a 
stereo matcher can begin its search at a coarse 
scale, find coarsely quantized disparities, use this 
result to initialize its search at a finer scale, and so 
on. In addition to improving efficiency by limit- 
ing the effective search space of the matcher, this 
technique ameliorates the false-target problem. 

Computational vision models using hierar- 
chies of scale are too numerous to list here. 
Coarse-to-fine control strategies have been used 
in both correlation and feature-matching models 
of stereo vision. Terzopoulos [1] gives a clear and 
concise description of multigrid relaxation meth- 
ods. In particular, he discusses the difficulties of 
applying the methods to nonconvex variational 
problems, and suggests the possibility of stochas- 
tic multigrid methods. 

1.5 Lattice and Variational Models 

Several models of stereo vision fit neither the cor- 
relation nor the feature-matching paradigms; in- 
stead, they pose the matching problem in terms of 
optimizing a global measure [2, 3, 4]. To take one 
example, Julesz [3] proposed a model consisting 



of two lattices of spring-loaded magnetic dipoles, 
representing the two images of a random-dot 
stereogram. The polarity of the dipoles represents 
whether pixels in the left and fight images are 
black or white. A state of global fusion is achieved 
in the ground state, with the attraction or repul- 
sion of the dipoles balanced by the forces of 
the springs. 

More recently, Poggio et al. [5] have proposed a 
regularization criterion based on minimizing the 
following quantity: 

I~[VZGo(IL(x, y) - IR(x + D(x, y), y))l  2 
d d  

+ k(VD)2}dx dy (1) 

where IL and IR are continuous intensity functions 
in the left and fight visual fields, VZG is a linear 
bandpass filter (Laplacian ofa  Gaussian), o is the 
convolution operator, VD is the gradient of dis- 
parity, and k is a constant. (Note that (VD) 2 is in- 
terpreted as VD. VD, or the square of the magni- 
tude of the disparity gradient.) Equation (1) can 
be justified in terms of two heuristics: the first 
term in the integrand is a measure of photometric 
difference; the second is a measure of the first- 
order variation in the disparity map. In this 
heuristic sense it is similar to the Julesz spring- 
dipole model, with the two terms corresponding 
to the potential energy of the dipoles and the 
springs, respectively. Of course, equation (1) has 
the advantage of  being precise, as well as address- 
ing the case of continuous intensity. 

Witkin et al. [6] described a method for op- 
timizing a generalization of (1) that is essentially 
a sophisticated form of gradient descent which 
tracks the solution over increasingly finer scales. 
The hope is that ¢is convex at a coarse scale and 
that relatively coarse intermediate solutions will 
place the system in the correct convex region at 
finer scales. They report that the method is prone 
to error when it encounters bifurcations in its tra- 
jectory. As the scale becomes finer the system 
must "choose" which path to follow, and it cannot 
recover from a mistake because g may never in- 
crease. The solution is therefore critically de- 
pendent on initial conditions. This paper pre- 
sents an alternative stochastic method that can 
cope with this problem. 
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2 The Model System 

2.1 Epipolar Camera Model 

We assume that two coplanar images U(x,y) and 
~ (x,y) are formed by central projection with focal 
length f, and with the centers of projection 
separated by distance B along a baseline parallel 
to a common focal plane. The camera coordinate 
systems are right handed, with origins in the focal 
plane and z axes pointing toward the observer. 
For convenience, we assume that 0 < x,y < 1. If a 
point (x,yd') in the left image matches point 
(x',yJ) in the right image we say that it has dis- 
parity d = x - x'. Note that the 3D coordinates of 
the imaged point with respect to the left 
camera are 

p =  x , ~ y , ~ f  

Under these conditions, the disparities are re- 
stricted to the horizontal (x) direction. This 
assumption involves no loss of generality, be- 
cause if the relative positions and orientations of 
the two cameras are known, as well as the internal 
camera parameters, correspondences are re- 
stricted to epipolar lines. If the epipolar lines are 
not horizontal the images can be mapped into a 
normal stereo pair in which they are. 

2.2 Cyclopean Disparity Map 

At this point we identify Uand  :~with V2G o IL(xW) 
in (1). We seek a disparity map, ~(x,y),  defined 
over the same interval as Uand  .~, which specifies 
the correspondence between 5/~and ,~. The cyclo- 
pean representation (see [7]) defines ~ with the 
following relation: 

~/J x 2 'Y 

corresponds to 

~ [ x +  ~ (x,Y)2 'Y] 

The major advantage of the cyclopean represen- 
tation is that, by defining disparity without prefer- 
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ence to either image, it allows a more uniform 
treatment of occlusion boundaries. 

Rewriting the integrand of equation (1) in the 
cyclopean form we have: 

~ x  2 

+ k.[V~ (x,y)] 2 (2) 

= dl(x,y ) + Xd'2(x,y) (3) 

and the quantity to be minimized is 

$,(c/) = [(d,(x,y)dx dy (4) 
dd 

2.3 A Spring Model 

To establish a concrete idea of  the meaning of(3) 
and (4), consider the spring model illustrated in 
one dimension in figure 1. 

The model consists of two surfaces, .~(x,y) 
below and L/~ (x,y) + St above. Midway between 
these surfaces is a lattice of pivot points, and at 
each such point is an elastic lever arm, with rest 
length Si and spring constant kl. The lever arms 
are free to rotate in the (x~z) plane (i.e., in 
epipolar planes), while their endpoints are co- 
strained to lie on the two surfaces. The lever arms 
are connected to their neighbors by other springs 
with spring constant k2 which exert torques over 
moment arm A. The angles of the lever arms rep- 
resent disparity on an 2912 cyclopean lattice: 

D(i,j) = ~ (x.yj), 0 < i,j < M 

with 

D(i,j) ~ Sl sin 0~./~ Sl0; u 

The potential energy stored in a lever arm 
is approximately ~ 

IThese formulas require a small-angle approximation sin(O ,~ 
O. Note that the angles can be made arbitrarily small by in- 
creasing SI. 

.~i~(i,j) ~ l k~[ f/~(x D(2'J )., y ) 

- , ¢ ( x +  D(2'J),y)]2 

and in a connecting spring is approximately 

.~(i,j,k,l) ~ ~ k2 ~ [D(i,j) - D(k,l)] 2 

The energy associated with a single lattice 
point is 

1 ~ .;~(i,j, k,l) .#~(i,j) ,~ .~( i , j )  + ~ (k,,)c ,,.j 
(5) 

where, fi~-is the set of neighbors of (i,j). The factor 
of ~ in the second term is due to the fact that the 
energy of each connecting spring is shared by two 
lattice points (neglecting boundary conditions for 
simplicity). 

If we take. f to be the four nearest neighbors, 
the sum in (5) approximates the squared magni- 
tude of the disparity gradient: 

( k , l ) e  l id 

The energy of the entire system is 

= . r ( i , j )  
s4 

Comparing terms between ,~and  d, we have 
approximately 

with 

2 - -  
\ k l / \ S i /  

We can therefore interpret d ~ as a Hamiltonian 
specifying the energy of the spring system, 
neglecting kinetic energy terms. The constant ~ is 
proportional to the relative stiffness of the two 
types of  springs. 

A physical realization of the spring model 
would be a dynamic system of oscillators that 
would follow a trajectory through a 2542 dimen- 
sional phase space. (Each lever arm has two 
degrees of  freedom: 0 and 0 .) We could flesh out 
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£(z, y) + S1 

D(i,j) " ' - ' ~  $1 

A 

vertical springs: spring constant hi, rest length $1 

horizontal springs: spring constant k2, rest length $2 = 

Fig. 1. Spring model 

this model by specifying the moments of inertia 
and damping coefficients of the lever arms. We 
could also add a periodic forcing function to add 
energy to the system, balancing the energy dis- 
sipated by damping. Having done this, we could 
write the differential equations of motion describ- 
ing the model's deterministic dynamic behavior. 
In principle, we could trace the trajectory of the 
system through its phase space, gradually reduc- 
ing the amplitude of the forcing function while 
keeping the system in dynamic equilibrium. 
There is little point in simulating the dynamics in 
such detail, however, since we know that even 
low-dimensional forced oscillators have chaotic 
attractors [8]. The dynamics will be effectively 
stochastic. 

An alternative and much less expensive ap- 
proach, which we shall take in the next two sec- 
tions, is to explicitly acknowledge the stochastic, 
ergodic nature of the model. Kinetic energy will 
be modeled as heat. 

3 Stochastic Optimization 

We have already partially discretized equation (1) 
by defining the lattice D on ~. At this point we 

similady define lattices L and R on l a n d  ,~. D 
now has integer values and is interpreted as: 

corresponds to 

Equation (2) becomes 

- " ~ ' + [  0~ '~ ' -1 ,~ / ]  ~ 

+ LIVD(i,j)] 2 (6) 

The total potential energy is 

E = ~ E ( i j )  
t d  

In terms of the spring model, the ends of the 
lever arms are now constrained to lie on a finite 
number of positions on the two surfaces. Al- 
though this system is finite, it is also high- 
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dimensional, and the problem of finding mini- 
mal-energy states is still difficult because the 
number of possible states is vast (exponential in 
ME). Furthermore, because L and R are in general 
nonlinear functions, there is no reason to believe 
that E is convex, and therefore no reason to 
believe that a discrete iterative-descent algo- 
rithm would work. 

3.1 Standard (Canonical) Annealing 

Simulated annealing is a fairly new technique for 
solving such combinatorial optimization prob- 
lems. In section 3.3 a new variety of simulated 
annealing (called microcanonical annealing) is 
presented which has several advantages for com- 
puter implementation. In this section the basic 
principles of the standard form of simulated 
annealing are described to set a context for the in- 
troduction of microcanonical annealing. A re- 
view of simulated annealing is given by Laar- 
hoven and Aarts [10]. 

The most fundamental result of statistical 
physics is the Boltzmann (or Gibbs) distribution: 

Pr(Ei) = exp (-Ei/kT) 
Z(T) 

which gives the probability of finding a system in 
state i with energy Ei, assuming that the system is 
in equilibrium with a large heat bath at tempera- 
ture kT (k is Boltzmann's constant). The nor- 
malizing quantity in the denominator, called the 

partition function, is a sum over all accessible 
states v: 

Z(T) = Z exp( -Eo /kT)  (7) 
0 

Physicists are generally interested in calculat- 
ing macroscopic properties of model systems at 
various temperatures. The average value of some 
macroscopic variable A (which may be the aver- 
age energy of the system, for example) can be 
written 

(.4) = ~,AoPr(Ao) = Z~4~ exp (-E. /kT) 
Z(T) 

Unfortunately, the partition function is usually 
impossible to calculate. 

In 1953 Metropolis et al. [9] described a Monte 
Carlo algorithm that generates a sequence of 
states which converges to the Boltzmann dis- 
tribution in the limit (figure 2.) This method, 
which simulates the effect of allowing the system 
to interact with a much larger heat bath, samples 
what is called the canonical ensemble. Macro- 
scopic parameters can then be calculated without 
knowledge of the partition function by averaging 
over long sequences. 

The Metropolis algorithm begins in an arbi- 
trary state and then successively generates can- 
didate state transitions (v~v')  at random. A tran- 
sition is accepted with the following probability: 

er(v v'lv,v') 

1 if A E < 0  
e x p ( -  AE/kT) otherwise 

(8) 

1. Begin with the system in an arbitrary state v. 
2. Make a small change to the state, typically by changing the system in only one degree of freedom. Call 

the new state v'. 
3. Evaluate the resulting change in energy: AE = E¢ - Ev. 
4. If AE < 0 (that is, the change takes the system to a state of lower energy) accept the change. 
5. If AE ~ 0 accept the change with the probability exp(-AE/kT). 
6. Repeat steps (2) through (5) until the system reaches equilibrium. 

Fig. 2 The Metropolis Algorithm. 



where AE = Ev, - Ev. Asymptotic convergence of 
the Metropolis algorithm to the Boltzmann dis- 
tribution is guaranteed if the process for generat- 
ing candidate state transitions is ergodic. 

Kirkpatrick et al. [11] and Cerny [12] independ- 
ently recognized a connection between the Me- 
tropolis technique and combinatorial optimiza- 
tion problems. If the energy of a state is con- 
sidered as an objective function to be minimized, 
the minimum can be approximated by generating 
sequences at decreasing temperatures, until final- 
ly a ground state, or a state with energy very close 
to a ground state, is reached at kT = 0. This is 
analogous to the physical process of annealing. 

There are results showing the existence of an- 
nealing schedules (i.e., the rate of decrease of tem- 
perature) that guarantee convergence to ground 
states in finite time [13], but these schedules are 
too slow for practical use. Faster ad hoc schedules 
have been used in many problems with good 
average-case performance. While these faster 
schedules may not find an optimal state, they can 
converge to states that are very close to optimal. 

The application of standard simulated anneal- 
ing to the stereo matching problem is straightfor- 
ward. An early version is described in I14]. 
(Marroquin [15] and Divko and Schulten [16] 
have independently described similar methods.) 
In the following sections a more efficient version 
is presented. 

3.2 Annealing over Scale 

Simulated annealing could be applied directly to 
a pair of stereo images at the finest scale, but the 
convergence would be rather slow if the images 
had a large range of disparity. This was the ap- 
proach reported in [14] (using the standard an- 
nealing algorithm and a slightly different ener- 
gy function). 

A more efficient method is to use the coarse-to- 
fine strategy that has been found to be so effective 
in other image-matching work. At a coarse level 
of resolution the number of lattice sites and the 
range of disparity are small; therefore, the size of 
that state space is relatively small. We should be 
able to compute an approximate ground state 
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quickly, and then use it to initialize the annealing 
process at the next, finer level of resolution, and 
SO on .  

The Laplacian pyramid, originally developed 
as a compact image- coding technique 117] offers 
an efficient representation for hierarchical an- 
nealing. In a Laplacian pyramid an n × n image 
(for convenience, assume n is a power of 2) is 
transformed into a sequence ofbandpass-filtered 
copies, Ik, k = 0 . . . . .  n, where Ik is an image of 
size 2 "-k X 2 "-k. Each image is therefore smaller 
than its predecessor by a factor of 1/2 in linear 
dimension and a factor of 1/4 in area. We will 
refer to Ik as the image at level k. The center fre- 
quency of the passband is reduced by one octave 
between levels. This transform can be computed 
efficiently by recursively applying a small gener- 
ating kernel to create a Gaussian (low-passed) 
pyramid, and then differcing successive low- 
passed images to construct the Laplacian pyra- 
mid. The difference- of-Gaussians gives a good 
approximation to the VZG filter. 

After constructing Laplacian pyramids from 
the original stereo images, disparity is reduced by 
a factor of 1/2 in successive scales. Therefore, at 
some level, disparity is small everywhere. For 
typical stereo images, we can take this to be level n 

- 3. (For example, if the original images were a 
power of 2 in linear dimension, the Laplacian im- 
ages at level n - 3 would be 8 X 8 pixels. Dis- 
parities in the range of 0 to 63 pixels in a pair of 
512 × 512 images would be reduced to 0, with 
truncation.) We shall start annealing at this level, 
find an approximate ground state, and then ex- 
pand the solution to the next scale. To make this 
coarse-to-fine strategy work, however, we must 
specify how a low- resolution result is used to start 
the annealing process at the next-higher scale. 

Expanding a low-resolution result to the next 
level presents a problem. Obviously, one should 
begin by simply doubling the size of the low- 
resolution lattice and doubling the disparity 
values. Having done this, however, the new state 
has a low energy but the system is not close to 
equilibrium. Every odd disparity value is "unoc- 
cupied," and the new map is therefore more un- 
iform than it should be. This spurious uniformity, 
which is solely due to the quantization of the pre- 
vious result, is likely to place the system near a 
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local minimum from which it will not recover. 
Fortunately, there is an easy solution to this prob- 
lem: destroy this uniformity by adding heat. Sim- 
ply run the annealing algorithm "in reverse" by 
adding energy instead of removing it. Heating 
may proceed much faster than cooling because 
the system relaxes to equilibrium quickly at 
high temperatures. 

Choosing parameters of this procedure--heat- 
ing and cooling rates, termination conditions, 
and so on--remains an art, as in virtually all ap- 
plications of simulated annealing. The results in 
section 4 were generated with a common parame- 
ter set which was determined empirically from 
tests' on a wide variety of images. Some of the 
issues governing the choice of parameters will be 
discussed in section 4. 

3.3 Microcanonical Annealing 

Creutz [18] has described an interesting alterna- 
tive to the Metropolis algorithm, outlined in 
figure 3. Instead to simulating the effect of a large 
heat bath, the Creutz algorithm simulates a ther- 
mally isolated system in which energy is conser- 
ved. Samples are drawn from the microcanonical 
ensemble. One can imagine the difference be- 
tween the Metropolis algorithm and the Creutz 
algorithm as follows. The Metropolis algorithm 
generates a "cloud" of states, each with, in general, 
different energies, which fills a volume of phase 
space. As temperature decreases this volume con- 

tracts to one or more ground states. The Creutz 
algorithm, by contrast, generates states on a 
constant-energy surface in a somewhat larger 
phase space. As energy decreases these surfaces 
shrink to the same set of ground states. 

The simplest way to accomplish this is to aug- 
ment the system with one additional degree of 
freedom, called a demon, which carries a variable 
amount of energy, ED. This demon holds the 
kinetic energy of the system and, in effect, 
replaces the heat bath. The total energy of the sys- 
tem is now 

Etota  I = Epotentia I at- gkinet i  c 

= E + E o  

The demon energy, being kinetic, is constrained 
to be nonnegative. The algorithm accepts all 
transitions to lower energy states, adding - A E  
(the energy given up) to Eo Transitions to higher 
energy are accepted only when AE < Eo, and the 
energy gained is taken away from Eo. Total en- 
ergy remains constant. 

Microcanonical annealing simply replaces the 
Metropolis algorithm with the Creutz algorithm. 
Instead of explicitly reducing temperature, the 
microcanonical annealing algorithm reduces en- 
ergy by gradually lowering the value of Eo. Stan- 
dard arguments can be used to show that at 
equilibrium ED assumes a Boltzmann distribu- 
tion over time [18]: 

Pr(Eo = E)  oc e x p ( E / k T )  

1. Begin with the system in an arbitrary state v. 
2. Make a small change to the state, typically by changing the system in only one degree of freedom. Call 

the new state v'. 
3. Evaluate the resulting change in energy: AE = E¢ - E~ 
4. If AE < 0 accept the change and increase the demon energy (Eo ~ -  Eo - AE). 
5. If AE ~ 0 accept the change contingent upon ED: 

• If AE < Eo accept the change and decrease the demon energy (Eo ~ -  Eo - AE). 
• Otherwise, reject the change. 

6. Repeat steps (2) through (5) until the system reaches equilibrium. 

Fig. 3. The  Creutz  Algori thm.  
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Temperature therefore emerges as a statistical fea- 
ture of the system: 

kT = (Eo> (9) 

This simple version of microcanonical anneal- 
ing, using only one demon, is not suited to a 
parallel implementation. Each decision to accept 
or reject a state transition depends on the value of 
Eo, and therefore on the previous decision. The 
computation can be made parallel by using a lat- 
tice of demons. Temperature is still measured 
with (9), but using the distribution of Eo over 
space rather than time. 2 

There is a minor complication in using a lattice 
of demons. The single-demon algorithm visits 
sites at random and the demon allows energy to 
be transferred throughout the lattice. Similarly, in 
the lattice-of-demons algorithm the demons must 
be mixed throughout the lattice. If this is not done 
energy will be transferred between sites very slow- 
ly, only through the nearest-neighbor interac- 
tions of(6). We use a complete random permuta- 
tion of the demons after every lattice update, but 
more local methods are also adequate. 

Microcanonical annealing has several advan- 
tages over standard annealing: 

1. It does not require the evaluation of the 
transcendental function exp (x). Of course, in 
practice this function can be stored in a table, 
but we would like our algorithm to be suited to 
fine-grained cellular automata with very limit- 
ed local memory. 

2. It is easily implemented with low-precision in- 
teger arithmetic; again, a significant advan- 
tage for simple hardware implementation. 

3. In the Metropolis algorithm a state transi- 
tion is accepted or rejected by comparing 
exp ( -AE/kT)  to a random number drawn 
from a uniform distribution over [0,1], and 
these numbers should be accurate to high pre- 
cision. The Creutz algorithm does not require 
high-quality random numbers. 

Experiments indicate that the Creutz method can 
be programmed to run an order of magnitude fas- 
ter than the conventional Metropolis method for 
discrete systems [19]. 

2Statistics can  be sampled  over bo th  t ime and  space, if 
desired. 

In standard annealing it is not clear how to 
determine when the system reaches equilibrium. 
One can examine fluctuations in the average en- 
ergy, which should be of order 1/M 2 at equilib- 
rium, but this may require many extra iterations 
to get adequate statistics because one does not 
know in advance what average value to expect. In 
microcanonical annealing there is a simpler way. 
Let req be the ratio of the observed average demon 
energy to the standard deviation of the same ob- 
served distribution: 

req 9(ED) (10) 

At equilibrium req ~ 1. 
As with the Metropolis algorithm, the Creutz 

algorithm converges to the Boltzmann distribu- 
tion in the limit for any ergodic process generat- 
ing candidate state transitions. Of course, dif- 
ferent state-transition schemes will affect the rate 
of convergence. We have found the following sim- 
ple method to be adequate: 

Pr(d--~d'= {0.5 i f l d -  d'l = 1 
0 otherwise 

In other words, the disparities increase or de- 
crease by one lattice position as the system 
follows a Brownian path on its phase-space sur- 
face of constant energy. Only one bit it required to 
specify each transition. 

4 Experimental Results 

This section presents experimental results for 
three distinct cases: a medium-resolution, 
oblique, ground-level scene with prominent oc- 
clusions, a sparse random-dot stereogram, and a 
high-resolution aerial stereo pair. The method 
has been tested on over 30 real images; these ex- 
amples have been chosen to indicate a variety 
of conditions. 

Identical parameters were used for all three 
cases. Four nearest neighbors were used for, tfWe 
used a value of 64 for ~ which works well for im- 
ages quantized into eight-bit values. A schedule 
for heating and cooling was established to yield 
about 200 complete scans at each scale, with 
about 85 percent of the cycle devoted to cooling. A 
"complete scan" means that exactly one random- 
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state transition was considered for each lattice 
site. The transitions can either be generated "on 
the fly" or, for efficiency, stored as a small number 
of binary arrays, and similarly for the permuta- 
tions of the demon lattice. We heat the system in 
increments of 10 units until the temperature (see 
equation (9)) exceeds 300. We cool the system in 
increments of 3 units until the temperature is less 
than 30. This choice of parameters represents an 
empirical worst-case. A better theoretical ground- 
ing for the parameters would be desirable, but is 
beyond the scope of this paper. 

Figure 4 is distinguished by sharp discon- 
tinuties of depth. Figure 5 shows some inter- 
mediate results of annealing process. The hottest 
and coldest states for each level of resolution are 
shown (except for the very coarse 8 × 8 level, in 
which the ground state is one of uniform dispari- 
ty). The method has done a reasonably good job 
of separating the tree from the background, which 
is somewhat surprising since it has no explicit 
representation for occlusions. In an attempt to 
model occlusions we have experimented with line 
processes, like the one used by Geman and 
Geman [13], and with nonlinear "springs" that 
weaken as they deform. Our results so far have 
not justified the added complexity. 

The two graphs in figure 6 trace the evolution of 
temperature and req. Note that the plot of req in- 

dicates that the system moves away from equilib- 
rium during the relatively fast heating cycles, but 
relaxes quickly back to equilibrium after cooling 
starts. The system appears to drop away from 
equilibrium at low temperatures according to the 
req plot, but this effect is actually because there are 
relatively few energy levels available to the 
demons near the ground state. 

Figure 7 is a 10%, 128X 128 random-dot stereo- 
gram with four depth planes separated by inter- 
vals of 2 pixels of disparity. Figure 8 shows the 
final disparity assignments. 

Figure 9 is a relatively high-resolution aerial 
stereo pair. The left image is 512X512, while the 
fight is somewhat wider to ensure that the every 
pixel in the left image matches some point in the 
right. Figure 10 shows the matching results in 
two forms. Figure 10(a) is the disparity map with 
contours at every 5th disparity level. Figure 10(b) 
is a synthetic view of the scene that was created by 
transforming the disparity map to terrain ele- 
vations, texture mapping the left image onto this 
surface, and then rendering the surface. This 
data, which has a disparity range of 72 pixels, is 
the largest problem we have attempted so far. It 
required about 12 hours of processing on a Sym- 
bolics 3645. Inspection of this map indicates that 
it is accurate to 1 pixel over the entire field. 

In earlier work [14, 20] we used the absolute dif- 

Fig. 4. A n  oblique stereogram with occlusion. 



(a) (b) 

(c) (d) 

(e) (0 

Fig. 5. Results for figure 4. (a) Hot 16X16. (b) Cold 16×16. (c) Hot 32×32. (d) Cold 32×32. (e) Hot 64×64. (f) Cold 64×64. (g) Hot 
128×128. (h) Cold 128×128. (i) Hot 256×256. (j) Cold 256×256. 
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ference instead of the squared difference in (3). 
This is slightly more efficient to implement and 
makes little difference in the results. In terms of 
the spring model, this would correspond to using 
springs that exert a constant force in opposite 
direction of their deformation. Of course, a dif- 
ferent value of ~, is required. We have also ex- 
perimented with eight-neighbor versions of,.4,but 
no significant improvement in performance 
was observed. 

5 Conclusions 

The major conclusion we can draw is that equa- 
tion (1) is an adequate criterion for stereo match- 
ing, even in scenes with abrupt occlusions. The 
results in figures 4 and 5 indicate that solutions 
can accommodate very abrupt changes in depth. 
Residual energy in the near-optimal states is con- 
centrated along steep disparity contours rather 
than spread over large areas. 
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Fig. 6. Plots of  T and req for figures 4 and 5. (a) T vs. number of  iterations. (b) req VS. number of  iterations. 



Fig. 7. A 10% random-dot stereogram. 

Fig. 8. Results for figure 7. 

Fig. 9. A 512×512 aerial stereogram. 
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Fig. 10. Results for figure 9. (a) Disparity showing every 5th contour. (b) Synthetic view of terrain using (a). 

The use of a scale hierarchy dramatically in- 
creases the efficiency of the method, especially for 
large problems such as that illustrated in figures 9 
and 10. An additional benefit of using a scale 
hierarchy is that the solution is less sensitive to 
small amounts of vertical disparity, which is 
eliminated at coarser scales. (Uncertainty in the 
camera model will usually cause some vertical 
disparity in high-resolution images.) A Gaussian 
low-pass hierarchy works as well as the Laplacian 
hierarchy if the images are recorded with equiva- 
lent sensors. The benefit of bandpass filtering is 
to eliminate the low-frequency variation caused 
by uncalibrated photometry. 

Annealing provides a way to bridge the gap be- 
tween scales. The microcanonical annealing 
algorithm appears to be an improvement over 
canonical annealing for reasons discussed in sec- 
tion 3.3. It is certainly much easier to implement 
in cellular automata. Theoretical results showing 
convergence in finite time do not necessarily 
carry over to microcanonical annealing, but the 
requirements of these results are never met in 
practice anyway. 

Canonical annealing and pure single-demon 
microcanonical annealing are at opposite ends of 
a spectrum. In canonical annealing the heat bath 
is much larger than the model system, and is not 

represented explicitly. In pure microcanonical 
annealing the heat bath-- that  is, the single 
demon--is  much smaller than the system, and it 
is represented explicitly. The lattice-of-demons 
algorithm is midway between these extremes, 
with the heat bath and the model system having 
comparable sizes. In a sense, this is a classical 
space/time trade-off. By representing the heat 
bath explicitly we can avoid the evaluation of 
complicated functions. 

Comparison with the scale-space continuation 
method [6] is difficult because the nature of the 
data affects the smoothness of the energy land- 
scape. In some stereo pairs the data will be so 
clear that this more direct form of optimization 
will work well. (For example, dense, random, 
greyscale stereograms with intensities chosen 
over a broad range of values can be solved even by 
a "greedy" algorithm; that is, a Monte Carlo op- 
timization accepting only transitions that lower 
energy.) Both methods use multiscale represen- 
tations, but the stochastic approach uses multiple 
scales only for efficiency, while the gradient de- 
scent method uses them in an attempt to avoid the 
local minima that would be encountered when 
working only at the finest scale. A comparative 
study is needed to determine when the additional 
overhead of  annealing is justified. 
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