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Abstract. It is well known that a plurality election need not reflect the true ~entiments of the 
electorate. Some of the proposed reform procedures, such as approval and cumulative voting, 
share the characteristics that there are several ways to tally each voter's preferences. Voting 
systems that permit truncated ballots share this feature. It is shown that the election results for 
any such procedure can be highly indeterminate; all possible election results can occur with the 
same choice of sincere voters. This conclusion of indeterminacy holds even when measures of 
voters' sentiments, such as the existence of a Condorcet winner or even much stronger mea- 
sures, indicate there is considerable agreement among the voters. Then, multiple systems are 
compared with all standard tallying procedures. For instance, a corollary asserts it is probable 
for the plurality voting method to elect the Condorcet winner while approval voting has an in- 
determinate outcome. 

1. Introduct ion 

It is well k n o w n  that  the results of  a plural i ty  election need not  reflect the 

true sent iments  of  the voters. Wi th  more  t han  two candidates  r unn i ng  for 

the same office, the winner  could be the least preferred. Examples  a bound ,  

and  they p robab ly  occur of ten  in m a n y  closely contested elections among  

three or more  candidates .  Perhaps  the best kn ow n  one is the 1970 senatorial  

election in New York.  Conservat ive James Buckley benefi ted f rom a split 

vote for his two liberal  opponents ;  he won  with 39 percent  of the vote even 

though  the rest of  the electorate appeared to prefer a liberal.  In  the 1983 

Chicago Democrat ic  Par ty  mayora l  p r imary  the black candidate ,  Haro ld  

Wash ing ton ,  won because of  a split vote for his two white opponents ,  Jane 

Bryne and Richard Daley, even though  op in ion  polls indicated that  in a two- 

candidate  election, he would  have lost to either person.  Indeed,  dur ing  the 

summer  of 1986, the Chicago papers speculated that  Mayor  Wash ing ton  

would  try to win reelection with another  split vote by runn ing  as an  Indepen-  

dent ,  rather  t han  as a Democra t .  (He did not . )  In  response,  some of his op- 

ponen ts  proposed a nonpa r t i s an  ' r e fo rm '  procedure  that  includes a run-off .  

To illustr~ite the problem,  suppose that  fifteen voters are consider ing the 
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three candidates A, B, and C and suppose that the voters' preferences are 
split in this way: six voters have the ranking A > C > B; five have the rank- 

ing B > C > A; and four have the ranking C > B > A. The result of a 
plurality election is A > B > C with a tally 6:5:4. Although A wins, a 

majority (sixty percent) of these voters prefers B to A. More seriously, a 
majority (sixty percent) of these voters prefers the last place candidate, C, 
to A, and 2/3 of them prefer C to B. The preferred candidate appears to 
be C and one could argue that the 'true' ranking is C > B > A. The election 
results reflect neither this ordering, nor that B would win a run-off election. 

There is little question that this instrument of democracy is in need of re- 
form. But, what should replace it? A final resolution of this question in- 

volves a wide spectrum of issues such as whether voters will understand and 
accept a new system, whether the system can be easily manipulated, and so 
forth. This essay concentrates on the critical issue of how the choice of a 
tallying procedure affects the election results. One of us discusses other 

aspects, in particular, questions about strategic voting, elsewhere. (See, for 
example, Saari, 1986.) 

To counter the difficulties that the plurality method poses, a voter must 
be able to register in the election system more information than just who is 
his top choice. One such system, cumulative voting, has been used to elect 
representatives to the Illinois General Assembly (e.g., see Sawyer and 

MacRae, 1962). Here each voter has three votes; he can cast all of them for 
his top ranked candidate, he can split them equally by casting 1 Vz points for 
each of his two top ranked candidates, he can give two votes to his top 
ranked candidate and the last one to his second ranked candidate, or he can 

cast one vote for each of his three top ranked candidates. A simpler version 
of this system to use with our example would be to let each voter choose how 

to split two votes. If enough of the voters had sufficiently high regard for 
C, she would be elected. 

A second proposed reform method, independently invented by R. Weber, 
S. Brams and P. Fishburn, and others (see Brams and Fishburn, 1982), is 
approval voting. In this system, a voter votes for all candidates he approves 
of. As such, with N candidates, the voter has N choices; he can vote ap- 
proval for his i top candidates, i = 1, . . . ,  N. If we tally votes under ap- 
proval voting for our election example, then C again emerges victorious 
should enough of the voters favor her. 

Approval voting enjoys the support of several experts in this field. It was 
employed for a straw ballot during the Pennsylvania Democratic Party con- 
ference in December, 1983 (Nagel, 1984), it was used to select faculty mem- 
bers to the Northwestern University Presidential search committee in 
November, 1983, and the Mathematical Association of America adopted it 
for certain elections in 1986. Approval voting also ' . . .  is now used in aca- 
demic societies such as the Econometric Society, in the selection of members 
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of  the National Academy of Science during final balloting, and by the Unit- 

ed Nations Security Council in the election of a Secretary General. Bills to 

enact this reform are now before the state legislatures of  New York and Ver- 
mont . '  (Brams and Fishburn, 1983) 

Much of this support is a consequence of a careful analysis of  its proper- 
ties by two of its foremost advocates, Steven Brains and Peter Fishburn. 

Most of their conclusions, which highlight several of  the desirable proper- 
ties of  this system, are summarized in their book Approval Voting. To 
demonstrate the strength of  approval voting, they compare it with systems 

that distinguish between two sets of  candidates - the top k and the rest. 
These comparisons partially reflect their critical and controversial assump- 
tion that the preferences are 'dichotomous. '  (See, for example, Niemi, 
1984.) Plurality voting is the special case where k ~ 1; it distinguishes be- 
tween the top ranked candidate and all others. But Brains and Fishburn did 
not discover all of  the properties of approval voting, nor did they compare 
it with all other voting systems. 

We began our analysis of  approval voting with the expectation that, in 

some sense, it is an improvement over most other systems. But we found 
that it has several disturbing features that seem to make it worse than even 
the plurality voting system. Indeed, these properties appear to be sufficient- 
ly bad to disqualify approval voting as a viable reform alternative. These 
negative features emerge, moreover, in any voting system that includes 
more than one way to tally each voter 's ranking of the candidates. Such 
multiple voting systems include approval voting, cumulative voting, cardi- 
nal voting, as well as any system that creates alternative tallying procedures 
for those voters that cast a truncated ballot. 

Our main result is that for any such multiple voting system, the election 

outcome can be indeterminate rather than decisive. More precisely, if there 
are N candidates, then there are N! possible ways to rank them without ties. 
If  a voting system is decisive, then a given set of voters' profiles uniquely 
determines one of these rankings. For any multiple voting system, however, 
there are a large number of examples in which all N! election outcomes can 
occur for the same profile. Each voter votes according to his sincere ranking 
of  the candidates, but as the voters vary their choice of  tallying methods, 
each of  the N! possible rankings emerge. 

The preceding example illustrates this phenomenon for approval voting. 

Let w, y, z denote, respectively, the number of  each kind of  voter who votes 
approval for his top two candidates rather than just his top ranked candi- 
date. Then, 0 ~ w _< 6, 0 _ y _ 5, 0 _< z <_ 4, and the tally for A:B:C 
is 6:5 + z:4 + w + y. It follows immediately that any election outcome is at- 
tainable. For instance, the result B > A > C occurs when z _> 2 (at least 
two voters from the last set vote for their two top ranked candidates) and 
w + y <_ 1. Even ties are possible. A deadlocked election of  A -- B -- C 
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results from z = 1 and w + y = 2, while B = C > A results from w + 
y - l = z _ > 2 .  

The plurality election ranking, no matter what bad features it may have, 
always is one of  the possible approval voting outcomes. But our example 
shows that the set of  approval voting outcomes can include a host of  other 
kinds of  pathologies. Our general results go beyond this claim; they assert 

that even if other measures indicate that there is a remarkable agreement 
among the voters concerning the candidates, if these same voters use a mul- 
tiple voting method, then the result can be indeterminate. So, even though 
a multiple system may have other 'desirable' features, just the fact its out- 
come can be completely indeterminate, even in 'ideal' situations, raises seri- 
ous questions of  whether these methods offer appropriate reform.1 For in- 
stance, one argument for certain multiple systems is that they account for 
the intensity of  preference or distaste for certain candidates. Is this feature 

worth the accompanying cost of  indeterminacy? We require answers to this 

kind of  question to assure us that the proposed cure is not worse than the 
disease. 

Our results do not mean that we must accept and live with the failings of 
plurality voting. There are other ways to tally a ballot to reflect a voter 's 
first, second, . .  ,, last ranked candidates, such as a Borda Count. (The 
Borda ranking for our example is the desired one of  C > B > A with a tally 
of  34:29:27.) Out of  all possible ways there are to tally the ballots, the 
problem is to isolate the ones that best capture the wishes of  the electorate 

in the sense that the ranking of  the N candidates has some consistency with 
its rankings of  all other subsets of the same candidates. It turns out that the 

unique solution is the Borda Count (Saari, 1985). 
Although our results demonstrate other favorable properties of the Borda 

Count, we do not argue for it here because, as we asserted earlier, the deci- 
sion to adopt one system over another involves other issues that we do not 
address here. So, this essay treats the Borda Count either as a technical con- 
dition or as an example. But whatever good features the Borda Count (or 
any other system) may have, if a ' tolerant '  organization modifies it so that 
a truncated ballot (a voter does not rank all of  the candidates) can be tallied, 
then the modified system admits these indeterminate outcomes. 

I If  other reasons for using a multiple system can be found that are compelling enough to 
overcome the objections of  indeterminacy, then it is of  interest to discern which of  the indeter- 
minate rankings are most likely. Such an analysis would be based on a probability model, so 
the comments introducing Theorem 6 are relevant. (Also see the concluding paragraphs in Sec- 
tion 4.) There are certain settings, clearly not all of  them, in which some insight into this issue 
might come from the growing literature on strategic voting. But even in this restricted setting, 
the issue is by no means settled. For example, for three different starting assumptions that lead 
to different conclusions, see (Brams and Fishburn, 1982; Niemi, 1984; and Saari, 1986). In- 
deed, it is now known (Saari, 1986) that we can justify any  system as being 'strategically the 
best '  just by adopting the appropriate assumptions. 
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2. The main results 

Denote the set of N > 3 candidates by { a 1 . . . . .  aN]. Let W_ = (w I . . . . .  WN) 

be a voting vector such that its components satisfy the inequalities wj >__ w K 
if and only if J < K, and w L > w N. Furthermore,  assume that all of  the 
weights are rational numbers. (This last requirement simplifies the proofs; 
clearly, it does not impose any practical limitations.) Such a vector defines 
the tallying process for an election - wj points are tallied for a voter's jTH 

ranked candidate. The sum of the points tallied for a candidate determines 

her final ranking. 
The vector (1, 0 , . . . ,  0) corresponds to the plurality vote while B y = (N, 

N - 1 . . . . .  1) defines the usual Borda Count procedure. (More generally, call 
W a Borda vector if the differences wj - wj + l are the same nonzero constant 
for j = 1 . . . . .  N - 1. We call any election tallied with a Borda vector a Borda 

Count. It is easy to show that the election ranking is the same independent 
of  which Borda vector is used.) The vector E__ N = N -  1(1, 1 . . . .  ,1)  is not a 
voting vector because all of  the components are equal; a tally with E_N does 
not distinguish how the candidates are ranked. 

Definition. A simple voting system uses one and only one voting vector to 

tally the voters' rankings of the candidates. A multiple voting system is where 
(1) there is a specified set of  at least two voting vectors, {Wj ), such that the 
difference between any two of  them is not a scalar multiple of  E__ N, and (2) 
each voter selects any one of  the voting vectors to tally his ballot. 

Examples. For cumulative voting with three votes, the set of voting vectors 

is {(3, 0, . . . ,  0), (1.5, 1.5, 0 . . . . .  0), (2, l, 0, . . . ,  0), (1, l, 1, 0 . . . . .  0)}. 
Approval voting is defined by the set of  N -  l vectors {(1, 0 . . . . .  0), 

(1, 1, 0 . . . . .  0) . . . . .  (1, 1 . . . .  , 1, 0)}. (We do not include (1, 1, . . . ,  1) 
because it is not a voting vector; casting such a ballot does not affect the 
election results). 

The system {(2, 0 . . . . .  0), (1, 0 . . . .  ,0))  defines a multiple voting system 
even though the voting vectors are scalar multiples of  each other. 

For cardinal voting, each voter is free to select the values of the weights, 
w j, subject to certain constraints. To standardize the choices, we might re- 
quire the weights to sum to a specified value, or to be bounded above and 
below by specified constants. 

A common way to create a multiple system is to modify a simple voting 
system to tally a truncated ballot. With the sole exception of the plurality 
method, this modification always defines a multiple method. For  the Borda 
Count, one modification defines the set of  N vectors {B_N, (N, N -  1 . . . .  , 
2, 0) . . . . .  (N, 0 . . . . .  0)}. 
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Definition. A multiple voting system for N candidates is completely indeter- 
minate if there exist profiles of  voters for which all N! possible rankings 
(without ties) of  the candidates result from the same profile as the voters 
vary their choices of  how their ballots are to be tallied. 

The definition captures the extreme indecisiveness of  the election proce- 
dure. For these examples of  voters' profiles, the different outcomes reflect 

the voters' fluctuations in their choices of  a tallying procedure rather than 
their rankings of  the candidates. This feature should be avoided. 

Theorem 1. Assume that there are N _> 3 candidates. All multiple voting 
systems are completely indeterminate. 

This statement serves not only as an argument against using multiple 
methods such as approval, cardinal, and cumulative voting, but also as an 
argument against admitting truncated ballots. Recall, we consider only sin- 
cere voting, so this conclusion is not the result of  any voters' manipulation 
of  the system to misrepresent their true rankings of  the candidates. It is a 
flaw of  the system. On the other hand, our statement extends the nice results 
of  Brams and Fishburn (1984) about  how 'sincere voters' can manipulate 
the system by truncating their ballots. Here, the voter remains true to his 
rankings of  the candidates because the manipulation strategy rests on the 
various ways there are to truncate a ballot. In this same spirit and as an im- 
mediate consequence of  Theorem 1, voters can use any multiple voting sys- 

tem in exactly this same manipulative way because as the voters change their 
choice of  a tallying method any election outcome can occur. So, to manipu- 
late a multiple voting system such as a truncated ballot, cumulative, or ap- 
proval voting, the voter need not misrepresent his beliefs; the system itself 
provides the manipulative tools! 

Can a multiple system shed this indeterminacy if there is a conformity of  
opinion about the candidates? To quantify this question, we need an indica- 
tor of  the voters'  sentiments. The 'Condorcet  winner' provides a commonly 

used measure. 

Definition. Assume that the N __>_ 3 candidates are (a 1, a 2 . . . .  , aN). Candi- 
date a K is called a (strong) Condorcet winner if, in all possible pairwise 
c o m p a r i s o n s ,  a K always wins by a majority vote. A Condorcet loser is a 
candidate who always loses by a majority vote in all possible pairwise com- 
parisons with the other candidates. 

A Condorcet winner measures the voters'  sentiments in the sense that she 
is the choice of  a majority of  the electorate whenever voters compare her 
with any other candidate. Our earlier New York senatorial and Chicago 
mayoral examples show that a Condorcet loser can be a plurality election 
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winner, while our constructed example proves that the plurality vote can 
rank a Condorcet winner in last place and a Condorcet loser in first place. 
Saari (1985) shows that this kind of result is characteristic of all simple 
voting systems with the sole exception of the Borda Count. 

Theorem 2. (Saari, 1985) Suppose that there are N > 3 candidates. For any 
simple voting system other than a Borda Count, there exist examples of 
voters' preferences for which the Condorcet winner is ranked in last place 
and the Condorcet loser is ranked in first place. The Borda Count is the 
unique method that never ranks a Condorcet winner in last place and never 
ranks a Condorcet loser in first place. 

How does a multiple voting system fare? It turns out that it can be much 
worse .To state a version of our result that is easier to prove, we introduce 
this definition. 

Definition. A multiple voting system [Wj} is 'plurality like' if there are 
non-negative scalars (b j) such that when we compute the differences be- 
tween successive components of r~bjWj, all but one are zero. 

The summation defines a voting vector that distinguishes between only 
two sets of candidates. We satisfy this condition automatically if the mul- 
tiple voting method includes a voting vector of this kind, for example, if it 
includes (1, 0 . . . . .  0) (plurality vector), (3, 0, 0 . . . .  ,0) ,  (1, 1, 1, 0 . . . . .  
0), and so forth. Thus, approval and cumulative voting are plurality like. 
Also, this condition is satisfied if N - 1 of the voting vectors and E_N form 
a linearly independent set. This conclusion occurs because the vectors span 
R N. Consequently, cardinal voting and the modification of the Borda 
Count to tally truncated ballots both satisfy this condition. 

Theorem 3. Suppose that there are N >_ 3 candidates. Choose a ranking for 
each of the N(N - 1)/2 pairs of candidates in any manner desired. (We may 
do so randomly; the rankings need not be transitive.) Assume that we use 
a plurality like, multiple voting method to rank all subsets of more than two 
candidates. Then there exist examples of voters' profiles so that 

1) for each of  the pairs of candidates, a majority of the voters have the 
indicated preference, and 

2) for each subset of three or more candidates, the outcome is completely 
indeterminate. 

The constraint that a multiple voting method is 'plurality like' is not 
necessary for this result to hold; the conclusion also holds for almost all 
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multiple voting systems. We impose this assumption only because it signifi- 
cantly simplifies the proof  while still including all of  the multiple methods 

that people have seriously considered or used. 
Our goal to compare the results of  multiple voting methods with the Con- 

dorcet winner is an immediate corollary of  Theorem 3. To see why this is 

so, just choose the rankings of  the pairs so that there is a Condorcet winner. 
For  instance, if N - 4, it follows from Theorem 3 that there are examples 

of  voters'  profiles so that whenever voters compare a I with any other can- 
didate, she always wins a majority vote. Yet, when these same voters use ap- 

proval voting to rank the candidates, the outcome is completely indeter- 

minate over each set of  candidates { a 1 , a 2, a 3, a 4 }, { a 1 , a 2, a 3 }, { a 1 , a 2, a 4 }, 
[al,  a3, a4}, and {a 2, a 3, a4}. In other words, a Condorcet winner could win 
an approval election, or any other multiple voting election, only by ac- 
cident. 

Actually, it follows from the theorem that indeterminacy can occur even 
when the voters are in far more agreement than indicated by the existence 
of  a Condorcet winner. For instance, it follows from this theorem that there 
are examples of  voters' profiles so that for each pair (aj, aK), a majority of 
the voters prefer the candidate with the smaller subscript; that is, by majori- 

ty votes, the pairwise election outcomes are a 1 > a 2, a 1 > a 3, . . . ,  a I > a N, 
a2 > a3 . . . . .  aN- 1 > aN" These binary rankings define the transitive rank- 
ing a 1 > a 2 > . . .  > a N. Even though this set of  binary rankings isolates 
a situation in which a strong agreement about the candidates prevails, the 
approval voting result for any subset o f  three or more candidates remains 
completely indeterminate. A similar example exists for any plurality like 

multiple voting system. 
This kind of  an example illustrates that the election outcome for a plurali- 

ty like multiple voting method can be highly indeterminate even if there is 
a Condorcet winner. We can relax the restriction of  'plurality like' multiple 
methods by considering indeterminacy only for one subset of  candidates. 

Corollary 3.1. Assume that the voters rank the N > 3 candidates with a 
given multiple voting method. Assume that the multiple voting system has 
at least one vector that is not a Borda vector. Then there exist examples of  
voters'  profiles so that even though there is a Condorcet winner, the ranking 
of  the N candidates is completely indeterminate. 

We can reconcile these negative statements about approval voting with 
the more positive ones in the literature. In particular, in certain settings, we 
know that the approval voting election results can rank a Condorcet winner 
in first place (Brains and Fishburn, 1982). But, it follows from Corollary 
3.1 that such a favorable ranking can occur for any multiple method because 
it is just one of  the many indeterminate fluctuations of  the election. In other 
words, if the voters choose to tally their ballots in certain specified ways, 
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then these desirable outcomes will result. If they do not, then anything else 

can occur. 
A different consequence of Theorem 3 concerns 'run-off elections' and 

the other procedures that use not only the voters' ranking over the set of all 
of the candidates, but also the election results over certain subsets of the 
candidates. Consider this standard approach. First rank the N candidates, 
and then drop the candidate who is in last place. Rerank the remaining set. 
Continue this elimination procedure until only the required number of can- 
didates remain. Suppose that we use a multiple method, such as approval 
voting or a simple system modified to count truncated ballots, to rank the 
candidates at each step of this elimination procedure. It follows from The- 
orem 3 that the final result can have no relationship whatsoever with how 
the voters rank the candidates. 

So far we have compared multiple voting methods only with the rankings 
of pairs of candidates. Another test is to compare them with plurality voting 
and other simple voting methods. For instance, it is reasonable to speculate 
that approval voting will be indeterminate only in those situations in which 
the plurality election ranking also has some highly undesired features. But, 
this is not the case. 

Theorem 4. Assume that there are N > 4 candidates. Let W N be a voting 
vector defining a simple voting method, and assume that a multiple voting 
method is given in which at least two of the vectors and E__ N are linearly in- 
dependent. Choose a ranking for each of  the pairs of alternatives. There ex- 
ist examples of voters' profiles so that 

a. For each pair of candidates, a majority of the voters have the indicated 
preference. 

b. If _W N is not a Borda vector, then the simple voting method has any 
previously selected ranking of the candidates. 

c. The multiple method is completely indeterminate. 

If the multiple voting method is either approval or cumulative voting, 
then the conclusion holds for N >_ 3. So, with the exception of the Borda 
Count, Theorem 4 illustrates that examples exist for which there is a Con- 
dorcet winner, yet anything can occur with the simple voting scheme while 
the multiple method is completely indeterminate. (Theorem 2 serves as an 
explanation of Why we exclude the Borda vector.) In particular, this finding 
means that there are examples of voters' profiles in which the plurality out- 
come does rank the Condorcet winner in first place while approval voting 
has a completely indeterminate effect. Indeed, Corollary 4.1 is an imme- 
diate consequence. 
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Corollary 4.1. There are profiles of voters so that the majority votes over 
pairs of candidates define a binary, transitive relationship, and the plurality 
election ranking respects this relationship, yet, for these same voters, the ap- 
proval voting outcome is completely indeterminate. 

Consequently, plurality election results can reflect the voters' wishes 
while cumulative, approval voting, truncated ballots, or any other multiple 
methods does not. 

So far, we have compared the outcome of multiple methods with the Con- 
dorcet winner. But we can use other possible measures of voters' sentiments 
to isolate other kinds of agreement among the voters. If such measures rely 
on the majority vote rankings of pairs of candidates, then it follows from 
Theorem 3 that for any favorable situation we define in this way, this situa- 
tion can be accompanied by an indeterminacy conclusion for multiple sys- 
tems. If we define our measure in terms of election outcomes from a speci- 
fied simple voting system, then this indeterminacy conclusion for multiple 
voting methods follows from Theorem 4. 

We now introduce a measure that requires far too much agreement 
among the voters to be of any practical use. In its strictness lies its appeal; 
we use it to underscore our principal claim that even in a highly ideal situa- 
tion in which there is an incredibly strong consistency in the voters' beliefs, 
a multiple system can be indeterminate. 

Definition. Let N > 3 and for each K, 2 _ K _< N, let all subsets of K candi- 
dates by ranked by a specified simple voting vector W K. If a profile of 
voters has the property that the election outcomes over all subsets of alterna- 
tives are the restrictions of the same transitive ranking of the N altern~/tives, 
then we call this profile completely consistent. 

Trivially, a completely consistent profile admits a Condorcet winner. The 
consistency condition is much stronger: the majority votes over the pairs de- 
fine a binary transitive relationship over the set of candidates, and the Wr: 
election outcome preserves this relationships for all subsets of K candidates, 
K = 3 . . . . .  N. This is extreme consistency. 

Theorem 5. Let N > 3. Let W K be given for each K = 2 . . . . .  N, and let 
a multiple voting system be given for the set of N alternatives. Assume that 
the multiple system has at least one voting vector that is not a Borda vector. 
Then there exist profiles of voters that are completely consistent (with 
respect to the simple voting methods), but for which the multiple voting sys- 
tem has a completely indeterminate outcome. 

Consequently, there exist examples in which the plurality election out- 
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comes for all subsets of alternatives is the appropriate restriction of a 1 > 
a 2 > . . .  > aN; yet if the same voters use approval voting, the outcome re- 
mains completely indeterminate. The same conclusion holds for truncated 
ballot systems and any other multiple system. 

3. Robustness 

A final issue concerns the robustness of these assertions. Can we dismiss 
these statements because the conclusions occur only with specially con- 
structed, highly pathological examples? The answer is no; the results are 
robust, a conclusion that the results themselves already suggest. We in- 
troduced several measures, such as the Condorcet winner, examples for 
which the rankings over pairs are transitive, completely consistent, and so 
forth, to identify situations with an increasing conformity of agreement 
among the voters. Indeed, some of these situations have so much conformi- 
ty that no viable theory could exclude them. Yet in all cases, the indeter- 
minacy conclusion remained. Theorems 3 and 4, moreover, offer consider- 
able added freedom in choosing the comparative election rankings; yet all 
of these choices can be accompanied with indeterminacy for a given multiple 
system. 

A technical demonstration that our conclusions are robust turns out to 
be a simple consequence of our method of proof. Rather than following the 
somewhat traditional approach of constructing examples to verify the asser- 
tions, we use a representation for the space of all possible profiles. (See 
Saari, 82, 84, 85, 87) If there are N candidates, then there are N! possible 
rankings. For each ranking A, let n A be the fraction of the voters with this 
ranking, and let f b e  the vector that these N! values define. The sum of the 
components of f equals unity, so there are NI - 1 degrees of freedom. These 
numbers define a simplex, Si(N!), in the positive orthant of an N! dimen- 
sional space. We can identify the voters' profiles with the (rational) points 
in Si(NI). I f f i s  a point in Si(N!), then a common denominator of its compo- 
nents corresponds to the total number of voters in an example, while the 
numerator of n A determines the number of voters with the ranking A. In 
the obvious manner, the tally methods can be defined for any point on the 
simplex whether or not it is rational. However, the image corresponds to a 
tally of an election only for rational points. 

This representation for the space of all profiles allows us to consider ques- 
tions that would be extremely difficult in other settings. For instance, a 
natural definition for robustness in a voting system would require a conclu- 
sion to hold even for small changes in the supporting profile of voters; for 
example, changes in the total number of voters or in the number of voters 
with certain rankings. In our setting this means that a result supported by 
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a p rof i l e f i s  robust if the conclusion holds for an open set of  profiles about 
f .  Moreover,  any open set in Si(N!) contains an infinite number of  rational 

points, so it follows that any conclusion supported by an open set in Si(N!) 
holds for an infinite number of  different examples. (Thus, such an assertion 

cannot be the consequence o f  just an isolated example.) This means that a 

useful measure o f  robustness is whether a conclusion can be supported by 
an open set ofprofiles from Si(N!). Theorem 6 asserts that all of  our conclu- 
sions are robust. This has other implications. The standard, continuous 
probability measures assign a positive probability to open sets. So, Theorem 
6 also implies that if we use a probability model over Si(N!), then our results 
have a positive probability of  occurring. (In the concluding paragraphs of  

the next sextion, we give the interested reader some insight into the large size 

of  these open sets.) 

Theorem 6. For each of  the preceding theorems, the set of  examples defining 

the described properties contains an open set in Si(N!). 
Finally, we remain with the issue of  reform. It is difficult to accept a 

procedure as constituting acceptable reform if it has this robust, complete 

indeterminacy property, and particularly if it keeps this property even if 
other measures give evidence of  a remarkable conformity in the voters' 
rankings. This does not mean that we are forced to live in the imperfect 
world of  plurality voting. It does mean that in the search for reform proce- 

dures, we must be aware of  this theoretical feature of  multiple voting 

methods, and, perhaps, seek a solution elsewhere. 

4. Proofs 

The statements and proofs of  the theorems in this paper are special cases 
of  the general program described in (Saari, 1987). Most of  the technical con- 

ditions we need are derived in (Saari, 1985). 
Proof of  Theorem 1. Assume that there are N _ 3 candidates { a 1 . . . . .  

a N } and that the voting vectors { Wj }, j = 1 . . . .  , s, s ~ 2, define the mul- 
tiple voting system. Then, each Wj is a vector in the N dimensional space 
R N. Let A denote the ranking a 1 > a 2 > . . .  > a N, and let P(A) be a gener- 
ic representation for the N! permutations of  A. For voting vector _Wj, any 
such permutation, P(A), determines how the ballot will be tallied. We can 
represent this tally by a permutation of  the vector Wj. Denote this permu- 
tation by Wjp(A ). For instance, if W = (3, 2, 1), then the standard ranking 
a I > a 2 > a 3 defines the vector (3, 2, 1). The ranking a 3 > a I > a 2 defines 
the permutation of  W, (2, 1, 3), to reflect that for this ranking, two points 

are tallied for a 1, one for a 2, and three for a 3. 
Let rip(A) denote the fraction of  the voters with the ranking of  the candi- 
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dates P(A). The tally of a simple election using Wj is 

np(A)Wjp(A ) 4.1 
P(A) 

such that the summation is over all N! permutations P(A). We determine 
the outcome of the election by algebraically ranking the components in this 
vector sum. 

There is a geometric representation for this algebraic ranking. Consider 
the indifference hyperplane in R N given by xj = x~:. If the vector sum 4.1 
is on the x K > xj side of this hyperplane, then a K ranks higher than aj, and 
vice versa. In particular, the N ( N -  1)/2 possible 'indifference hyperplanes' 
divide R N into 'ranking regions,' and the ranking region that contains the 
vector sum determines the ranking of the candidates. 

For a multiple voting system, let mjp(A ) denote the fraction of those 
voters with a P(A) ranking that elect to have their ballots tallied with the 
jTH voting vector. Then, the fraction of the total number of voters with this 
tally is np(A)mjpCA ). Consequently, the total tally is given by the double sum 

rip(A) [~mjp(A)Wjp(A)]. 4.2 
P(A) J 

Again, the ranking region of R N that contains this vector sum determines 
the ranking of the candidates, 

We represent Equation 4.2 as a mapping. Toward this end, let Si(M) = 

I X  1 . . . .  , XM) I x  K > 0, Ex K = 11. 

Because each term defines a percentage, the set { rip(A) } is a (rational) point 
in the set Si(N!). For each P(A), the set {mjp(A)} is in Si(s) (because the en- 
tries define non-negative fractions that sum to unity). This means that a do- 
main point is in the (N! - 1) + ( s -  1) TM dimensional space 

T = Si(N!) x (Si(s)) N!. 

Any rational point in T corresponds to an example of voters' profiles along 
with their individual selections of voting vectors to tally the ballots. Thus, 
we can view Equation 4.2 as a mapping from T to R N 

F:T . . . . . . .  -> R N, 4.3 

such that F is the summation. 
Define the 'complete indifference' ranking in R N to be the line given by 
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all scalar multiples of E_N. The name reflects that this line corresponds to a 
complete tie in the rankings of the candidates. Notice that a) the complete 
indifference ranking is the intersection of all of the indifference hyper- 
planes, and b) this line is on the boundary of all other ranking regions. 

To prove this theorem, we must show the existence of an n* in Si(N!) (a 
choice of voters' profiles) so that as the variable m = [mjp(A)} varies, the 
image of  F((n*, m)) meets all possible ranking regions. 

Let n* correspond to where there is an equal number of  voters with each 
possible ranking of  the candidates; that is, n* -- (N!)- 1(1, 1 . . . .  ,1). It fol- 
lows immediately that if mlP(A ) = 1 for all choices of  P(A) (all voters 
choose the first voting vector), then Equation 4.2 reduces to Equation 4.1, 
and the image of  F is on the complete indifference line. The same conclusion 
holds if all of  the mjp(A ) are equal. This statement holds because the double 
summation can be interchanged to obtain separate summations of the type 
given in Equation 4.1, each of which yields a point on the complete indiffer- 
ence line. Denote this domain point by (n*, m*). 

The idea is this. Assume that the Jacobian of F at (n*, m*) has rank equal 
to N, such that in the computation of  the Jacobian, we hold the np(A) vari- 
ables fixed. (We treat them as parameters.) Hence, there is an open set about 
the interior point, m*, that is mapped to an open set about the image F((n*, 
m*)). This open set yields outcomes that occur with the same profile of 
voters (n*), but for which m (the choice of  voting vectors to tally the ballots) 
varies. Because an open set about any point on the line of  complete indiffer- 
ence meets all ranking regions, the conclusion follows. (It is easy to show 
that there are rational choices of m with this property. For details, see 
(Saari, 1987). Also, see (Saari, 1982, 1984, 1985).) 

Thus, the proof is completed if we can discern certain properties about 
the Jacobian of F at (n*, m*). There are two cases to consider, and they are 
based upon the sum of the components of each voting vector. Either at least 
two of these sums differ, or they are all the same. 

Assume that at least two of the sums differ. For each P(A) eliminate 
the dependency of the components [mjp(A )} by setting mlP(A ) = 
1 -- ~ mjp(A ). Then, the rank of the Jacobian of F is determined by the 

j> l  
maximum number of independent vectors in subsets from 

[VV'jp(A)--W1P(A)} , 4 .4  

for which P(A) ranges over all N! permutations of A and j = 2 . . . . .  s. 
There is a choice of j where the sum of the components of  Wj does not 
equal the sum of the components of W 1, say j = 2, where we assume that 
the sum of the components o f W  2 is larger than the sum of  the components 
of W 1. What we show is that the set of vectors 
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[W2P(A) -- W 1P(A) ] 4.5 

spans R N. This will complete the proof. 
It follows immediately that ]] W jp(A) is a nonzero scalar multiple of E N 

P(A) 
such that the scalar is ( N -  1)! times the sum of  the components of _Wj. 
Thus, ~ (~--2P(A)--W--1F(A)) is a positive scalar multiple of E_N, so E_N is in 

P(A) 
the space spanned by the vectors in Equation 4.5. The simplex Si(N) has E_N 
as a normal vector, so we prove the theorem if the vectors in Equation 4.5 
span the simplex. 

View each vector in Equation 4.5 as a permutation of the components of 
W = W E - W 1. Let vector V be the permutation of W that has the largest 
value in the first component, the second largest in the second component, 
and so forth. (For example, i fW 2 -- (5, 4, 2, 1) andW 1 = (5, 1, 1, 0), then 
W = (0, 3, l, 1) and V = (3, 1, 1, 0).) The set of all possible permutations 
of V, 

I Vp(A) l ,  4.6 

agrees with the set in Equation 4.5. Because _W is not a multiple of E N, we 
can treat V as being a voting vector, and we can interpret the vectors in 
Equation 4.6 as being the various ways to tally ballots. That this set spans 
Si(N) follows immediately from the results in (Saari, 1982, 1984, 1985). 

Suppose that the sums of the components for each of the voting vectors 
are the same. We show that the Jacobian of F has rank N - 1 and its image 
spans a simplex Si(N). This demonstration requires an adjustment in the 
proof. First, we map an open set about m* to an open set about F((n*, m*)) 
in the simplex. But, such an open set must meet all ranking regions. (The 
simplex has codimension one, and the line of complete indifference defines 
the normal direction.) Thus, all we must show is that the vectors in 4.6 span 
the subspace orthogonal to E_N. This is the same argument given above. 
This completes the proof. 

The proofs of Theorems 3 and 4 depend heavily upon the proofs and 
results in (Saari, 1985). Essentially, the idea of the proofs is to use special 
ways in which the voters choose their voting vectors to obtain a simple 
voting systems. Then, modifications of the kind that we used in the proof 
of  Theorem 1 and results from (Saari, 1985) lead to a condition of the sort 
for which F((n*, m*)) is on the line of complete indifference. The Jacobian 
condition follows from the analysis in the proofs of  (Saari, 1985). 

Proof o f  Theorem 4. The following lemma is a consequence of  Theorems 
5 and 7 in (Saari, 1985). 
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Lemma. Suppose that there are two simple voting vectors, V I and V a, 
which, a) form a linearly independent set along with E_N and for which b) 
a Borda vector is not in the span of these three vectors. 

Rank the pairs of candidates in any way, and then choose two arbitrary 
rankings of the N candidates. Then, there exist profiles of voters so that if 
the same voters consider each pair of candidates, a majority prefers the 
designated one. If these same voters rank the N candidates by the simple 
voting system, V j, then the outcome is the jTH ranking of the candidates, 
j = 1,2. 

According to the statement of the theorem, the range space containing the 
tally of the various subsets of candidates is given by S = (R N) x (R N) x 
(R2) P such that p = N(N-  1)/2. The first component space is the tally of 
the simple voting system, the second is the tally of the multiple voting sys- 
tem, and the last p components contain the tally of the binary comparisons. 
The domain is T. Thus, the obvious summations define the mapping 

F*: T . . . . . . . . . .  -> S. 

The proof follows much as in that of Theorem 1. We show the existence 
of a set of profiles, n " ,  for which the rankings of the simple system and the 
rankings of the pairs of candidates are as specified. Moreover, we choose 
n"  so that an accompanying interior point m "  in Si(s) N can be found with 
the property that F((n", m"))  is the ranking of complete indifference. 
Then, we repeat the previous argument concerning the Jacobian of F*. The 
main difference is that we evaluate it at (n" ,  m") ,  not at at (n*, m*). 

First, we find m " .  To do so we choose the  mjp(A)'S tO depend on J but 
not on P(A). Namely, mjp(A ) = m j  for all P(A). This procedure defines a 
continuum of voting vectors where the dimension of the continuum depends 
upon the number of linearly independent vectors in the multiple voting sys- 
tem. Since we have a continuum of them available, and since at least two 
vectors in this system define a three dimensional space with E_N, we can 
choose the mj's to obtain a voting vector, V N, that, along with _W N, satis- 
fies the condition of the lemma. This defines m ".  To use the lemma, choose 
the ranking corresponding to V N to be complete indifference, the ranking 
corresponding to W N to be as specified in the theorem, and the pairwise 
rankings as specified in the theorem. This defines (n" ,  m") .  The conclusion 
then follows from these interpretations and the lemma. 

Proof of Theorem 3. In this setting the domain and the image of F change 
drastically from that just given. Here we have 2 N -  (N + 1) different subsets 
with at least two candidates. Thus, the range space is the cartesian product 
over all of these sets of Euclidean spaces of the same dimension as the num- 
ber of candidates in the subset. The domain also increases significantly. For 
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each subset there is a multiple voting method. Thus, for each ranking of the 
candidates in each subset, the domain increases by another product of a sim- 

plex reflecting the various choices that the voters have to tally their ballots. 
Let T' represent the new domain, which is a much larger product space of 
simplices, and let R' represent the larger image space. The tally of the bal- 
lots still is given by summations of the type found in Equation 4.2. They de- 
fine a mapping 

F ' :  T' . . . . . . . . . . .  -> R ' .  

As in the statement of the theorem, designate for each pair of candidates 
which one a majority of the voters prefers. We now appeal to Theorem 6 
in (Saari, 1985). A consequence of this result is that for 'most' simple voting 
systems, there exist profiles of voters so that for each of the pairs of the can- 
didates, a majority of them favors the designated candidate. Yet their rank- 
ings of all subsets with three or more candidates is complete indifference. 
'Most' replaces the linear independence condition in the lemma, and it 
means that the voting vectors for various subsets do not make a certain de- 
terminant vanish. For our purposes it suffices to note that any voting vector 
that is 'plurality like' satisfies this condition. To use this theorem, we find 
a special case of the multiple voting system that is a simple voting system 
satisfying the stated preferences. 

For each subset of more than three candidates, choose mjp(A ) = mj. 
This, then, defines a convex combination of the voting vectors that are 
available to tally the rankings. Now choose the mj's so that ~mjWj defines 
a plurality like vector. Such a vector does not make the determinant condi- 
tion vanish. There is the possibility that the vector defined by the mj's is 
not an interior point. So, if not all of the mj's are positive, then we can be 
perturb them so that all are positive and the sum is still a vector that satisfies 
the non-vanishing of the determinant. (This result reflects that the non- 
vanishing of a determinant is an open condition.) Thus, for each subset, we 
can choose the [mjI so that the resulting vectors over all subsets do not 
satisfy the vanishing determinant condition. 

Let m' correspond to these choices of [ mjp(A ) } over all subsets. We have 
from Theorem 6 in (Saari, 1985) that there exist profiles of voters, n ' ,  so 
that the various components of F((n', m')) are on the line of complete in- 
difference, yet the ranking of the pairs is as designated. What remains for 
us to show is that the rank of the Jacobian of F ' ,  if n is held fixed, is of 
the rank of the dimension of the range. With the modifications of the kind 
found in the proof of Theorem 3, this demonstration follows from the proof 
of Theorem 6 in (Saari, 1985). Indeed, most of the proof of Theorem 6 in- 
volves proving this independence condition. 

Proof of Corollary 3.1. Theorem 4 in (Saari, 1985) asserts that if the 
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voting vector is not a Borda Vector, then for any rankings of the pairs of 
alternatives and for any ranking of the N alternatives, a profile of voters ex- 
ists that realizes all of these outcomes simultaneously. In particular, we can 
choose the rankings of the pairs to define a Condorcet winner, and the rank- 
ing of the N candidates to define the complete indifference ranking. The 
hypothesis of the corollary asserts that there is at least one voting vector in 
the multiple methods that is not a Borda Vector. Thus, m' can be chosen 
in a manner similar to the construction found in the proof of Theorem 3 so 
that the resulting voting vector is not Borda. Then, the same type of proof 
goes through. 

Proof of Theorem 5. This proof, essentially, is the same as that for the 
other theorems. From (Saari, 1985), we get the independence of the vectors 
defined by the simple voting vectors. The independence of the vectors in 
Si(s) defined by the multiple voting vectors is the same in the proof for 
Theorem 3. 

Proof of Theorem 6. We demonstrate the basic ideas. Because the ideas 
extend immediately for the other theorems, we only use the hypothesis of 
Theorem 1. 

To prove the theorem, all that is necessary is to show that there is an open 
set, U, about n* in Si(N) (the space of voters' profiles) so that if n'  is in U, 
then there is an interior point, m ' ,  in (Si(s)) N! such that F((n', m')) is on 
the line of complete indifference. To show this result, we give a geometric 
interpretation for Equation 4.2. 

For each ranking of the candidates, P(A), the bracketed term in the 
double summation Equation 4.2 defines the convex hull of the vectors 
(Wjp(A)). Thus, this means that the double summation yields the convex 
hull of the N! convex hulls. That the image of F((n*, m)) contains an open 
set means that this particular convex combination of the convex hulls con- 
tains an open set around the point F((n*, m*)) on the line of complete in- 
difference. It now follows from continuity considerations that the conclu- 
sion holds. This completes the proofs of the theorems. 

Although Theorem 6 proves that these indeterminate results are robust, 
it does not answer the question about the size of these open sets. In other 
words, how large, or how small, is the open set of profiles that creates the 
examples? We can develop some intuition about this question by reviewing 
the construction used in the proofs of all of the theorems. The basic idea 
is to find points (n' ,  m ' )  so that F((n', m')) is on the line of complete in- 
difference. Such a point can be viewed as a boundary point of the region 
for each of the examples specified in the theorems. Therefore, a crude mea- 
sure of this likelihood of indeterminancy is the abundance of the points 
(n' ,  m' )  so that F((n', m')) is the rankings of complete indifference. If it 
is an isolated point, then the accompanying open set probably is small. If 
it is a line, then the open set probably is larger. 
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In each of the proofs, an independence argument is used. This argument 
also serves to show that the implicit function theorem applies. Consequent- 
ly, the inverse image of the complete indifference line in T is an affine space 
of codimension N - 1. To appreciate the large size of this space, let N -- 4 
and let the multiple system be approval voting (s = 3). Then, the base points 
define a 58-dimensional linear subspace in a 61-dimensional space. This 
very large dimension strongly suggests that the set of profiles leading to any 
of these examples of indeterminate outcomes is very large. 

Incidently, these large dimensions that arise for only 4 candidates indicate 
(1) why standard methods do not suffice in the analysis of such voting 
schemes, (2) why we use a convexity argument to prove Theorem 6 instead 
of an implicit function argument (which would have involved a massive 
linear independence argument), (3) why the completely indeterminate effect 
occurs (F is trying to force the input from a 61-dimensional space of profiles 
and voter types onto a 3-dimensional space; the domain has to be 'squashed' 
in the image, so we must expect such negative conclusions to result from the 
overflow.) (4) why simple voting systems do not have the same adverse ef- 
fects (the subspace is 20-dimensional in a 23-dimensional space, so the cor- 
responding F is only trying to force a 23-dimensional space, rather than a 
61-dimensional space, onto a three dimensional space), and (5) that there 
are many examples other than those specified by the theorems. (For in- 
stance, because the 58-dimensional space is affine, it must intersect the 
boundaries of T. The boundaries correspond to examples of voters' profiles 
where there are no voters that have certain rankings of the N candidates. 
This leads to examples of indeterminacy with extreme examples. See (Saari, 
1987). Secondly, the added dimension of the domain can be viewed as offer- 
ing more 'strategies' for a manipulative voter. This suggests, and it is true, 
that multiple systems are more susceptible to manipulation. See (Saari 
1986). 
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