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Abstract. A unified treatment is presented here of compounding with the 
bivariate Poisson distribution. Exploiting the exponential nature of its 
probability generating function, it is shown that the pgf of the compound 
distribution is the moment generating function of the compounding random 
variable. This relationship leads to rather interesting general results. 
Particularly, the development of the conditional distribution is simplified. 
Four cases are presented in detail. 
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1. Introduction 

The bivariate Poisson distr ibution is defined by the probabili ty generat- 
ing funct ion 

H(z t ,  z2) = exp{wl(zl -- 1) + W2(Z2 -- 1) + W3(ZiZ2 -- 1)} , 

where wl, w2, w3 are all positive. (See Feller (1957), p. 261.) This distr ibution 
has been widely applied in the literature to describe several real life models. 
On the other  hand,  several authors  have examined the problem where wi= zAi, 
i= 1,2, 3 with 21,22, 23 being constants  and r a r andom variable characterizing 
an ' individual '  in the populat ion.  Such models have been considered among 
others by Holgate (1966), Subrahman iam (1966), Gillings (1974) and Kemp 
and Papageorgiou  (1982). In each case z is assumed to have a distr ibution of 
the discrete or cont inuous type. 

In the present paper, we present a unified development  of the distribu- 
tions associated with such compounding .  
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2. Preliminaries 

Let X, Y be jointly distributed with the bivariate Poisson distribution 
defined by the (joint) probability generating function 

(2.1) l l (z l ,  z2lr) = exp[r{2ffzl - 1) + 22(z2 - 1) + 23(zlz2 - 1)}] . 

Here r is a ' random'  parameter characterizing an individual in the 
population, while 21, 22, 23 are constants. For example, X and Ycould be the 
number of accidents observed over two consecutive periods of time. While for 
a given individual it is realistic to assume that X and Y are jointly distributed 
with the pgf (2.1), their distribution over the whole population will have to 
take into consideration the variability in z. Let g(t) be the probability 
distribution of r with the moment generating function M(O). Then the joint 
distribution of X and Y has the pgf 

(2.2a) II(zt, z2) = E g(r)II(zl,  z2lr) (discrete case) , 
T 

(2.2b) = f g(t)II(zl ,  z21 r )dr  (continuous case) . 

In either case, upon substituting for l l(zl ,  z213) from (2.1) in (2.2a) or (2.2b) we 
have 

(2.3) II(z1, z2) = M[Al(Zl - 1) +22(z2 - 1) + 2 3 ( z i z 2  - 1 ) ] .  

If2s =0, then (2.1) shows that X and Yare, conditional on 3, independent. 
However, the joint pgf of X and Y is 

(2.4) l l (z l ,  z2) = M[Al(zl - 1) + 22(z2 - 1)], 

which shows that they are not independent. 

3. Probability function and moments: Joint distribution 

The joint distribution of (X, Y) is defined by the probability function 

(3.1) f i , ,= P { X =  r, Y =  s} 

(~ r+s ZI=Z2 =0 
r!s! OzfOz~ II(zl, z2) 

while the joint factorial moment,  around zero, 

itf,.~ 1 = E[ X H yt,]], 
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is given by 

0'+s I 
(3.2) ~u[,,,] = Oz;Oz~ lI(zl,  z2) z,=~,:, " 

Here x t ' I = X ( X  - l ) . . . ( X - r +  1). 
In determining (3.1) and (3.2), we find the following theorem of great use: 

THEOREM 3.1. For the joint p g f  in (2.3) 

0 r+s min(r,s) 

(3.3) Ùz~Oz~ II(zl, z2) = Z k:O 
( r ) ( S ) k!Ml'-kl(u)'r'-kTs-k~k11 12 A3 

k k ' 

where M ~j~ is the j-th derivative o f  M, and 

U = , ~ I ( Z I  - -  l )  + 22(Z2 - -  l )  "Jr- 23(2"1Z2 --  1) , 

t = r + s, T1 = 21 + 23zz, Tz = 22 + 23zl . 

PROOF. Without loss of generality let r>_s. Let//Ir'S)(zt, Z2) represent the 
(r, s)-th partial derivative of H(zl, z2). Then, differentiating (3.3) with respect 
to zl yields 

r s 

s,(r)(s) 
+ Z kIM~'-k)(u)T[-~(s- k)T~-k-12 k+l 

k--O k k 

which reduces to 

(3.4) 

Differentiating (3.4) with respect to z2, we have 

//t~+l,s+ll (zl, z2) 

Ir+')t + Z k!Ml'+l-kl.u.r + 1 - ~)11 12 ^3 • 
k=O k k 

Upon rearranging the terms and changing the order of summation, we have 
on the right hand side 
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..l(r+,)(. 
(3.5) Z 

k=o k 
+ 1 / k) M (t+2-k) ttlx T'+l-k TS+l-k2k 
k I " ~ )  1 2 3, 

as was to be proved. 

From Theorem 3.1 we have the expressions for the joint probability 
function and the factorial moment:  

(i) Putting z~=z2=0 in ll(r")(zl, z2), 

..... 9 (3.6) f l . s -  rts! lltr's)(O' O) r!s! k=o k k 

where y=-(21 +22+23), 8=23/2122. 
If 23 =0, then 

2~2~ M(t)(_21 _ 22). (3.7) f l ' s -  rlsl 

(ii) Putting z~ =z2= 1 in II("S)(z~, z2), 

(3 .8)  
min(r,s) r! s! g~+s-k 

~///r,s] = (21 -I- 23)r(22 -I- 23)  s k~O (r - k)!(s - k)!k! ' 

where g=23/(21 +23) (22+23) and/t~ is the t-th moment  of the distribution g(t) 
around zero. 

If 23 =0, 

P 

From (3.8), the correlation between X and Ycan be found to be 

(21 + 23) (22  dr- 23)0 -2 + ,tt{23 

pxr = {[(21 + 23)20- 2 +/~f(21 + 23)][(22 + 23)20 .2 + pf(22 + 23)]} 1/2 " 

It should be noted that the intrinsic correlation pi defined by 
Subrahmaniam (1966) is 

p i  = 23/{(21 + 23)(22 + 23)} 1/2 . 

3.1 Examples 
Four  examples are considered. Some have appeared in the literature. 

Appropriate references are given. 
(i) Bivariate Negative Binomial 

Edwards and Gurland (1961) and Subrahmaniam (1966) have in- 
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dependently developed the generalized version of the Bates-Neyman model. 
Here ~ is taken to have the two parameter gamma distribution with pdf 

i r a )  f - l  exp m ' ' g(t) = - - - t  t > 0  

and the mgf 

M(t)  (1 m ) - ~  = - - -  t . 

The joint pgf of X and Y under this model is 

(3.9) II(zt, z2) = [I - m61~ { ~ - I ( Z 1  - -  1) 

Since 

we have 

(3.10) 

+ ~ 2 ( Z 2  -- 1 ) + 2 3 ( Z l Z 2  -- 1)} . 

: , , ,  , m 
- ' a "  1 - - - a  t , 

2[2gF(a + r + s) 1 - _~_)-i~+~+s) 

with 

M(t)  = exp{2(e' - 1)} . 

g( t )=2te -~ / t ! ,  t=O,  1 ,2 , . . . ,  

where J = ( a / m - y )  23/2122. 
For 21=1, 22=a~, 23=a2, this model reduces to Subrahmaniam (1966, 

Equation 2.3). 
(ii) Bivariate Neyman Type A 

Holgate (I 966) and Gillings (I 974) have considered a bivariate generaliza- 
tion of the Neyman Type A distribution. In this case 

f~ ,s  = 

( r ) ( . )  
min(r,s) k k j k  X 
k=o ( r + s + c t -  l 
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Hence 

(3.11) 
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/-/(Zl, z2) = exp2[exp{21(zi - 1) + 2 2 ( 2 2  - 1) + 23(zxz2 - 1)} - 1] . 

Also, since for r_>l, 

Ml~(t) = [exp{2(d - 1)}][r-th moment  of e(2d)]  , 

the joint probability function is seen to be 

~r2s mi~r,s) ( r ) ( S ) 
(3.12) f l . s -  ILl 2 e x p { 2 ( d - 1 ) }  k!rkrlt-k 

r!s! k=O k k ' 

where r=23/2122, q~=the r-th raw moment  of P(2d') and t=r+s. This agrees 
with Gillings (1974). 

We note here that the result 

MIrl(~) = M(y)qr ,  

where q, is the r-th raw moment  of P(2eY), seems to characterize the Poisson 
distribution. 
(iii) Bivariate Hermite 

Kemp and Papageorgiou (1982) have considered 

1 (t - / 0 2  
g(t) = ~ exp 20.2 , 

with the mgf 

Since 

1 
M(t) = exp(Izt + ~ a2 t2) . 

r iM( t )  
dt----------7--- - M(t)  P, ( t ) ,  

where Pr(t) is a polynomial of degree r in t, we can write the joint probability 
function of X and Y as 

2r2 s 1 2 
(3.13) fi, s -  r!s! 

mi~r, s l ( r  S 

where 6= 23 / 2122. The pgf corresponding to (3.13) is 
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(3.14) /-/(zl, z2) = exp[/t{Al(zl - 1) + 22(z2 - 1) + 23(ZlZ2 - 1)} 

O -2 
+ T {Al(zl - 1) + ~2(Z2 - -  l )  "[- ,~3(ZIZ2 - -  l ) }  2] • 

The pgf (3.14) has not been derived by Kemp and Papageorgiou (1982) except 
as a natural generalization of the univariate case. Here too, as in their paper, 
we would obtain the two forms of the bivariate Hermite. 
(iv) Bivariate Poisson-Inverse Gaussian 

Holla (1967) has considered a univariate Poisson-Inverse Gaussian 
distribution which Sichel (1982) has used for explaining the behaviour of the 
customer-buying and word frequency. A bivariate extension of this distribu- 
tion is obtained by taking the inverse Gaussian pdf 

f ;t p/2 f ;t } g(t) = [ ~ 5 " j  exp[-  2 ~  (, - p)2 , t > 0 ,  

with the parameters ;t and/l,  and mgf (see Tweedie (1957), for details): 

M(t) = exp~ {1- [1 2/t2t 2 11/2} . 

The joint pgf of X and Y is then 

2 { 1 - [  1 - 7  2#2 (3 .15)  ll(zl, z2) = e x p  t [ ~ - (;t1[zl - 1] + 22[z2 - 1] 

+ 23[zlz2~ 1])]'/2]] . 

It can be shown that 

(3.16) 
2 { 1 _ ( 1 _  2kt2 /~2r-- 1 

M(')(t) = exp[ 7 "-2"t)"2}] 2"-' 

r (_~)k (  2/.12 )-(r--{k+l)/2) 
• Z ck 1----2-t , 

where ck is a constant. 
The joint probability function can be written as 

(3.17) fi, s - r!s! exp[~-{1-(I-T 2/12 7/1/2/]] )J mi~'S)k:O ( kr ) ( kS ) k!b k 

(r+s-k)~2r+2s-2k-j-l(~ ~r+s-k-j-1 Cj l -- T 2]'12 ~)-{(r+s-k)-(j+l)/2} 
j=O 
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where ),=-(,1~+,12+23) and ~=23/21,12. 
If we consider a univariate Poisson-Inverse Gaussian distribution, the 

pgf is seen to be 

,,],,}] / / (z)  = exp[ ~-  --7- (z - . 

4. Recurrence relations 

The joint pgf of (X, Y) can be differentiated with respect to z~ and z2 to 
yield recurrence relations. This is given by: 

THEOREM 4.1. Le t  1-1r,~ d e n o t e  the  (r, s ) - th  p a r t i a l  der iva t ive  o f  l l ( z b  
z2) wi th  respect  to Zl, z2, respect ively .  Then  f o r  r> 1, s> 1, a n d  

(4. I a) T2 ,13 
r >_ s , llr,, = --~ lI,+~,,-l + (r - s + I ) -~ / / ' , , , -x ,  

(4.1b) 
T~ 23 

r <_ s , llr, s = --~21~r-l,s+l + (S -- r + l)  --~2211r-l,s . 

PROOF. The results (4.1 a) and (4.1 b) follow directly by induction. For 
example, to verify (4.1 a) differentiate both sides of this equation with respect 
to zl to obtain, for r>_s 

T: ,13 ,13 
/'/r+l,s = ~ //,+2,s-I + (r -- S + 1) ~ II,+l,s-i + - ~  1L+i,s-t • 

Rearranging the terms on the right hand side we verify (4. l a). 

A consequence of the recurrence relations in Theorem 4.1 is the 
recurrence relations in the joint probability function f,,, and the joint (raw) 
factorial moments/Lfr.s]. 

(i) Probab i l i t y  f u n c t i o n  
Since 

f~,~ = IIr,,(O,O)/r!s! , 

we have for r> 1, s> 1 and 

(4.2a) r > s ,  
22 r + l  

fr,s ,11 S 
fm,,-1 + (r - s + 1) '1~ 1 

,t, s f~'-~ ' 
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Al s + l  
(4.2b) r _ < s ,  f l : -  22 r - - f r - l , s + l  at- (S --  r + 1) ;[3 1 22 7 f" ' :" 

These relations facilitate a quick computation of the expected frequencies 
for the joint distribution. Also, 

(4.3) fi,o = ~ MI')(y), J~,s = ~ MIS)(Y) • 

K. Kawamura (I 985) has discussed the selection of recurrence relations to get 
the probability function in the case of the bivariate Poisson distribution. 
(ii) F a c t o r i a l  m o m e n t s  

Let/~; represent the r-th raw moment  of the compounding distribution 
g ( t ) .  Let the (r, s)-th joint raw factorial moment  of (X, Y) be 

Then 

Also 

Thus for r> 1, s>_ 1, and 

lu~,,sl = E [ X  ['] y[s]] . 

]./fr,O] : /-/~'(~1 -~- /~3) r , 

' ~ .  #fo,sl = #~( 2 + ),3) ~ 

Ui,,d =//r .s(1,1).  

~,2 Jr /],3 ~,3 r 
(4.4a) r ~ S , ].,l[r,s] --  21 "~- 23 ~/[r+l,8-1] + (r - s + 1) 21 + 23/zf,,,-l], 

(4.4b) r < s  / z [ , . , ] - 2 1 + 2 3  , _ _ ~ 3  , 
- ' 22 + 2~--3 prr-l,s+l] + (s  - r + 1) 22 + )[3 p[,.-l:]. 

5. Conditional distribution 

Subrahmaniam (1966) has shown that the 
generating function is given by 

(5.1)  /L~x (z) = / h x ,  o) (0, z)/ll(x,o) (o, 

Here 

conditional probability 

l). 
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where 

Hence 

(5.2) Hy~x (z) = 

or 

We thus have: 

THEOREM 5.1. 

S. KOCHERLAKOTA 

11(~,0) = m(~l(u) (21 + 23z2) ~ , 

u = 2 ,  (zl  - I) + 22 (z2 - 1) + 23 ( z ,  z 2  - 1 ) .  

g(x)[22z- (2, + 22 + 23)]{ ~,, 23Z }x 
M(~)[ - 0,1 + ).3)] 21 + ~,------~ + 2t + 23 ' 

Helx (z) = 172 (z) {q + pz} x . 

Let the conditional p g f  o f  ( X,  Y) f o r  the given r. v. ~ be 

1-l(z,,zElV) = exp[z{2,(zl - 1) + 22(z2 - 1) + 23(z,z2 - 1)}] , 

and let the moment  generating funct ion o f  z be M(t). Then the conditional 
distribution o f  Y given X = x is the convolution of(i)  Y~ -- B ( x, 23/(2~ +23)) and 
(ii) Y2, o f  which the p g f  is given by the ratio 

MCX)[22(z - 1) - 21 - 23]/M(Xl[-(2, + 23)] . 

In the par t icu lar  cases we s tudy below, the r.v. Y2 will be seen to be a 
convo lu t ion  itself. If  23=0, tha t  is, X and Y are condi t ional ly  independent ,  
then the condi t ional  dis tr ibut ion of Y given X = x  is that  of  Y2 with the pgf 

MIXl[2E(Z - 1) - 2111M(X)[-211 . 

Using the expansion 

(5.3) M(Xl[22(z - 1) - 21 - 23] = ft. MCX+J)(- 2, - 23) 
j :o  j !  

{ 2 2 ( z -  1)} i , 

it is possible to write the pgf of Y2 in Theo rem 5.1 as 

= J:'~ {2"o/ Mtx+j}[-M'M-~- ~ --- 2-~ } 2 1 -  2,1 {22(zj_~- 1)} j ( 5 . 4 )  //2(Z) 
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From (5.4) we see that if M(t)--exp (ct), c a constant, then H2(z)= 
exp0(z-1); that is Y2--P(O). On the other hand, ifH2(z)=expO(z-1), then a 
necessary condition for this to hold is 

MIX÷Jl(t) 
MiX)(t ) - constant ,  j =  0, 1, . . . .  

This implies that M(t)=exp (ct). These lead to: 

THEOREM 5.2. Let the conditional distribution o f (X ,  Y) given r be 
bivariate Poisson. A necessary and sufficient condition for the conditional 
distribution o f  Y given X = x  to be the convolution o f  B(x,p)  and P(O) is that 
the (compounding) distribution o f t  be degenerate (at some point c). 

The preceding results are exemplified below, for the special cases 
introduced above. The study is mainly concerned with the examination of 
/h(z). 

5.1 Bivariate negative binomial 
From M(t )=( l - f i t )  -~ we have 

Mt~÷j)(t) = flx÷i r ( a  + x + j )  
r(a) 

(1 - fit) -~a+x*jl , 

o r  

/-/2(z)= ~ { 2 z ( z - l ) } J {  flJF(a + x + j) } 
j=0 )~ [1 + p - ~ T  ~)yr(~  + x) 

= [ O  - pz] -~a+x~,  

where Q= 1 - P, P=f122 / (1 +f12~ +fl23). Thus the conditional distribution of Y 
given X = x  is the convolution of 

YI ~ B(x, p) , Yz ~ NB(a + x, P) , 

where p=~.3/()].1+23), P=f122/(l+f12t+f123). This was arrived at by 
Subrahmaniam (I 966). 

5.2 Bivariate Neyman Type A 
Here 

M(t) = exp2(e' - 1) , 
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and 

hence 

(5.5) 

S. KOCHERLAKOTA 

Ml~)(t) = M ( t ) a ' ( 2 e ' ) ,  

( /t;[4exp(22z - 3.1 - 4 2  - 4 3 ) ]  ) 
{exp[2e-~,+a3){e~(z-l~_ l 1-I2(z) 

The second term on the right hand side of (5.5) can be simplified using the 
expansion for the k-th moment around zero of P(4), as 

k 
i 

l~  = X 2 Si;k , 
i= I 

where S;:k is a Stirling number of the second kind. This is defined as 

1 k i 

This is Riordan's representation for aL See Haight ((1967), p. 6) for details. 
Using this representation we can write 

(5.6) 
p 

p; [2 exp{- 21 - 3.3 + 2z(z - )i]/Px [2 exp{- 21 - 2ai] 
x 

= E ~!xl expi42(z - I) , 
i=1 

where 

(5.7) col x) = 
2 i exp{-i(3.1 + 3 . 3 ) } S i ; x  

x 
X; 4 i exp{-i(41 + 23)}Si:x 
i=1 

and X;~o~X)=l. Thus the conditional distribution of Y given X = x  is the 
i=1 

convolution of (i) Yt ~ B ( x ,  p ) ,  (ii) Y2--Neyman Type A with the parameters 
2 exp (-21-3.3), 42 and (iii) Y3--mixture o fx  P(i22) with the weights ~0! x) given 
by (5.7). 

From this, the conditional moments of Y given X = x  are 
x 

E [ Y I X  = x ]  = xp  + 222 exp( -  21 - 3.3) + 22 ,.__El i~o! x) , 

F [ Y I X =  x] = xp(1 - p )  + 222{exp(- 3.t - 23)}{1 + 3.2} 

+ 3.2 ~ iogl.x' + 222 ~ :2- fx' { ~ io)!x'} 2 t tIJi - -  4 2  
i= 1 i= 1 i-'- 1 
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5.3 Bivariate Hermite 
As seen f rom (3.14) 

(5.8) l l ( z i ,  z2) = exp[g{21(zl - 1) + 22(z2 - 1) + 23(zlz2 - 1)} 

0 -2 
+ T {2x(zx - 1) + 22(z2 - 1) + 23(z,z2 - 1)} 2] . 
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Since, for M(t)=exp[~t+(a2t2/2)],  

Ml~ ' ( t )  = M(t )aXH * [at  + -~-], 
where  

Ix/2] X! U x-2j 

H*~ (u) = "~o (x - 2 j ) ! f l  2 j ' 

a modif ied  Hermi te  Po lynomia l  defined by Kemp and Kemp  ((1965), 
Equa t ion  13). Hence 

(5.9) II2(z) = 
M[22(z - 1) - ,~1 - -  / ]-3]  

M [ -  21 - 23] 

H*[ ~---- + 0-22(z 1 ) - 0 - ( 2 1 + 2 3 ) ]  

The right hand  side of equa t ion  (5.9) can be writ ten as the product  of 

(5.1o) a22~ 1)2] 
exp[{#22 - azAa(2, + 23)}(z - 1) + - - ~ - - ( z  - , 

and 

(5.11) 
Ix/2] 
Z o)}Xl(Q + Pz) x-2j 
j=0 

where  

p = 220" 

# a(21 + 23) 
0- 

, Q = I - P ,  
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and 

O)(jr) = 

r, [ /"  
2 - -  - -  0 " ( 2 1  -1 t- 2 3 )  

( r -  2j)!j! a 

5; 2 - - -  o"(21 + 23) 
j:o (r - 2j)!j! a 

Thus the conditional distribution of Y given X= x is the convolution of (i) 
Y I -  B (x, p), (ii) Y2--Hermite ([/~22- a222(21 + 23)], a2222/2) and (iii) II3 which is 
a mixture of B ( x - 2 j ,  P ) , j =  1, 2,..., [x/2]. In particular, the 

4x ( x _ 2 j W ,  E [ Y [ X  = x] = xp  + {/~ - a2(2! + 23)}22 + j=o 

where p=)~3/(21 +23), P=2262/{/t-0 -2 (21 +23)}, 
The case of 23=0 gives rise to the five parameter Hermite distribution 

studied by Kemp and Papageorgiou (1982). In this case the conditional 
distribution of Y given X = x  reduces to the convolution of I12 and I13 alone 
with the parameters modified appropriately. 

5.4 Bivariate Poisson-lnverse  Gaussian 
Here H2(z) is the ratio of the x-th derivatives of 

(5.12) 
2 expT[ l {  I T ¢ ]  

evaluated at l = 2 2 ( Z  - 1)--21--23 and t=-(21 +23). We can write 

M(t) = ( exp ~2--- ) ( exp - 2---- v/-0 ) ' / 1  

0= l - 2 a t ,  a=/12/2. As noted earlier 

= r(1 2at)-Ix-~'W 2) 
r=O 

where c, is a constant. Hence 

(5.13) 2 (1 + + 2a21 2a23) 1/2 H2(z) = exp /l 

2/~22z(z- 1) 
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{ [ 2/tz22(z- 1)]-(x-(r+|)~2)} 
. ~ d r l -  

~-o 2(1 + 2a21 + 2a23) ' 

where 

(5.14) d r =  

2 )r(1 + 2a21 + 2a23) -Ix-I'+w2) cr(? 
~, cr(  2 )r(1 + 2a, a,~ + 2a23) -Ix-It+l)/2) 
,=-o ~ / 7  

The first term on the right hand side of (5.13) is the pgf of a univariate 
Poisson-Inverse Gaussian distribution compound ing  P(22) with IG(/t*, 2*) 
where 

/t* =/~/(1 + 2a21 + 2 a ) ~ 3 )  1/2 , 2 *  = ,~, . 

The second term on the right hand side of  (5.13) is the mixture of ( x + l )  
negative binomial distributions with the parameters x - ( r +  1)/2 and 

2fl2,~2 
P = 2 ( 1 + 2 a 2 1 + 2 a 2 3 ) '  Q =  1 + P .  
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