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Abstract. An objective method is developed for estimations of both spatial 
intensity of the point locations and spatial variation of a characteristic 
parameter of the distributions for the attached marks. Its utility is 
demonstrated by means of analyses of seismological and ecological data 
sets. 
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1. Introduction 

For a data set of marked point pattern we have developed a method for 
estimating both the intensity rate of point locations and the spatial variation 
of a parameter which characterizes a distribution for the attached marks. The 
exponential form of 2-dimensional cubic B-spline function is used for 
estimating the both of these. Generally quite many parameters are required 
for representing a surface by the combination of B-spline bases, so that the 
maximum likelihood estimate for such case usually produces a rapidly 
fluctuated surface. Thus we had to resolve two conflicting aims in surface 
estimation, which are to produce a good fit to the data but to avoid too much 
rapid local variation. A log likelihood function is a measure of the goodness of 
fit, while a measure of the rapid local variation of a surface can be given by 
roughness penalties such as the integrated squared first or second derivatives. 
The weights of the penalties are considered as the hyperparameters of the 
prior probability of parameters in the likelihoods. The optimal hyperparameters 
are determined by using the objective Bayesian procedure suggested and 
developed by Good (1965) and Akaike (1979); that is, evaluating the type II 
maximum likelihood or minimizing Akaike Bayesian Information Criterion 
(ABIC). Since the calculation of the integral of the posterior with respects to 
parameters for the non-Gaussian likelihood is not easy, we approximate the 
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posterior to a multivariate Gaussian distribution, following Ishiguro and 
Sakamoto (1983). 

2. A statistical model for marked point pattern 

We shall be concerned in this paper with a set of data in the form of point 
locations X={(xi, yi); i= l, 2,..., N} with attached scalar marks Z={z~; i= l, 
2,..., N} in a bounded planar region A. Assume that X is an inhomogeneous 
Poisson pattern and that z~ in Z are mutually independent but dependent only 
on the location (xi, yi). Let the intensity )t(x, y, z) of the process is defined by 

(2.1) Prob{event in a volume Ax × Ay × Az} 
= 2(x, y, z)AxAyAz + o(AxAyAz),  

for small 3x, 3y and Az. Then we can usually write it by 

(2.2) )t (x, y, z) = u (x ,  y ) f ( z l x ,  y)  , 

where p(x, y) is the intensity for the point location in A, andf(zlx,  y) is the 
conditional probability density distribution of the marks. 

Parameterizing a a n d f b y  the vectors tr and r, respectively, we have the 
following log likelihood function for 0=(tr, r) 

(2.3) 
N 

logL(O) = ~log )to(x,, yi, zi) - f_• fA )tO(X, y, z)dxdydz 

= logLl(a) + logL2(t) , 

where 

(2.4) 
N 

logLffo') = iZ__llog l, la(Xi, yi) -- fA /,,lo(X, y ) d x d y  , 

and 

N 
(2.5) logLz(r) = E logf~(zi[ x,, y,). 

If the parameter vectors a and t have no common components, then their 
maximum likelihood estimates are obtained independently by maximizing 
(2.4) and (2.5), respectively. 

One of our interests is to estimate the intensity rate/~(x, y) of the point 
locations. Another interest is to know the spatial variation of the distribution 
fi(z[ x, y). Specifically, a simple example can be the exponential distribution, 
that is 
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(2.6) fi(zjx, y) = fl~(x, y)e -~'~' y)~ 

where the parameter fl of the exponential distribution is considered to be 
dependent on the location (x, y). Since the both a.(x, y) and fir(x, y) are 
positive quantity, these are expressed in the exponential form, 

(2.7) C. exp{h(x, y: c)} , 

of the following 2-dimensional spline function 

/+3 J+3 
(2.8) h(x, ylc) = ~ E coFi(x)Gj(y) 

i=l j=l 

where Cis a suitable constant, c={c~} are coefficient parameters identical with 
either a or r, and the functions F; and Gj are cubic B-spline bases with equally 
spaced knots; see Section 4 for the detailed description. Sometimes the 
coefficients cu will be ordered lexicographically to treat c as a vector, that is, 
C={Ck} such that k=i(J+3)+j. 

3. The objective Bayesian method 

Since quite many parameters {c~} are required for representingp, and/1~, 
the maximum likelihood estimates for (2.4) and (2.5), respectively, usually 
produce a rapidly fluctuate surface. To overcome this difficulty we have to 
quantify the competition between the two conflicting aims in surface 
estimation, which are to produce a good fit to the data but to avoid too much 
rapid local variation. A measure of the rapid local variation can be given by a 
roughness penalty. Various roughness penalties for the continuous functions 
have been suggested and used (see Titterington (1985), for example), but we 
here use the combination of the followings (see Inoue (1986) and Meinguet 
(1979)) for the function h in (2.7) defined on an area A C RZ; 

(3.1) 

and 

(3.2) _ r tla2hX 2 + 2[ a2h / 2 q52(h) / , OxOy ] + ) }dxdy . 

Using these we consider the penalized log likelihood (Good and Gaskins 
(1971)), 

(3.3) l o g L -  { w ~ ( h )  + wz~b2(h)}, 
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where log L stands for either (2.4) or (2.5). To obtain the suitable weights Wl 
and w2 above we employ a Bayesian interpretation; that  is to say, the sum of 
penalties in (3.3) are considered to be proport ionate  to the logari thm of prior 
distr ibution ~(cl wl, w2) characterized by the hyperparameters  w~ and w2. To 
avoid the difficulty in the case where the prior is improper,  i.e., not a 
probability density, we divide the parameter  c=(cl,  c2) so that  re(c1, c2lwl,  w2) 
is proper  with respect to c~. Then we consider the marginal,  

(3.4) Z ( w i ,  w2, c2) = f t ( c )~r (c l ,  c2, I w~, w2)dcl , 

of the posterior to obtain w~, w2 and c2 which maximize S ( G o o d  (1965)). This 
is called the method of type II max imum likelihood. Akaike (1979)justified 
and developed this method based on the entropy maximizat ion principle and 
defined 

(3.5) ABIC = (-2)  max log.~(w~, w2, c2) . 
wi ,  w2, C: 

In the next section we see that  the penalties ~i  and ~2 are quadrat ic  with 
respect to the parameters c--(c~)=(ck),  and that  the prior 2z is a multivariate 
Gaussian distribution. However,  on the other hand,  the likelihoods in (2.4) 
and (2.5) are certainly not Gaussian. We cannot  obtain analytic solution of the 
integral in (3.4) unlike the case of Akaike (1979). Nevertheless, since the prior 
~r is Gaussian, we may use the Gaussian approximat ion  method  suggested by 
Ishiguro and Sakamoto  (1983): That  is to say, the logari thm of the integrand 
in (3.4), assuming for simplicity that the prior rc is proper  

(3.6) T(c; wl ,  w2) = log{L(c)Tr(cl Wl, w2)} , 

is approximated by the quadratic form 

(3.7) 
1 

T(c; wl ,  w2) ~ T(~; wl, w2) - ~ (c - d)H(g'; Wl, w2)(c - d)t , 

where ~" is the vector which maximizes Tin (3.6) for fixed w~ and w2, and H(fr; 
wl, w2) is the Hessian matr ix of the penalized log likelihood at £'. Using this 
approximat ion  the integral in (3.4) is obtained. Thus we have 

(3.8) ABIC -- (-2)T(d; wl, w2) + log{detH(gr; wl,w2)} - K l o g  2~ , 

where K is the dimension of the parameter  c. It should be noted that  both the 
minimizat ion in (3.8) with respect to the hyperparameters  and maximizat ion 
of T in  (3.6) with respect to the parameters c=(ck) for fixed hyperparameters  
wl and w2 are non linear. We use the Davidon-Fletcher-Powell  method (e.g., 
Fletcher and Powell (1963), and Akaike et aI. (1979)) for maximizing Tin (3.6) 



LIKELIHOOD ANALYSIS OF SPATIAL INHOMOGENEITY 33 

with respect to the vector c of parameters for fixed w~ and w2. We also use the 
same optimization method, but using numerically calculated gradients, for 
minimizing (3.8) with respect to w~ and w2. These are repeated by turns until 
the latter optimization converges. In optimizing Tabove with respect to c we 
found that the use of the Hessian H(c; wl, w2) in suitable stages (say, in the 5th 
or the 10th step) makes the convergence very rapid. This seems to support the 
goodness of the approximation (3.7) for (3.6). 

It is useful to get the estimation error of p~(x, y) and fie(x, y) at each 
location (x, y). We know that joint error distribution of the parameters at 
¢r=(kk) is approximately given by the multivariate normal N(¢:, H-l), where 
H -~ =(h g'k') is the inverse of the same Hessian matrix H=(hk,k') as in (3.7). Since 
h(x, ylc) in (2.8) is given by the linear combinat ion with respect to ck, this is 
also expected to be approximately normal and the variance-covariance 
matrix between (x, y) and (x', y') is given by 

(3.9) C(x, y: x', y') = E E  hk'k'F~(x) Gj(y)Fi,(x')G:,(y ') , 
k k" 

where k=i(J+3)+j  and k'--i '(J+3)+j' for i, i '= I, 2,..., I+3 and j , j '=  1, 2,..., 
J+3.  Thus the standard error of h(x, ylc) at (x, y) is 

(3.10) e(x, y) = C(x, y: x ,  y ) l / 2  , 

and the errors o f / ~  and fie are given by the corresponding log normal 
distribution owing to the relation (2.7). 

4. Some technical comments 

In this paper the area A is restricted to be a rectangle [(0, ~u]x[r/0, r/N]. 
Since 2-dimensional spline to be used is in the form of (2.8), we consider the 
segment I2=[~0, ~M] being extended to the segment [~-3, (M+3], where {~i; 
i= - 3 , - 2 , . . . ,  M+3} are equally spaced knots in the distance of dx=(~M-~0)/M. 
Inoue (1986) used the following cubic B-spline basis {B,(r), i= 1, 2, 3, 4} on [0,1 ] 
such that 

(4.1) 

Bl(r) = r3/6 , 
B 2 ( r ) = ( - 3 r  3 + 3 r  2 + 3 r +  1) /6 ,  
B3(r) = (3r 3 - 6r 2 + 4 ) / 6 ,  
B4(r) = ( - r 3 + 3r 2 - 3r + 1) /6 .  

Thus for (x, y) ~ [~k, ~k+~]×[rh, q~+l] C A the function h in (2.8) is written by 

3 3 

(4.2) h(x, Yl c) = X, Y_, Ck+i,t÷jB4-i(rx)B4-j(re) , 
i=0 j=0 
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where r~ = ( x -  ~k) / d~ and ry = ( y -  qt) / dy. One of advant ages of this spline is that 
the roughness penalties ¢)1(h) and Oh(h) in (3.1) and (3.2) reduce to the 

f~ BTB~ dr and f~ BrB'j' dr, where the dashes indicate the derivatives integrals 

with respect to r. 
It is seen that the sum of the penalties in (3.3) is given by the quadratic 

form of the parameter c, that is to say, for some non-negative definite 
symmetric matrix X we get cSct/2 = w~ Oh(h) + w2~52(h). Here it turns out that X 
is degenerated such that r=rank(X)=(M+3)(N+3)-1. Therefore the prior 
probability density n suggested in the previous section is constructed using the 
multivariate normal distribution characterized by wl, w2 and ctM÷31~u÷31 in such 
a way that 

(4.3) z(c1{w], W2, C(M+3)(N+3)) =- (detXl)l/2/(2zOr/2exp{ - cXc'/2} , 

where C=(Cl, C(M+3)(N+3)), and X~ is the cofactor of the last diagonal element of 
S. 

Finally it is found that the standard error e(x, y) in (3.10) for the case 
where h(x, y)--constant is slightly cyclic with spatial period (dx/2, dy/2). This 
is due to the quadratic form of(3.9) with respect to the spline bases. To remove 
the cyclicity we use {e(x+dx/4,y+dy/4)+e(x-dx/4,y-dy/4)}/2 instead ofe(x, 
y). 

5. Numerical performance 

The source of the seismicity data examined was the catalogue (The 
Seismological Bulletins) compiled by the Japan Meteorological Agency 
(JMA). Here the data set for 65 years from 1926 through 1980 was considered, 
and the region used was a rectangular from 141 ° E to 145 ° E and from 36 ° N to 
42°N where the area of Off Tohoku District is included (see Fig. 1). The 
earthquakes not less than magnitude 5.0 were taken to keep the data set 
homogeneous. The number of events was 1736. Most of shocks occurred in 
the boundary between the continental plate and the subducting oceanic plate. 
The area was divided by the equally spaced knots with M=8  and N= 15, which 
needs 198 parameters for c=(ca) in (2.8) or (4.2). 

Before describing the estimate of spatial variation of fl(x, y) we should 
mention about the definition of the b-value of the magnitude frequency, 
which is based on the empirical law of the number N(m) of earthquake having 
magnitude m or larger such that log~oN(m)=a-bm, observed by Gutenberg 
and Richter (1944). Here we may be interested in estimating spatial variation 
of b-values. The relation of the b(x, y) and fl(x, y) defined in (2.6) is therefore 
given by b(x, y)=fl(x, y)logt0 e. Thus we parameterized fir by 

(5.1) fl~(x, y) -- exp{h~(x, y)}/loglo e ,  
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where h,(x, y) is in (2.7). Using the numerical procedure stated in the preceding 
sections we got the optimal estimate be(x, y) with the minimum ABIC in (3.8), 
which is shoran by contour lines in Fig. l(a). The contour lines of standard 
error e~(x, y) of log be(x, y) are given in Fig. l(b). These suggest that the spatial 
variation of b-values from the east to the west of the area seems significant. 
However we cannot conclude here that whether this is due to the genuine 
geophysical effect in all of the area, or not: although northern part of the area 
is nearly surrounded by several JMA seismic stations in Tohoku and 
Hokkaido, for the rest the location of seismic stations are only one sided, 
which might cause a bias for the spatial variation of the b-values. On the 
other hand, some seismologists claim that the cut-off magnitude 5.0 is large 
enough to guarantee the homogeneity of data set for the area and the time 
span. If this is shown to be true, then our estimate here will be a reflection of 
genuine geophysical effect. 

We also got Fig. l(c) and l(d) for the optimal intensity estimate/~(x, y) of 
the location of earthquakes and log/~a(x, y), respectively. 

Finally the data of natural stands of seedlings and saplings of the 
Japanese black pine with number of 204 in a 10 metresx I0 metres area 
(Numata (1964)) is considered. For each pine two numbers, height by 
centimetres and age, are attached. This is formerly analyzed in Ogata and 
Tanemura (1985, 1986), for example, and Fig. 2 in the former paper also 
includes the full information of the data set. Here we simply assume marked 
non-homogeneous Poisson, i.e., no interactions among the locations 
themselves. The area was divided by the equally spaced knots with M= N-- 10. 
Figure 2(a) and (b) provide the estimated intensity lua(x, y) of the Poisson 
models for the location of the pines and standard errors of log/ta(x, y), 
respectively. The estimated intensity is quite similar to Fig. 2 in Ogata and 
Tanemura (1986) where AIC is used to select the optimal order of polynomial. 
The histogram of the height of the pines (see Fig. 5 in Numata (1964)) seems to 
be distributed according to the exponential function on the whole. This leads 
us to examining the spatial variation of the exponential coefficients by the 
similar way to the b-value analysis for the magnitude frequencies. The 
minimum ABIC is attained when the both penalties w~ and w2 in (3.3) are very 
large; that is, be(x, y) is constant. This means no spatial variation with b-values 
and it seems that the density of the pine location does not affect the 
distribution of their heights, while we saw opposite effect, from the heights of 
pines to the locations, in Ogata and Tanemura (1985) and in Stoyan (1986). 
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0.80 0,85 0.90 0.95 
HEIGHT=0.10  0.15 

1.10 [.15 1.20 1.25 0.20 0.25 0.30 0.35 

Z0-0 ,6  Z N  = 1.3 ZW=5.0  

Fig. l(a). Spatial variation of the b-values 
for the shallow seismic activity in East Off 
Tohoku,  Japan for 1926 1980, contour lines 
and bird's-eye view. The values in " ' H E I G H T - "  
give the range of the corresponding contour 
lines. The mark -+ indicates the epicentre of an 
earthquake with magnitude M~5.0, 

Z0=0.0 Z N - 0 . 7  ZW=5.0  

Fig. l(b). Standard error surface for the 
logarithm of the estimate of the spatial b-value 
in Fig. l(a), contour lines and bird's-eye view. 
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HEIGHT= 50. 100 .  150.  200. 250. 
300. 350. 400. 450. 500. 
550. 600. 650. 700. 750 
800. 

HEIGHT=I .0  2.0 3.0 4.0 5.0 6.0 

Z0---0.0 ZN= 1000. ZW=5.0 

Fig. l(c). Graphs ofcontourlines and bird's- 
eye view for the intensity rate of the seismic 
activity in East OffTohoku, Japan. The values 
in " ' H E I G H T = "  mean the corresponding 
frequency rate of contour lines of seismicity 
with magnitude M>5.0 per the unit area, I ° 
longitudeX 1 ° latitude for 1926-1980. 

Z0=0.0 ZN= 10.0 ZW=5.0 

Fig. I(d). Graphs ofcontour lines and bird's- 
eye view for the intensity rate of the seismic 
activity in East Off Tohoku, Japan. The same 
as that in Fig. l(c) but the heights are plotted in 
logarithmic scale. 
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HE1GHT=I.0 1.2 1.4 1.6 1.8 2.0 2.2 Z0=0.0 ZN=4.0 ZW=5.0 
2.4 2.6 2.8 3.0 3.2 

Fig. 2(a). Graphs of contour lines and bird's-eye view for the intensity rate of the location of the 
black pines (mark+).  The values in -HEIGHT- provide the range of the corresponding contour 
lines of frequency per unit area; I square metres. 

HEIGHT=0.15 0.20 0.25 0.30 0,35 0,40 Z0=0.0 ZN=4.0 ZW=5.0 
0.45 0.50 0.55 

Fig. 2(b). Standard error for the estimate of logarithm of the intensity rate corresponding to 
Fig. 2(a), contour lines and bird's-eye view. 
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