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Abstract. Three nonlinear integro-differential equations of motion derived in Part I are used to investigate the forced 
nonlinear vibration of a symmetrically laminated graphite-epoxy composite beam. The analysis focuses on the case of 
primary resonance of the first in-plane flexural (chordwise) mode when its frequency is approximately twice the frequency 
of the first out-of-plane flexural-torsional (flapwise-torsional) mode. A combination of the fundamental-matrix method and 
the method of multiple scales is used to derive four first-order ordinary-differential equations describing the modulation of 
the amplitudes and phases of the interacting modes with damping, nonlinearity, and resonances. The eigenvalues of the 
Jacobian matrix of the modulation equations are used to determine the stability of their constant solutions, and Floquet 
theory is used to determine the stability and bifurcations of their limit-cycle solutions. Hopf bifurcations, symmetry- 
breaking bifurcations, period-multiplying sequences, and chaotic motions of the modulation equations are studied. The 
results show that the motion can be nonplanar although the input force is planar. Nonplanar responses may be periodic, 
periodically modulated, or chaotically modulated motions. 
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1. Introduct ion 

For a slender, linearly elastic rod subject to a lateral harmonic excitation in one principal 

direction, Haight  and King [1] investigated the effect of nonlinear inertia terms on the response of 

the first three modes by using an averaging method.  They identified unstable regions in the planar 

response curves which correspond to parametrically excited nonplanar  motions; they did not 
present  quantitative results for the resulting nonplanar  motions. From their experimental  work,  

t hey  concluded that the nonplanar  motions are steady whirling motions with the point on the 
neutral axis tracing an elliptical path. Crespo de Silva and Glynn [2, 3] derived a consistent set of 
nonlinear equations governing the flexural-flexural-torsional vibration of isotropic beams.  They 
showed that the generally neglected nonlinear terms arising from the curvature are of the same 

order as the nonlinear terms due to inertia and might have a significant influence on the response 
of the beam.  In the analysis of large-amplitude out-of-plane oscillations of a thin circular ring, 

Maganty and Bickford [4] studied the case of a one-to-one internal resonance and found 

ampli tude-modulated motions. Nayfeh,  Mook,  and Sridhar [5] and Sridhar, Nayfeh,  and Mook [6] 
analyzed the nonlinear response of uniform hinged-clamped beams to primary- and secondary- 

resonant excitations, respectively. Nayfeh,  Mook,  and Lobitz [7] included the motion-induced 

stretching effect in the governing equations and studied the nonlinear response of nonuniform 
hinged-clamped beams to pr imary resonances. They showed that, in the case of modal  interac- 
tions, if the high-frequency mode  is directly excited, the response of the low-frequency mode  
could be very large due to an energy transfer to this mode  from the high-frequency mode.  But,  if 
the low-frequency mode  is directly excited, the response of the high-frequency mode  is usually 

small. Elastic couplings among extensional,  bending, and torsional stiffnesses are important  
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characteristics of composite structures. One well known example of taking advantage of the 
bending-twisting coupling effect is the X-29 demonstrator aircraft; the composite skin of its 
forward-swept wing has a built-in structural and aerodynamic stability. 

In this paper, we show that a two-to-one internal resonance produced by bending-twisting 
couplings and nonlinear geometric couplings may lead the responses of a laminated composite 
beam subjected to harmonic chordwise excitations to nonplanar motions and the vibrations can be 
periodic, periodically modulated, or chaotically modulated. 

2. Equations of Motion and Perturbation Solutions 

The problem being studied is the forced vibration of the uniform, inextensional cantilever beam 
shown in Figure l(a). The excitation is along the direction of the width of the cross section, which 
is called the chordwise direction. The equations of motion [8, 9] nondimensionalized using the 
length L of the beam and the characteristic time L 2 ~ 3 3  are 

_~ viV _~ ]313 ~ . . . .  j3tY' = E/--/Z1/d - - [ V t ( V ' V " q  - I V ' W " ) ' ] ' - -  [~ll ( 'Y '  W ' )  t 

' _ 1  d s ] " d s } '  +(,G~-l)[(,yw"-3,~")'-w'"ff~"w'ds] ~{~'f~[ff(,,"~+w '~) 
1 v,27,, 1 ,2,)/. } (1) _~ ~13(__U.W.  - 2 __ W.2 _[_ 2 _if_ ~/.yt2)t , 

~+ + ~22w iv - ] ~ " =  ~ { - ~ , +  - ~22[w'(v'v" + w'w")']' +/311(~'v")' 

, _ 1  d s ] " d s } '  + (¢22- + + v,,, ff o,w,, ds I 5 {w, ff [ ff (o,2 + w,2) 

( ) } ~-]313 - - ~ ' ~ ' ~ - ~ / U ' W ' - ] - U ' 2 - - ' ) / 2 - - ~ "  o ' w " d s  + j ~ Z c o s ~ t  , (2) 

h~) - ~ , , ~ " -  f l j " =  s { - . ~  + (1 - ~ ) [ ( v  "~ - w " ~ ) ~ ,  - v " w " ]  

(fo ) + J l  v"w' ds - jl(t)'w')" + ( j 2 -  J3)[t)'2-- w'2) 'y-  Ib'13 '] 

( f] 1 l v'"v'2 v"2v ' ) } .  (3) q- ~13 Win') I + Wt" l.)tW" ds - ~ V"t~ 2 ~- ~ -I- @ UrN "2 

The boundary conditions are 

v = v ' = w = w ' = 7 = O  at s = 0 ,  (4) 

v " = w " = y ' = O  a t s = l ,  (5a) 

[( ,( f0 t Urn-} - ~13~/v t -  j 3 t J '  = e ]322 - -  1 W m ' ) / -  ut"}/2 -- W "v utCw t ds  

1 ~ 2 . ] -v ' (v 'v '"+ w'w' )  + ~ ]313tY 7 - v'27 ") at s = 1, (5b) 
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Fig. 1. Coordinate systems: (a) x-y-z = inertial reference frame, ~: - *? - ~" = principal axes of the beam's cross-section at 
position s, (b) 1-2-3 = material coordinates. 

[ ( f01 ) ~22 w . . . .  j 2w '  = e (/322 - 1) v'"y + w'"y 2 + v'" w"v '  ds 

( Jo~ )7 - - ~ 2 2 W ' ( U ' U  ' '  -I- W t W " )  -- /~13 ")/'Y" -I- '~"  W"U' d s  at s = 1.  (Sc) 

H e r e ,  s is the  d i s t ance  f r o m  the  o r ig in  of  the  x -y - z  c o o r d i n a t e  sys t em to the  u n d e f o r m e d  p o s i t i o n  

of  the  o b s e r v e d  e l e m e n t ,  rn is the  mass  p e r  u n i t  l e n g t h  of  the  b e a m ,  the  p r i m e  d e n o t e s  the  

de r iva t i ve  wi th  r e spec t  to s, t he  do t  d e n o t e s  the  de r iva t i ve  wi th  r e spec t  to t i m e  t, y is the  twis t ing  
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angle about the ~: axis, and e is a nondimensional parameter introduced for bookkeeping purposes. 
DH, D22, D33 , and D13 a re  the stiffnesses for torsion, bending of w, bending of v, and 
bending-twisting coupling, respectively. F is the excitation amplitude. Moreover,  j~= F/L,  
]~1i = D11/D33, ]322 ~-~ D22/D33, /~13 = D13/D33; Jl, J2 and J3 a r e  the normalized rotary inertias; t{z1, 
/x2, and/x  3 are the normalized damping coefficients. Equations (1) - (5)  are the same as those in 
the second part of this paper except that the forcing term/[~z cos f~t appears in the equation 
governing w(s, t) instead of the equation governing v(s, t). 

To quantitatively describe the nearness of the autoparametric resonance, we introduce a 
detuning parameter 6 defined by 

~2=20)1(1+  eS) ,  (6) 

where 0) 2 is the natural frequency of the first in-plane flexural (chordwise) mode and 0)1 the natural 
frequency of the first out-of-plane flexural-torsional (flapwise-torsional) mode, and 8 depends on 
b, the ply angles, and/or  the stacking sequence. The nearness of the external resonance is 
represented by another detuning parameter o- defined by 

a = %(1 + e~). (7) 

Following the same procedure used in Part II, we obtain the first-order asymptotic solution 

O(s,t) = V(S)a l (e t )cos( -  ~ t Pl-~2 v2) + ' " '  (8) 

w(s, t) = W(s)a2(et ) c o s ( a t -  1"2) + - - . ,  (9) 

y(s , t )  = F(s )a~(e t )cos(~  t -  T 1 " 1  + 1"2)+ . . . .  (10) 

The equations governing the amplitudes a i and phases 1"i are 

ai + £1ai + A1ala2 s i n  1"1 : 0 , (11) 

1 3 2 
a~(1" 1 + 1";) - (o- + 6 ) % a  1 + Alala2 cos v 1 + gila 1 -k S12ala 2 = O, (12) 

a 2 + £2a2 - A2a21 sin 1' 1 "Jr i~ sin 1"2 = 0 ,  (13) 

a 2 u 2 - 2% o-a 2 + A2a ~ cos 1"1 + S21a~a2 + $22a32 + /)  COS 1"2 : 0 ,  (14) 

where /21, £2, A1, A2, $11, S12, $21, $22, and/~ are defined in Appendix A, 

vl = 02 -201 + 2waST 1 , (15) 

and 

= w z ~ T l -  ~ .  (16) 
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Periodic solutions of the beam correspond to the fixed points (i.e.,  constant 
v ~ t ~_ v = t = 0 "  (11)- (14) ,  which in turn correspond to a I a 2 u I u~ 

Introducing the Cartesian coordinates Pi and qi defined by 

iv1 + v2~ . {vs + v2~ 
Pl = as c o s ~ - ~ - - ]  , ql = as s l n ~ - ~ - - - ]  , (17) 

P2 = a2 cos v 2 , q2 = a2 sin u 2 , (18) 

into the averaged equations (11)- (14) ,  we obtain 

r =  - -  2 2 2 
Pl - ) s P l  ° ) l ( 0 - + 6 ) q s - A ~ ( q s P 2 - q 2 P s ) + S s 2 ( P ~ + q 2 ) % + S l s ( P l + q l ) q s ,  (19) 

r 2 2 2 
ql --/-Lsqs + (O1(O- + 6)p i  -- Al(qsq2 + PaPs) - Ss2(P~ + q2)Pl - $11(Pl + qs)Pl ,  (20) 

P2 = -~2P2  - 2 ° ) s  °'q2 + 2a2Psql  + s2s(p~ + q~)q2 + $22(p22 + q22)q2, (21) 

r 2 2 2 
q2 -/22q2 + 2c°10-P2 + A2(q~ - P ~ )  - S21(P 2 + ql)P2 - $22(P2 + q2)P2 - / ) "  (22) 

3. Numerical Results 

We study the case of pr imary resonance of the first mode  of w in the presence of a two-to-one 

internal resonance between this mode  and the first bending-twisting mode  of v and y. We assume 

that the damping coefficients are /.L 1 = 0 , 0 7 ,  ] ' / '2 = 0.13, and /z 3 = 0.0003, which are obtained by 
assuming that the modal damping ratios of v, w, and y are 0.01, 0.01, and 0.03, respectively. For  
all the response curves presented in this paper ,  we use solid lines to denote  stable solutions, 
dashed lines to denote  unstable solutions with at least one eigenvalue being positive, and dotted 
lines to denote unstable solutions with a pair of complex conjugate eigenvalues having a positive 

real part.  
When the excitation amplitude f=-fcf~W ds = 0.01, Figures 2(a) and (b) show the frequency- 

response curves for the cases where the internal-detuning paramete r  6 is -0 .11  and -0 .093 ,  

respectively. When 6 is a large negative number ,  the two flexural modes are greatly detuned and 

the out-of-plane response curve (i.e.,  a 1) consists of one branch around the point o- = - 6 ,  which is 

the resonant condition of v(s, t). When 6 is increased to -0 .093,  a second branch appears  in the 
out-of-plane response curve, as shown in Figure 2(b). As 6 is increased to 0.05, the two branches 

of the nonplanar  response curve merge,  as shown in Figure 3(a). The fixed-point solution loses its 

stability through a H o p f  bifurcation at 0. = o- 1 = -0.00725 and 0. = o- 2 = 0.033588, and amplitude- 
and phase-modulated motions are expected in the interval 0-1 < 0 . <  0- 2. We note that the 
out-of-plane mot ion is excited through the autoparametr ic  resonance. The amplitude a 2 of planar 
response corresponds essentially to the linear solution because the amplitude of the base mot ion is 
small and the bending stiffness in the z-direction is large. The variation of the phase v 2 with o- 

shown in Figure 3(b) also confirms the linearity of the chordwise planar vibration because the 
phase angle changes from 0 ° to 180 ° around the resonant point 0. = 0. Fur thermore ,  for nonplanar  
motions,  the amplitude a 2 of the directly excited mode  is much smaller than the amplitude a I of 
the indirectly excited mode  through the autoparametr ic  resonance. It  indicates that most  of the 
input energy is spilled over into the lower mode.  
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Fig. 2. Frequency-response curves: (a) 3 = 0.11, (b) 3 = -0.093. 

In Figures 4 and 5, we show representative force-response curves. Figure 4 shows representa- 
2 tive curves [10] for X <0 ,  where X = 2o~01(o + 8 ) -  #1tx2, and Figure 5 shows representative 

curves for X > 0. Figure 4(b) shows that, without the cubic terms, the amplitude a 2 of the in-plane 
mode saturates when the forcing amplitude increases beyond the threshold value fl; the extra 
energy is spilled over into the lower mode. However, Figure 4(a) shows that the cubic terms 
reduce the threshold value of fl for the onset of out-of-plane motions, destabilize some nonplanar 
periodic motions by producing amplitude- and phase-modulated motions, and reduce the am- 
plitude of the directly excited mode when the input force increases beyond the threshold value fl. 
Furthermore, for large levels of excitation, a second branch of out-of-plane motions is produced 
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Fig. 3. (a) Frequency-response curves and (b) phase angles: 6 = 0.05. 

by the cubic terms. In addition to the saturation phenomenon, Figure 5(b) exhibits jumps at f2 and 
f3. Again, Figure 5(a) shows that the cubic terms reduce the threshold value for the onset of 
out-of-plane motions, destabilize some nonplanar periodic motions by producing amplitude- and 
phase-modulated motions, and reduce the amplitude of the directly excited mode when the input 
force increases beyond f3. We note that f = f3 is a subcritical (reverse) pitchfork bifurcation point 
at which one of the real eigenvalues of the Jacobian matrix of equations (19)-(22) changes sign 
and there is a change in the number of fixed points. At f = f2, a saddle-node bifurcation occurs, 
which is accompanied by a change in the number of fixed points. For f2 < f < f3, there are three 
possible solutions: a stable planar solution, a stable nonplanar solution, and an unstable nonplanar 
solution. The response of the beam will depend on the initial conditions. When f >f~, the 
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Fig. 4. Force-response curves obtained by (a) including the cubic terms and (b) neglecting the cubic terms: 6 = 0.05, 

cr = 0 . 0 .  

response is nonplanar whereas when f < f2 the response is a planar flexural vibration, which is 
linear. 

Changing the damping coefficient by a ratio Ratio , the locations of the Hopf bifurcation points 
change, as shown in Figure 6. We note that increasing the damping coefficients may suppress 
chaotic motions. Increasing the damping coefficients above critical values results in the elimination 
of the Hopf bifurcations and hence amplitude- and phase-modulated motions. 

Inspecting the modulation equations (19)-(22) ,  we note that they are invariant under the 
transformation (Pl ,  ql, P2, q2) ---~ (--/71, - q l ,  P2, q2)" Thus, there is an inversion symmetry in the 
responses of v(s, t) and 7(s, t). Because w(s, t) is externally excited, it does not possess an 
inversion symmetry and the phase angle u 2 between the input force and w(s, t) is unique. 
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Fig. 5. Force-response curves obtained by (a) including the cubic terms and (b) neglecting the cubic terms: 6 = 0.05, 
o- = 0.015. 
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Fig. 6. The influence of damping on the location of the Hopf bifurcation points: 6 = 0.05, P~I, ~L~2,/~3 = Ratio X (0.07, 0.13, 
0.0003). 
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Using the method proposed by Chua and Lin [11], we studied amplitude- and phase- 
modulated motions for fifty different input frequencies and obtained Figure 7, which shows the 
periods and the maxima and minima of the amplitudes of the calculated limit cycles. In Figure 
7(b), we use dotted lines to denote the maxima and minima of the amplitudes of chaotic 
attractors• 

Figures 8(a)-(n) show representative solutions existing between the Hopf bifurcation points 
0-1 and 0- 2. On the right-hand side is the power spectral density of Pl- As 0- increases beyond 0-1 a 
small limit cycle, which is symmetric with respect to the unstable fixed-point solution, is born, 
indicating that 0- = o-1 is a supercritical Hopf bifurcation point. One of the Floquet multipliers 
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leaves the unit circle in the complex plane through +1, indicating a symmetry-breaking bifurca- 
tion, at a value of cr not far away from o-1, as shown in Figure 8(a); the two plus signs indicate a 
pair of unstable fixed-point solutions. Figure 8(b) shows a pair of asymmetric attractors, which 
coexist in the interval 0.011457 < o-< 0.013226. Then,  these two attractors merge and become a 
symmetric attractor with respect to p~ = 0, as shown in Figure 8(c). When o- increases to 0.015658, 
the attractor loses its symmetry, as shown in Figure 8(d). As o- increases further, the attractor 
suffers from a cyclic-fold bifurcation and becomes chaotic in the interval 0.015658 < o- < 0.019638; 
Figure 8(e) shows the chaotic attractor at o-= 0.015879. Its Lyapunov exponents I i are 0.00626, 
0.0, -0.0963,  and -0 .111 and its dimension is 2.065, which is fractal. The Lyapunov exponents I i 
were calculated by using the algorithm of Wolf et al. [12]. We note that the sum of the Lyapunov 
exponents is Y.~=lli = -2(/.,~i q- ~ 2 )  = -0.2004,  as it should. At cr = 0.019638, the attractor becomes 
periodic, as shown in Figure 8(f). When 0.019638<o-<0.022955,  the attractor undergoes a 
sequence of period-doubling bifurcations, culminating in chaos; then it undergoes a sequence of 
reverse period-doubling bifurcations, as shown in Figures 8(g)-( i ) .  Although attractor 8(h) looks 
like a large-period limit cycle, it cannot be located by the shooting technique. Moreover ,  its 
Lyapunov exponents (0.000957, 0.0, -0.0866,  -0 .115)  and its dimension 2.011 show that it is 
chaotic. When o-> 0.022955, the attractor becomes chaotic as shown Figure 8(j). It is a Lorenz 
type chaotic attractor since it wanders about the two unstable fixed-point solutions; it has the 
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Lyapunov exponents 0.0238, 0.0, -0.107, -0.117 and the fractal dimension 2.222. Increasing o- 
slightly, we find that the chaotic attractor splits into two, as shown in Figure 8(k), each of them 
wanders about one of the fixed-point solutions. They are of the Rossler type and have the 
Lyapunov exponents 0.0180, 0.0, -0.108, -0.110 and the fractal dimension 2.166. As o. increases 
further, these two attractors become periodic and undergo a sequence of reverse period-doubling 
bifurcations, as shown in Figures 8(1)-(n). When o. increases beyond o-2(=0.033588), the small 
limit-cycle symmetric attractor becomes a point attractor. 
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Fig. 9. The  path of the tip of the beam when 6 =0.05:  (a) o - = - 0 . 0 1 ,  (b) o -= -0 .0062857 ,  (c) o-=0.015143,  (d) 

cr = 0.02406, (e) ~r = 0.028857, and (f) g = 0.04. 
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Fig. 10. The pa th  of  the tip of the beam: 6 = 0.05 and o- = 0.064548. 

Figures 9(a) and (f) show the periodic tip motion for o - = - 0 . 0 1  < 0-1 and o-= 0.04 > 0-2, 
respectively. The periodic responses are stationary and appear as a "figure eight" since the period 
of one mode is exactly twice that of the other mode. Figures 9(b)-(e) show the trajectories of the 
tip of the beam, corresponding to the amplitude- and phase-modulated motions shown in Figures 
8(a), (c), (m), and (n). The "figure-eight" response evolves continuously because the two modes 
are continuously exchanging energy. 

Checking the tip motion corresponding to the left branch of the nonplanar response curve in 
Figure 3(a), we find that the path of the tip is curved downward, as shown in Figure 10. It can be 
seen by considering the bending-twisting coupling that this motion needs less energy for its 
excitation than the one curved upward. 

4. Conclusions 

An analysis is presented of the nonlinear response of a symmetrically laminated graphite-epoxy 
composite beam to a chordwise excitation. The analysis focuses on the case of primary resonance 
of the first flexural mode along the chord direction when its frequency is approximately twice the 
frequency of the first out-of-plane flexural-torsional mode. A combination of the fundamental- 
matrix method and the method of multiple scales is used to derive four first-order ordinary- 
differential equations describing the modulation of the amplitudes and phases of the interacting 
modes. The eigenvalues of the Jacobian matrix of the modulation equations are used to determine 
the stability and bifurcations of their constant solutions, and Floquet theory is used to determine 
the stability and bifurcations of their limit-cycle solutions. Hopf bifurcations, symmetry-breaking 
bifurcations, period-multiplying sequences, and chaotic motions of the modulation equations are 
studied. 

The results show that the motion can be planar and/or nonplanar although the input force is 
planar, and the steady response depends on their basins of attraction. Nonplanar responses may 
be periodic, periodically modulated, or chaotically modulated motions. 

In the absence of the cubic nonlinear terms, the directly excited flexural mode saturates when 
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the input force exceeds a threshold value. However, including the cubic nonlinear terms 
eliminates the saturation phenomenon and destabilizes nonplanar motions through a Hopf 
bifurcation. Between the Hopf bifurcation points, the response is either a periodically or a 
chaotically modulation motion. We found two routes to chaos: a cyclic-fold bifurcation and a 
sequence of period-doubling bifurcations. 
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Appendix A: Coefficients for Equations (11)-(14) 

ft 1 = R 2 / R  I (=0.035230) 

A s = R 3 / R  ~ (=3.0908) 

Si2 = - R 4 / R  1 (=7.7105) 

$11 = - R s / R  1 (=4.3686) 

1&2 = E 2 / E  1 (=0.065002) 

A 2 = - E 3 / E  1 (=0,77311) 

$21 = - E 4 / E  1 ( =  1 .6597 )  

$22 = - Es /E  1 (=0.51760) 

/) 2 S = -2fo21 W d s / E  1 

where 

R1 

e 2 = 

R 3 =  

fo 
o21 (Jl F2 + V2 --J3 V ' V )  ds 

1 fo 1 o21 (/x3 F2 -]- /,.£1V2) d s  

1 

+ 2( j  2 - j 3 ) w ~ V ' W ' F  + f i ~ ( W " F ' ) ' V  + (1 - f i = ) ( W " F ) " V  + f i l 3 (V"W") 'V]  ds 

1 
+ ~ [(/322 - 1)VW,,,F] s=~ 
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 fol[ f; R4 = q (/322 - 1 ) w " 2 r  2 + /313rw '"  v 'w"  ds +/313V'W"2r 

( f / )  _ 4 ( j2  • ,  z . . . .  2,~2 - ( V ' ( W ' W " ) ' ) ' V  - -J3)~IVV l + ( 1 - / 3 2 2 ) V  W"' V " W ' d s  )' 

- /313V(W"2F) ') ds 

fo I ~- ~ (/322 -- 1)VW t" V ' W  t ds + V V ' W ' W ' "  

f01f R5 = 1 6(1 ,,2 2 -- /322)V r Jr-/313(-3Vt'r 3 -~ 3 V ' " V ' 2 F  + 6 V " 2 V ' F )  

+ 2 ( j2  _ - 2 ,2 2 13)o~1V F + 6(1 -/322)V(V'F2) " -  6 V ( V ' ( V ' V " ) ' ) '  

( f sff ),] q - / 3 1 3 ( - 3 V ( V ' 2 I ' " )  ' q- 3V(F2F")  ' + 6 V ( F F ' 2 )  ' )  + 4w~V V '  V ' V '  ds ds ds 

3 [  1 1 ]*= '  
8 (1 - / 3 2 2 ) V V ' " F  2 - V V ' 2 V  . . . .  ~ /3;3vv,2r,, + ~/313VF2F ,, 

fo 1 E, = 2 %  ( W  2 - j 2 W W  ") ds 

1 W 2 
E 2 = [-L 2 0) 1 ds 

fo [/311W(V'F') ' -}- (/322 - 1)W(V"r)" +/313(- W(FF" )' + W(V'2) t - W(F'2),)] ds 

1 
4 [(/322 -- 1) w g t ' r  -- /313WEE']s=1 

= 1 s 
E4 4 fo 1 [(/322- 1)(W(W'F2) "-}- w ( g ' t f o  V"W" ds)t) - /322W(W"(gtg')') ' 

l I ( /322_ l)W(Wt.r2_}_ gm folwt,V,, d s ) _  /322WW,,glg . . . .  /313wr. f/ w.v, ds] s=' 4 

3 o ~ W ( W ,  f S f [  W , 2 d s d s ) ' J  + 3  -- 8 /322W(Wt(WtW')¢) ''JF ds g /322[WWt2Wm] s=l " 

1 
E 3 = 

E 5 : fo 1 
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