Photooxidation of Dimethyl Sulfide and Dimethyl Disulfide. I: Mechanism Development

FANGDONG YIN, DANIEL GROSJEAN, and JOHN H. SEINFELD Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, U.S.A.

(Received: 12 April 1989; accepted: 21 March 1990)

Abstract. Detailed theoretical (Part I, this article) and experimental (Part II) investigations are presented for the mechanism of the atmospheric photooxidation of dimethyl sulfide (CH_3SCH_3) and dimethyl disulfide (CH_3SSCH_3). In this paper, comprehensive mechanisms for the atmospheric chemistry of CH_3SCH_3 and CH_3SSCH_3 are developed based on fundamental considerations of all available kinetic and mechanistic information.

Key words: Dimethyl sulfide, dimethyl disulfide, photooxidation mechanism.

1. Introduction

Reduced sulfur compounds, including hydrogen sulfide (H_2S), carbonyl sulfide (COS), carbon disulfide (CS_2), methanethiol (CH_3SH), dimethyl sulfide (CH_3SCH_3), and dimethyl disulfide (CH_3SSCH_3), are released from the ocean to the atmosphere. Among these compounds, dimethyl sulfide (CH_3SCH_3) is of major importance in the global sulfur cycle, with an estimated flux of about 40 Tg S yr⁻¹ from the oceans and a mean concentration of about 100 ppt in the marine atmosphere (Andreae and Raemdonck, 1983; Andreae *et al.*, 1985). Thus, a better understanding of the atmospheric chemistry of reduced sulfur compounds, including dimethyl sulfide and dimethyl disulfide, is directly relevant to a number of important issues such as SO_2 formation, deposition acidity, and global tropospheric sulfur budget.

In an earlier study (Yin *et al.*, 1986), we proposed reaction mechanisms for the atmospheric oxidation of several organosulfur compounds including dimethyl sulfide. These mechanisms accounted for the major features of the few experimental studies then available (e.g., Hatakeyama *et al.*, 1983; 1985; Grosjean and Lewis, 1982; Grosjean, 1984) and outlined major areas of uncertainty in the tropospheric chemistry of organosulfur compounds. As more experimental studies have become available in recent years, especially regarding the kinetics of initial reactions of reduced sulfur compounds and the subsequent reactions of the CH_3S radical, it is now possible to develop and test updated mechanisms of the atmospheric oxidation of dimethyl sulfide and dimethyl disulfide. These new mechanisms are summarized conceptually in Figures 1 and 2, respectively. In this article, Part I, we present, based on chemical considerations, a theoretical investigation of the possible

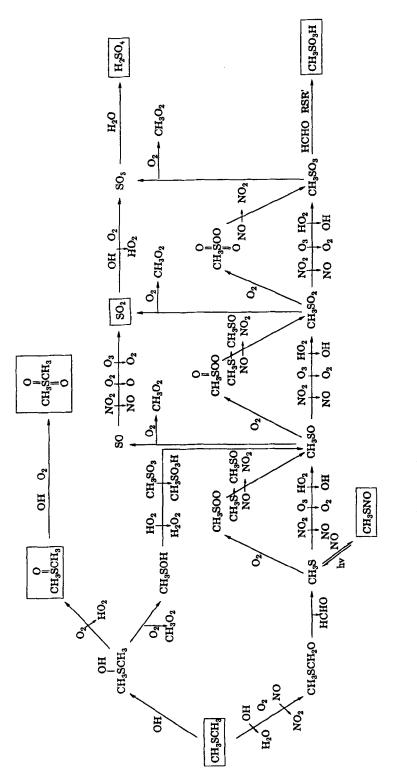
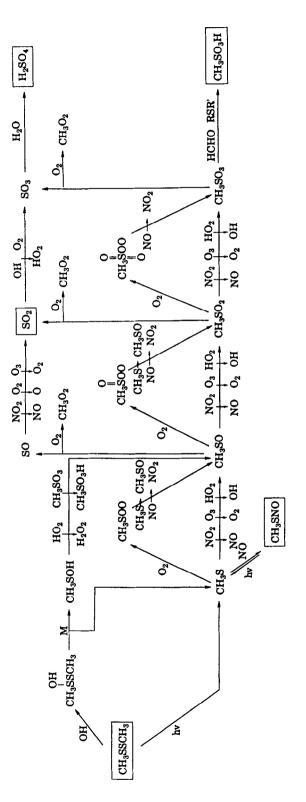



Fig. 1. CH₃SCH₃ Atmospheric photooxidation mechanism.

 CH_3SCH_3 and CH_3SSCH_3 oxidation pathways that are consistent with kinetic and mechanistic information now available. The proposed mechanisms are evaluated in a companion article, Part II (Yin *et al.*, 1990), with new experimental data obtained in sunlight-irradiated CH_3SCH_3 — NO_x —air, CH_3SSCH_3 —air and CH_3SSCH_3 — NO_x —air mixtures.

In the following sections, a comprehensive analysis of all available experimental information relevant to the chemistry of CH_3SCH_3 and CH_3SSCH_3 is carried out along the reaction sequences shown in Figures 1 and 2, i.e., initial reactions with OH, NO₃, O(³P) and IO radicals, unimolecular decomposition and bimolecular reactions of the corresponding adducts, structures of CH_3SO_x and $CH_3S(O)_xOO$ radicals, detailed reactions of CH_3SOH and $CH_3S(O)_xCH_3$, oxidations of CH_3SO_x radicals and reductions of $CH_3S(O)_xOO$ radicals, and major formation pathways of SO₂ and CH_3SO_3H products and possible 'missing' products. Finally, the new mechanisms are contrasted to those developed in earlier studies.

2. Initial Reactions

Atmospheric removal of organosulfur compounds is initiated by their reactions with OH, NO₃, IO and O(³P) radicals. The critical issue regarding these initial reactions is the extent of competition between addition and abstraction pathways. Although numerous kinetic studies of these reactions have been carried out, these studies have shed little light on the corresponding reaction mechanisms, especially as to the trends of observed rate constants and to the various 'effects' due to secondary reactions. In this section, the general character of the initial reactions, i.e., addition and/or abstraction, will be analyzed in terms of fundamental chemistry, as well as on the basis of available experimental data. Although our study focuses on CH_3SCH_3 and CH_3SSCH_3 , initial reactions of other reduced sulfur compounds including H_2S and CH_3SH will also be included for comparison.

2.1. Initial Reaction Mechanisms

The initial reactions of reduced sulfur compounds with free radicals may involve two pathways, abstraction and addition. Hydrogen atom abstraction may proceed through C–H or S–H bond scission. Alternatively, the initial reaction may involve electrophilic addition onto the S atom. The corresponding energy-rich adduct may be collisionally stabilized or may unimolecularly decompose, either back to the reactants or to yield new products. These initial reactions can be represented by

$$\begin{array}{rcl} \text{RSR'} + \text{X} & \longrightarrow & \text{RSR''} + \text{HX} & k_{\text{abs}} \\ & \stackrel{M}{\longrightarrow} & \text{Adduct} & k_{\text{add}}, k_{\text{-add}} \\ & \text{Adduct} & \stackrel{M}{\longrightarrow} & \text{Product} \\ & \text{Adduct} + \text{Y} & \longrightarrow & \text{Products} \end{array}$$

(R = H, CH₃; R' = H, CH₃, CH₃S; X = OH, NO₃, O(³P), IO; Y = reactive species such as O_2 , NO₂ in the system.)

From the trend of the bond dissociation energy (BDE) of C—H and S—H bonds (Hwang and Benson, 1979; Shum and Benson, 1983; 1985):

 $CH_{3}S-H, HS-H < H-CH_{2}SH, H--CH_{2}SCH_{3}, H--CH_{2}SSCH_{3} \\ BDE (kcal/mole): 88.6 \pm 1 90.5 \pm 1.1 96 \pm 1 96.6 \pm 1.0 97 (estimated) \\ \end{array}$

the order of rate constants for the abstraction pathway can be expected to be

 $k_{\mathrm{CH}_{3}\mathrm{S}-\mathrm{H}}, k_{\mathrm{H}\mathrm{S}-\mathrm{H}} > k_{\mathrm{H}-\mathrm{CH}_{2}\mathrm{S}\mathrm{H}}, k_{\mathrm{H}-\mathrm{CH}_{2}\mathrm{S}\mathrm{CH}_{3}}, k_{\mathrm{H}-\mathrm{CH}_{2}\mathrm{S}\mathrm{S}\mathrm{CH}_{3}}.$

Importantly, the rate constants for the abstraction pathways involving C—H and S—H bond scission are not expected to span several orders of magnitude (see Table I), since the difference of bond dissociation energies for C—H and S—H bonds is about 6-8 kcal/mole although the H atoms bonded to S could be more readily abstracted than those bonded to C.

The relative reactivity of different radicals towards reduced sulfur compounds by H-atom abstraction can be evaluated from the strength of the newly formed H—X bond (Kerr, 1985; Baulch *et al.*, 1984),

 $HO-H > H-O > H-ONO_2, H-OI$

BDE (kcal/mole): 119 ± 1 102.2 101.2 ± 0.5 (101)

that is,

 $k_{\rm OH} > k_{{\rm O}(^{3}{\rm P})} > k_{{\rm NO}_{3}}, k_{{\rm O}1}.$

Considering the difference of bond dissociation energy between broken and formed bonds, it is anticipated that, among the four radicals, OH will be the most likely to react with reduced sulfur compounds by H-atom abstraction.

The addition pathway can be envisioned as involving two steps, adduct formation and subsequent unimolecular decomposition. Adduct formation involves an electrophilic addition reaction, and is mainly determined by the electron density on the S atom. The electron-donating capability of substituted groups on the S atom is in the order of

 $CH_3S > CH_3 > H$

Thus, the tendency for radical addition to the S atom is in the order of

 $CH_3SSCH_3 > CH_3SCH_3 > CH_3SH > H_2S.$

The rate and selectivity of the subsequent adduct unimolecular decomposition step depend on the bond dissociation energies of broken and formed bonds as well as on the stability of the radicals produced. The overall addition reaction rate may be controlled by addition, unimolecular decomposition, or both. The adduct may also react with other reactive species in the system, thus affecting the observed rate constants; see Section 2.4.

	Initial reaction	$k_{298} \times 10^{11}$ (cm ³ molecule ⁻¹ s ⁻¹)
$\overline{O(^{3}P) + H_{2}S}$	\rightarrow HS + OH	0.0022
+ CH ₃ SH	\rightarrow CH ₃ S + OH	0.18
	\rightarrow CH ₃ S(O)H \rightarrow HSO + CH ₃	
	\rightarrow CH ₃ SO + H	
+ CH ₃ SCH ₃	\rightarrow CH ₃ S(O)CH ₃ \rightarrow CH ₃ SO + CH ₃	5.0
+ CH ₃ SSCH ₃	\rightarrow CH ₃ S(O)SCH ₃ \rightarrow CH ₃ SO + CH ₃ S	10-13
$OH + H_2S$	\rightarrow HS + H ₂ O	0.48
$+ CH_3SH$	\rightarrow CH ₃ S + H ₂ O	3.3
	\rightarrow CH ₃ S(OH)H	
+ CH ₃ SCH ₃	\rightarrow CH ₃ SCH ₂ + H ₂ O	0.44-0.63
	\rightarrow CH ₃ S(OH)CH ₃	
+ CH ₃ SSCH ₃	\rightarrow CH ₃ S(OH)SCH ₃ \rightarrow CH ₃ SOH + CH ₃ S	21
$NO_3 + H_2S$	\rightarrow HS + HONO ₂	<0.00008-0.003
	\rightarrow HS(ONO ₂)H	
$+ CH_3SH$	\rightarrow CH ₃ S + HONO ₂	0.077-0.109
	→ $CH_3S(ONO_2)H$	
+ CH ₃ SCH ₃	\rightarrow CH ₃ SCH ₂ + HONO ₂	0.075 - 0.106
	\rightarrow CH ₃ S(ONO ₂)CH ₃	
+ CH ₃ SSCH ₃	\rightarrow CH ₃ SSCH ₂ + HONO ₂	0.0739
	\rightarrow CH ₃ SS(ONO ₂)CH ₃	
IO + CH ₃ SSCH ₃	\rightarrow CH ₃ S(OI)CH ₃ \rightarrow CH ₃ S(O)CH ₃ + I	1.5-3.0

Table I. Summary of kinetic data for reduced sulfur compounds

Notes:

- 1. The rate constants are measured at room temperature and at both low or high pressure by various techniques.
- 2. Usually both abstraction and addition pathwas are presented. In the case where the information on the mechanism is available, the dominant reaction is given.

References:

O(³P):

Nip et al. (1981), Cvetanović et al. (1981), Baulch et al. (1984).

OH:

Atkinson et al. (1977), Wine et al. (1981), Wine et al. (1984), Hynes and Wine (1987), Baulch et al. (1984), Martin et al. (1985), Wallington et al. (1986a), Nielsen et al. (1986), Hynes et al. (1986), Hsu et al. (1987), Barnes et al. (1988), Cox and Sheppard (1980).

NO₃:

Atkinson et al. (1984), MacLeod et al. (1986), Wallington et al. (1986b), Wallington et al. (1986c), Tyndall et al. (1986), Dlugokencky and Howard (1988).

IO:

Barnes et al. (1987a), Martin et al. (1987).

2.2. Observed Rate Constant Trends

Rate constants for the reactions of OH, NO₃, IO and O(³P) with reduced sulfur compounds are given in Table I. These rate constants may include contributions from both abstraction and addition pathways. The rate constant trends are discussed below with respect to the relative importance of these two pathways.

2.2.1. Reaction with $O({}^{3}P)$ Radical

The observed rate constants for the reactions of RSR' with $O(^{3}P)$ are in the order of

$$k_{\text{H}_2\text{S}} \ll k_{\text{CH}_3\text{SH}} < k_{\text{CH}_3\text{SCH}_3} < k_{\text{CH}_3\text{SSCH}_2}$$

and span some four orders of magnitude (Cvetanović *et al.*, 1981; Baulch *et al.*, 1984). This trend is consistent with addition being the major pathway. Cvetanović *et al.* (1981) studied the reactions of $O({}^{3}P)$ with CH₃SH, CH₃SCH₃ and CH₃SSCH₃ and found that addition of $O({}^{3}P)$ to the S atom followed by rapid unimolecular decomposition (see Table I) was the dominant pathway, although abstraction may account for as much as 10% of the total reaction in the case of CH₃SH. The small negative activation energy for the reaction of $O({}^{3}P)$ with CH₃SCH₃ and CH₃SSCH₃ is also consistent with an addition mechanism. The H₂S + O({}^{3}P) reaction is believed to proceed mostly by abstraction; this is supported by the positive activation energy of about 3.8 kcal/mole (Baulch *et al.*, 1984).

2.2.2. Reaction with OH Radical

The trend of rate constants for the RSR' + OH reaction is similar to that for O(^{3}P), with the exception of CH₃SCH₃

$$k_{\rm H_{2}S} < k_{\rm CH_{3}SCH_{3}} < k_{\rm CH_{3}SH} < k_{\rm CH_{3}SSCH_{3}}.$$

Hynes *et al.* (1986) estimated that, for the $OH + CH_3SCH_3$ reaction under atmospheric conditions at 300 K, the *effective* branching ratio is 0.75 abstraction, and 0.25 addition.

It will be shown below, however, that the observed trend of OH rate constants is consistent with addition being the dominant pathway, even for the OH + CH₃SCH₃ reaction. Although the *effective or apparent* pathway (considering only the formed adducts that are scavenged by O_2) for the OH + CH₃SCH₃ reaction is dominated by abstraction, 0.75 at 300 K as estimated by Hynes *et al.* (1986), the *actual or intrinsic* branching ratios of abstraction vs. addition (i.e., without considering the reverse reaction of addition) are 0.12 to 0.88 for CD₃SCD₃ at 261 K (Hynes *et al.*, 1986), and 0.33 to 0.67 for CH₃SCH₃ at 298 K (Barnes *et al.*, 1988), indicating that addition is the dominant pathway for the OH + CH₃SCH₃ reaction, although the abstraction pathway is not negligible. Furthermore, despite the fact

that the observed $k_{OH+CH_3SCH_3}$ is almost a factor of 10 lower than the observed k_{OH+CH_3SH} , the difference is much smaller if we define $k_{initial} = k_{abs} + k_{add}$ and remove the effect of the reverse reaction of addition pathway. Estimates of k_{add} and k_{-add} have been made by Hynes *et al.* (1986) and Barnes *et al.* (1988). For the CD₃SCD₃ + OH reaction at 261 K in 700 torr N₂ + O₂ (Hynes *et al.*, 1986),

$$k_{\rm OH} = (1.6 \pm 0.2) \times 10^{-12} + (1.15 \pm 0.20) \times 10^{-11}$$

= $(1.31 \pm 0.22) \times 10^{-11}$ (cm³ molecule⁻¹ s⁻¹)

and for CH₃SCH₃ + OH at 298 K in 760 torr air (Barnes et al., 1988),

$$k_{\rm OH} = (4.4 \pm 0.4) \times 10^{-12} + (9.0 \pm 0.5) \times 10^{-12}$$

= (1.34 ± 0.09) × 10⁻¹¹ (cm³ molecule⁻¹ s⁻¹).

Comparing with the corresponding value of $k_{OH + CH_3SH} = 3.3 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ at 298 K (Hynes and Wine, 1987), both rate constants are now of the same magnitude, although $k_{OH + CH_3SH}$ is still larger than $k_{OH + CH_3SCH_3}$. Since the trend for the abstraction pathway is CH₃SH > CH₃SCH₃ (see Section 2.1), and the contribution of H-atom abstraction by the OH radical is increased relative to that by the O(³P) radical and also is comparable to that from addition, therefore, the reason that $k_{OH + CH_3SH} > k_{OH + CH_3SCH_3}$ can be explained by the contribution from the abstraction pathway, or more likely through the following mechanism:

$$\begin{array}{ccc} H & H \\ O & O \\ | & \vdots \\ CH_3S - H + OH \rightarrow CH_3S - H \rightarrow CH_3S \dots H \rightarrow CH_3S \cdot + H_2O \end{array}$$

Intramolecular H-bonding as well as the weaker S—H bond than C—H bond by 6-8 kcal/mole BDE facilitates the H-atom abstraction by OH radical, and the contribution of reverse decomposition is small compared to that for CH₃SCH₃. The formation of such a nonlinear transient state is consistent with the near-zero isotopic effect observed by Wine *et al.* (1984) for the CH₃SD + OH reaction. The lack of O₂ effect observed for CH₃S(OH)H by Hynes and Wine (1987) is consistent with a relatively short lifetime for the CH₃S(OH)H adduct and also supports the above mechanism. For CH₃SSCH₃, the effect of the reverse reaction is negligible, since the tendency of OH addition toward CH₃SSCH₃, whose rate constant is almost a factor of 10 higher, is much stronger than that for other reduced sulfur compounds.

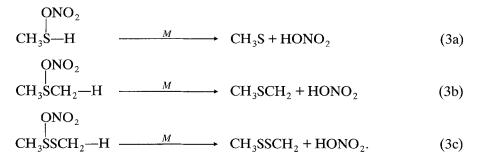
In summary, the reaction of OH with organosulfur compounds involves addition as the dominant pathway, although abstraction also contributes to the overall reaction in the case of CH_3SH and CH_3SCH_3 . Due to the reverse reaction of the adduct $CH_3S(OH)CH_3$, the $OH + CH_3SCH_3$ reaction is apparently dominated by abstraction at temperature larger than 285 K in the atmosphere (estimated by Hynes *et al.*, 1986).

2.2.3. Reactions with NO₃ and IO Radicals

As discussed in Section 2.1, the NO₃ reaction is expected to involve abstraction only as a minor pathway, i.e., much smaller than that for OH and similar to that of O(³P). However, NO₃ reaction rate constants exhibit a totally different trend from those for O(³P) and OH; see Table I. The NO₃-organosulfur rate constants are similar with the exception of that for $k_{NO_3 + CH_3SSCH_3}$ (MacLeod *et al.*, 1986), which will be discussed later. The rate constant of H₂S + NO₃ is at least three orders of magnitude smaller (Dlugokencky and Howard, 1988), indicating that in this case abstraction may be the dominant pathway. From Table I, it can be seen that the rate constant for NO₃ radical is always a factor of 10 or more lower than that for other radicals. One possible explanation is that the unpaired electron on O atom of NO₃ is delocalized and forms a large π bond over the whole NO₃ radical, leading to its lower reactivity, while for other radicals the unpaired electron is localized on the O atom of each radical.

Comparison of CH_3SCH_3 and CH_3OCH_3 also supports the fact that addition is the dominant pathway for NO₃ + RSR' (Wallington *et al.*, 1986b, 1986c; Dlugo-kencky and Howard, 1988):

	k_{298}
	$(cm^3 molecule^{-1} s^{-1})$
$NO_3 + CH_3SCH_3 \rightarrow Product$	$7.7 - 10.9 \times 10^{-13}$
$NO_3 + CH_3OCH_3 \rightarrow HNO_3 + CH_3O\dot{C}H_2$	$< 0.03 \times 10^{-13}$


although C—H BDE are similar for the two compounds, i.e., 96.6 ± 1.0 and 93 ± 1 kcal/mole for CH₃SCH₂—H and CH₃OCH₂—H, respectively (Shum and Benson, 1985; McMillen and Golden, 1982).

The observed similarity among NO₃ rate constants is not inconsistent with addition being the dominant reaction pathway if the observed rate constants are actually determined by the subsequent reactions of the adducts and the energy changes associated with them are of similar magnitude. Basically, the formed adducts, $CH_3S(ONO_2)X$ where X = H, CH_3 or SCH_3 , can undergo unimolecular decomposition,

$$\begin{array}{c} O \\ O \\ H_{3}S \\ -X \\ - \\ M \end{array} \xrightarrow{M} \\ M \end{array} \xrightarrow{O} \\ CH_{3}S \\ -X \\ + \\ NO_{2} \end{array}$$
(1)

$$CH_3$$
Sono₂ + X (2)

or intramolecular H-atom abstraction.

For pathway (1), the rates of adduct decomposition are expected to be similar for CH_3SH , CH_3SCH_3 and CH_3SSCH_3 since each of them involves similar O—NO₂ bond scission. Since it is difficult to evaluate the bond dissociation energies of adducts for pathway (2), a rough comparison of bond dissociation energy from the corresponding reactants can be made as follows (Benson, 1978; Shum and Benson, 1983):

$$CH_{3}-S-H \qquad H_{3}C-S-CH_{3} \qquad CH_{3}S-S-CH_{3}$$
BDE (kcal/mole): 74.2 ±1 88.6 ±1 75.0 ±1 67.8 ±2 57 ±1.5

If the broken bonds are C—S in the CH₃SH and CH₃SCH₃ adducts and S—S in the CH₃SSCH₃ adducts, the difference between those bond dissociation energies is small and similar rate constants will be expected. C—S bond scission is indeed expected for the CH₃SH adduct. In order to explain the decomposition of the CH₃SSCH₃ adduct, the small bond dissociation energy of the C—S bond in CH₃SSCH₃ must be explained first. The bond dissociation energy of the C—S bond in CH₃SSCH₃ is about 18 kcal/mole less than that in CH₃SCH₃. This is due to the higher stability of the produced radical, CH₃SS, because of the partial double or π bond formed in the radical (Benson, 1978; Shum and Benson, 1983). However, if the adduct, CH₃SS(ONO₂)CH₃, decomposes by C—S bond scission instead of forming the CH₃SS radical, the molecule CH₃SS—ONO₂ will be formed, that is

$$CH_3SS(ONO_2)CH_3 \rightarrow CH_3SS-ONO_2 + CH_3 S-C bond scission$$

 $\rightarrow CH_3S-ONO_2 + CH_3S - S bond scission$

and the corresponding special stability of CH_3SS is no longer involved. Although no thermodynamic data are available for CH_3SS — ONO_2 and CH_3S — ONO_2 , their bond dissociation energies are expected to be in the order

$$BDE(CH_3S-ONO_2) > BDE(CH_3SS-ONO_2)$$

since $BDE(CH_3S-CH_3) > BDE(CH_3SS-CH_3)$, and S-S bond scission in $CH_3SS(ONO_2)CH_3$ is therefore expected to be dominant.

The energy change for reaction pathway (3) is not available at the present, since the bond dissociation energies of C—H and S—H bonds of the *adducts* are unknown. It is expected that the adduct $CH_3S(ONO_2)H$ may undergo intramolecular H-atom abstraction faster than either $CH_3S(ONO_2)CH_3$ or $CH_3SS(ONO_2)CH_3$ due to its weaker S—H bond. However, other factors including the stability of the formed products and the energy strain between five-, six- and seven-member rings may compensate the favourable BDE for $CH_3S(ONO_2)H$. In summary, the observed trend of rate constants alone cannot distinguish the proposed three possible reaction pathways for the adduct $CH_3S(ONO_2)R'$, since each of them could lead to similar rate constants for $CH_3S(ONO_2)H$, $CH_3S(ONO_2)CH_3$ and $CH_3S(ONO_2)SCH_3$ adducts.

Why the rate constants for $NO_3 + RSR'$ reactions appear to be determined by the unimolecular decomposition step rather than by the addition step is not evident. One possible explanation is the relatively large size of the NO_3 adduct, which would allow for easy dispersion of this excess energy over the whole radical.

Turning now to IO, only one reaction rate constant has been measured, that for CH_3SCH_3 (Martin *et al.*, 1987; Barnes *et al.*, 1987a). Both studies showed that addition of IO to the S atom is the dominant pathway, followed by unimolecular decomposition through I—O bond cleavage. The trend of the rate constants for the IO radical is expected to be similar to that for O(³P) radical if the addition of IO to the S atom is the rate-limiting step.

In summary, analysis of observed reaction rate constant trends strongly suggests that addition is the dominant pathway for the initial reactions of $O({}^{3}P)$, OH, NO₃ and IO radicals with organosulfur compounds, which is mainly due to the unsaturated nature of the S atom and the relatively high electron density on the S atom of organosulfur compounds.

2.3. Unimolecular Decomposition of the Adducts

Reactants and the corresponding adducts are listed in Table II. The discussion in this section will focus on the elucidation of the dominant adduct decomposition pathways, which depend on the relative strength of the bonds in the adducts and on the stability of the radicals and molecules produced.

The unimolecular decomposition of the $O({}^{3}P) + RSR'$ adducts is reasonably well understood from the work of Cvetanović *et al.* (1981). The dominant decomposition reaction is C—S bond scission for CH₃S(O)H and CH₃S(O)CH₃, and S—S bond scission for CH₃SS(O)CH₃, although S—H bond cleavage is also important for CH₃S(O)H. No experimental observations are available for the decomposition of all other adducts listed in Table II. Therefore the fate of those adducts is discussed here based mainly on thermodynamic considerations. Indirect experimental evidence will also be examined when available.

With respect to the adducts produced from the reactions between RSR' and OH radical, it is generally assumed that the adduct $CH_3S(OH)SCH_3$ undergoes rapid unimolecular decomposition to CH_3SOH and CH_3S (Wine *et al.*, 1981; Hatakeyama and Akimoto, 1983; Atkinson, 1985), although no direct evidence is yet avail-

	H ₃ CSH	H ₃ C—S—CH ₃	CH ₃ SCH ₃
BDE: (kcal/mole)	74.2 88.6	75.0	67.8 57
	Q	0	Q
	O CH ₃ —S—H	CH ₃ —S—CH ₃	CH ₃ -S-S-CH ₃
	O—H	О—Н	O—H
	О—Н СН ₃ —S—Н	O—H CH ₃ —S—CH ₃	O—H CH ₃ —S—S—CH ₃
	O-NO ₂	O-NO ₂	O-NO ₂
	O—NO ₂ CH ₃ —SH	O—NO ₂ CH ₃ —S—CH ₃	O-NO ₂ CH ₃ -S-S-CH ₃
	Q−I	Q—I	Q−I
	O—I I CH ₃ —S—H	O—I I CH ₃ —S—CH ₃	O—I CH ₃ S—S—CH ₃
	, 5 H	0113 5 0113	0113 5 5 6113

Table II. Structures of initial reaction adducts

Note: The bond dissociation energies of organosulfur compounds are from Benson (1978) and Shum and Benson (1983).

able. The fate of $CH_3S(OH)CH_3$ may be examined by comparison with that of the adduct $CH_3SS(OH)CH_3$:

$$\begin{array}{c} H \\ O \\ CH_3SSCH_3 + OH \rightarrow CH_3SSCH_3 \xrightarrow{M} CH_3SOH + CH_3SOH \\ H \\ O \\ CH_3SCH_3 + OH \rightarrow CH_3SCH_3 \xrightarrow{M} CH_3SOH + \dot{C}H_3 \end{array}$$

The energy changes of decomposition for above two adducts depend on the bond dissociation energies as well as the stability of the formed radicals. The difference in the formation enthalpy between CH₃S (31.0 kcal/mole) and CH₃ (34.8 kcal/mole) (Shum and Benson, 1983; Baulch *et al.*, 1984) is small, and the bond dissociation energies between S—C and S—S bonds of the *adducts* are not expect to be very large (considering their corresponding reactants and the similar reasoning discussed in Section 2.2.3). Thus, the unimolecular decomposition of CH₃S(OH)CH₃ to CH₃SOH and CH₃ is probably not negligible, and may contribute partially to $k_{CH_3SCH_3+OH}$ measured in the *absence* of O₂. Also the mechanism

 $CH_3S(OH)CH_3 + O_2 \rightarrow CH_3SOH + CH_3O_2$

proposed by Hynes and Wine (1989) is more likely to proceed first through unimolecular decomposition of $CH_3S(OH)CH_3$ followed by addition of CH_3 to O_2 , i.e., same as that in the absence of O_2 . The adduct $CH_3S(OH)H$ may mainly undergo unimolecular decomposition to CH_3S and H_2O via intramolecular H-bonding. Given the structural similarity of all four CH_3SH adducts, one may also expect the $O({}^{3}P)$, NO_3 and IO adducts to form intramolecular H-bonding and to decompose further to CH_3S and HO, HONO₂ or HOI, respectively, although the ability to form such H-bonding and to abstract an H atom is quite different among those four radicals. In fact, the observed 10% S—H bond cleavage for the $O({}^{3}P) + CH_3SH$ reaction may be explained in terms of such H-bonding formation rather than by direct H-atom abstraction.

R

As discussed in Section 2.2.3, the $NO_3 + RSR'$ reaction adduct, CH_3 , SONO₂, may undergo three possible reaction pathways. Since no NO₂ was observed by Tyndall et al. (1986) and Dlugokencky and Howard (1988) in the time scale of 100-200 ms, and no CH₃S(O)CH₃ was detected in FT-IR product studies (Tyndall et al., 1986; MacLeod et al., 1986), the adduct appears to decompose by pathways other than those involving O-N bond scission. In addition to the reaction between adducts and other species, another possible reaction for the adduct $CH_3S(ONO_2)R'$ is decomposition by breaking S–H, C–S and S–S bonds to produce R'SONO₂. It is interesting to note that an unidentified product containing a nitrate group was observed for the $NO_3 + CH_3SCH_3$ reaction (Tyndall *et al.*, 1986) although it may also be formed through secondary reactions. The product, $R'SONO_2$, may be thermally unstable and further decompose to R'SO and NO_2 , which is also mentioned by Dlugokencky and Howard (1988) for the HSO-NO₂ adduct. Finally, the adduct $CH_3S(ONO_2)R'$ may undergo intramolecular H-atom abstraction through a five-, six- or seven-member ring, which is more favourable since only HONO₂, not NO₂, is formed. The simulation of smog chamber data also supports this pathway as dominant (see Part II, Yin et al., 1990).

The dominant reaction for adduct $CH_3S(OI)CH_3$ is the unimolecular decomposition to $CH_3S(O)CH_3$ by breaking the O—I bond since the yield of $CH_3S(O)CH_3$ was observed to be close to unity for the IO + CH_3SCH_3 reaction by Barnes *et al.* (1987a).

2.4. Adduct Bimolecular Reactions

Depending on adducts lifetime and on the time resolution of the experimental techniques used, secondary reactions may contribute to the observed rate constants. Possible adduct bimolecular reactions are discussed in this section along with other secondary reactions and their possible effects on the observed reaction rate constants.

2.4.1. Adduct Reaction with Oxygen

Rate constants for the reactions of free radicals with organosulfur compounds have

been observed to vary with oxygen concentration. This 'O₂ effect' usually refers to the reaction Adduct + O₂ \rightarrow Product.

The 'O₂ effect' has been confirmed experimentally for only one reaction among H_2S , CH_3SH , CH_3SCH_3 and CH_3SSCH_3 , that of OH with CH_3SCH_3 (Hynes *et al.*, 1986; Barnes *et al.*, 1988), although it has also been reported in studies of other organosulfur compounds (Barnes *et al.*, 1986a). The following possible reactions have been proposed for the $CH_3S(OH)CH_3$ adduct

H
O
CH₃SCH₃
$$\xrightarrow{1}{M}$$
 CH₃SOH + ĊH₃
+ O₂ $\xrightarrow{2}$ CH₃SCH₃ + HÓ₂
H
O
+ O₂ $\xrightarrow{3}$ CH₃SCH₃ $\xrightarrow{3}{M}$ CH₃SCH₃ + HÓ₂
OÓ
 $\xrightarrow{4}{M}$ CH₃SCH₃ + ÓH

Note that reaction (1) is not related to 'O₂ effect'. Reaction (3) may proceed by addition to the S atom followed by H-atom abstraction via a five-member intramolecular ring. Although CH₃S(O)₂CH₃ has been observed (Barnes *et al.*, 1988), it is not likely to form directly through reaction (4) since it is less likely to be a onestep reaction. The production of CH₃S(O)₂CH₃ in the CH₃SCH₃—H₂O₂—air system may result from the further oxidation of CH₃S(O)CH₃, which is supported by the fact that $k_{OH + CH_3S(O)CH_3} = 5.8 \pm 2.3 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and by a preliminary product study of the CH₃S(O)CH₃ + OH reaction in which CH₃S(O)₂CH₃ was found to be one of the major products (Barnes *et al.*, 1986b).

No O_2 effect should be observed for the CH₃S(OH)H adduct because of the formation of intramolecular H-bonding, which is consistent with the experimental observation by Hynes and Wine (1987). The reason that no O_2 effect was observed for the CH₃SS(OH)CH₃ adduct may be that the *observed* rate constant for the OH + CH₃SSCH₃ reaction is already near the collision limit or may be that the adduct decomposition is fast enough that the reaction of adduct with O_2 cannot compete with it.

No data are available for the adducts formed in the reactions of RSR' with radi-

cals other than OH. An 'O₂ effect' may also exist, depending mainly on the lifetime of the adduct.

2.4.2. NO_x Effect

Rate constants of initial reactions for organosulfur compounds have also been found to depend on the NO_x concentration. The observed increase of the rate constant due to NO_x, observed only for OH + RSR' reactions, is usually associated with conditions of high concentrations of NO_x, RSR' and O₂, and with long reaction times (Cox and Sheppard, 1980; Atkinson *et al.*, 1984; Barnes *et al.*, 1984, 1986a; Nielsen *et al.*, 1986; Wallington *et al.*, 1986a). More specifically, rate constants for the reactions of OH with CH₃SH, CH₃SCH₃ and C₂H₅SC₂H₅ were found to increase with increasing NO concentration (Barnes *et al.*, 1986a; Nielsen *et al.*, 1986). Many secondary reactions may be responsible for this NO_x or NO effect. Of these, the reaction between CH₃SO₃ and RSR' is probably the most important in view of the high reactivity of the CH₃SO₃ radical

$$CH_3SO_3 + RSR' \rightarrow CH_3SO_3H + RSR''$$

 \rightarrow Adduct

The detailed mechanism relating NO and CH_3SO_3 will be discussed in Section 7. The adduct $CH_3S(OH)(OO)CH_3$ formed from reaction (3) in Section 2.4.1 may also react with NO. Other species that may contribute to the NO_x effect include $O(^{3}P)$, CH_3O_x , NO₃, Criegee radicals (when an alkene is used as reference reactant) and CH_3SO_x radicals. Although many of these species will mainly react with O₂ under atmospheric conditions, their reactions with RSR' may become important at high concentrations of RSR'.

2.4.3. RS Effect

The reaction between RS and RSR' is another possible secondary reaction responsible for the observed rate constant enhancement. However, considering the enthalpy changes of all the possible reactions of CH₃SH, CH₃SCH₃ and CH₃SSCH₃ with CH₃S (Benson, 1978; Baulch *et al.*, 1984; Shum and Benson, 1983, 1985), the reactions between RS and RSR' are all endothermic (6.9-20.7 kcal/mole) except that of CH_3SSCH_3 with CH_3S (whose enthalpy change cannot be estimated due to the lack of data on formation enthalpies for CH₃SOH, CH₃SSCH₂ and CH_3SSSCH_3). Compared to the large negative enthalpy change [(-22.6)–(-30.7) kcal/mole] for the OH + CH₃SH and OH + CH₃SCH₃ reactions, the reactions between CH_3S and CH_3SH or CH_3SCH_3 are expected to be negligible under both laboratory and atmospheric conditions, especially considering the competition be- $CH_3S + RSR'$ and OH + RSR' and between $CH_3S + RSR'$ tween and $CH_3S + NO_x$. The effect of secondary reactions due to the CH_3S radical has been found to be negligible for CH₃SCH₃ by Nielsen et al. (1986), who observed no

additional loss of CH_3SCH_3 when photolyzing CH_3SSCH_3 in the presence of CH_3SCH_3 in either N₂ or air.

While the reaction between RS and RSR' is negligible, the RS radical will have an effect on the observed rate constants when an alkene is used as a reference reactant. This is due to the addition of RS to the alkene double bond, a reaction welldocumented in the liquid phase. An alkene has been used as reference reactant in both OH and NO₃ kinetic measurements by the relative rate method (Cox and Sheppard, 1980; Atkinson *et al.*, 1984, 1988; Barnes *et al.*, 1984, 1986a, 1988; MacLeod *et al.*, 1986; Nielsen *et al.*, 1986) and in product studies (Hatakeyama and Akimoto, 1983). The following mechanism is proposed to explain the possible effect of the RS radical in these studies (NO₃ radical and $CH_2 = CH_2$ are used as examples).

$NO_3 + RSR'$	\rightarrow	Adduct	k_1
$+ CH_2 = CH_2$	\rightarrow	Product	k_2
$CH_3S + CH_2 = CH_2$	\rightarrow	CH ₃ SCH ₂ ĊH ₂	k_3
$+ NO_2$	\rightarrow	$CH_3SO + NO$	k_4
+NO	\rightarrow	CH ₃ SNO	k_5

Since studies involving the NO_3 radical are carried out in the dark, the photolysis of CH_3SNO is negligible. Usually the equation used to analyse the experimental data obtained by a relative rate technique is expressed as

$$\ln \frac{[\text{RSR'}]_0}{[\text{RSR'}]} = \frac{k_1'}{k_2} \ln \frac{[\text{C}_2\text{H}_4]_0}{[\text{C}_2\text{H}_4]},$$
 (a)

where k'_1 is the observed rate constant without considering reaction (3). If reaction (3) is included,

$$\ln \frac{[\text{RSR}']_0}{[\text{RSR}']} = \frac{k_1}{k_2} \left(\ln \frac{[\text{C}_2\text{H}_4]_0}{[\text{C}_2\text{H}_4]} - \text{C} \right),$$
(b)

where k_1 is the rate constant when reaction (3) is considered, and

$$C = \int_{|RSR'|_0}^{|RSR'|_0} \frac{d[RSR']}{k_3[C_2H_4] + k_4[NO_2] + k_5[NO]} > 0.$$

Dividing Equation (a) by Equation (b),

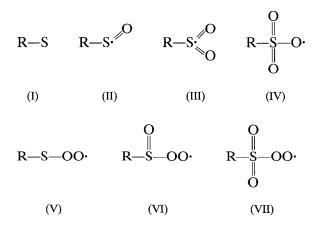
$$\frac{k_1'}{k_1} = \frac{\ln[C_2H_4]_0 / [C_2H_4] - C}{\ln[C_2H_4]_0 / [C_2H_4]} < 1,$$

i.e., the observed rate constant k'_1 is smaller than the actual rate constant k_1 if reaction (3) is important compared to reaction (2). The following conditions need to be satisfied in order for reaction (3) to be important:

(1) CH_3S (or RS) radical has to be generated. For the reactions between OH

and RSR', the CH_3S radical is generated from CH_3SH , CH_3SCH_3 and CH_3SSCH_3 . For reactions of NO₃ with RSR', CH_3S may be generated only from CH_3SSCH_3 .

- (2) k_2/k_3 is close to one, or smaller than one. Since $k_{OH+RSR'}$ is much larger than $k_{NO_3+RSR'}$, the effect of the CH₃S radical on observed rate constants will be much larger for the NO₃ + RSR' reactions than for the OH + RSR' reactions.
- (3) [Alkene]/[NO_x] is close to one, or larger than one, which is usually the case at the beginning of the experiment.


Based on the above considerations, the NO₃ + CH₃SSCH₃ reaction is the most likely candidate to exhibit a CH₃S effect, in agreement with the observation of MacLeod *et al.* (1986) and Akinson *et al.* (1988). MacLeod *et al.* (1986) measured the rate constants of the CH₃SH + NO₃ and CH₃SSCH₃ + NO₃ reactions, and obtained a much smaller $k_{NO_3 + CH_3SSCH_3}$ than those measured by an absolute method (Wallington *et al.* 1986c; Dlugokencky and Howard, 1988), however the rate constant of $k_{NO_3 + CH_3SH}$ agrees reasonably well with other measurements (Wallington *et al.*, 1986c; Rahman *et al.*, 1988; Dlugokencky and Howard, 1988). Another study showed that the observed rate constant for the NO₃ + CH₃SSCH₃ reaction increased in the later stages of the reaction (Atkinson *et al.*, 1988), indicating that the competitive reaction of CH₃S + alkene, i.e., reaction (3), was important in the early stage of the experiment. The alkenes used in these experimental studies were propene and trans-2-butene. The rate constants listed below for the CH₃S + alkene reactions are compared to those for the NO₃ + alkene reactions (MacLeod *et al.*, 1986; Graham *et al.*, 1964a; Atkinson, 1985; Balla *et al.*, 1987):

				k_{298}
				$(\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$
$CH_3CH = CH_2$	$+ NO_3$	\rightarrow	Product	7.6×10^{-15}
	+ OH	\rightarrow	Product	2.63×10^{-11}
	$+ CH_3S$	\rightarrow	Adduct	$1.0 \pm 0.4 imes 10^{-14}$
trans-2-butene	$+ NO_3$	\rightarrow	Product	3.8×10^{-13}
	+ OH	→	Product	6.37×10^{-11}
2-butene	$+ CH_3S$	\rightarrow	CH ₃ CH(CH ₃ S)CHCH ₃	3.32×10^{-14}
cis-2-butene	$+ CH_3S$		Adduct	$< 5.5 \times 10^{-15}$.

Therefore, the effect of the CH_3S radical on the measured $CH_3SSCH_3 + NO_3$ rate constant cannot be neglected. The competition between reactions of OH and CH_3S with alkenes is dominated by the OH radical since the OH rate constants are much larger than those for CH_3S . Finally, the addition of the CH_3SO_2 radical to alkene double bonds, similar to the addition of the CH_3S radical, may also have similar effects on the observed rate constants.

3. Structure of RSO_r and RS(O)_rOO Radicals

The sulfinyl radical, RSO, sulfonyl radical, RSO₂, sulfur peroxyl radicals, $RS(O)_x$ —OO, and possibly several other oxygen-containing sulfur radicals are involved as intermediates in the photooxidation of organosulfur compounds. In order to better understand the reactions of these species, it is necessary to discuss the structures of the following radicals and to estimate their reactivity from the corresponding structural properties:

Sulfinyl radicals, RSO (II), are formal analogues of peroxyl (ROO) and perthiyl (RSS) radicals. The π nature of the RSO radical results in enhanced stability relative to that of either the thiyl RS (I) or sulfonyl RSO₂ (III) radicals. This is reflected in the corresponding bond dissociation energies, i.e., BDE(CH₃S(O)—CH₃) = 55±2 kcal/mole is about 13–20 kcal/mole lower than BDE(CH₃S—CH₃) = 75.0±1 kcal/mole and BDE(CH₃S(O)₂—CH₃) = 68 kcal/mole (Benson, 1978; Shum and Benson, 1983).

Considering the sulfur peroxyl radicals, some confusion has been caused by the radical representation. The methanethiyl peroxyl radical, the adduct of methanethiyl radical (CH₃S) to molecular oxygen, should be represented as CH₃SOO rather than CH₃SO₂, which is the methanesulfonyl radical (III). Evidence for the thiol peroxyl radical (RSOO) has been recently observed by electron spin resonance in the liquid phase (Swarts et al., 1989). Likewise, the adducts of O_2 to CH₃SO and CH₃SO₂ should be represented as CH₃S(O)OO and CH₃S(O)₂OO, respectively. This distinction between sulfur and sulfur peroxy radicals is very important since these radicals have quite different chemical properties. The enthalpy change for the reaction $CH_3S + O_2$, which was incorrectly based on the formation enthalpy of the CH₃SO₂ radical (Hatakeyama and Akimoto, 1983), is about -89 kcal/mole. However, the correct enthalpy change for this reaction is in fact much less than -89 kcal/mole since CH₃SOO is much less stable than CH₃SO₂. This downward revision is entirely consistent with experimental observations of a very slow reaction between CH₃S and O₂ (Balla et al., 1986; Tyndall and Ravishankara, 1988).

4. Reactions of CH₃SOH and CH₃S(O)_xCH₃

Although CH₃SOH, CH₃S(O)CH₃ and CH₃S(O)₂CH₃ are proposed to be the addition pathway products of the OH + RSR' reaction, only CH₃S(O)₂CH₃ has been observed experimentally (Barnes *et al.*, 1988). CH₃S(O)CH₃ and CH₃S(O)₂CH₃ have been detected in marine air and rain water (Harvey and Lang, 1986), suggesting that both are possible oxidation products of CH₃SCH₃. Only one kinetic study has been carried out for the reaction of OH + CH₃S(O)CH₃ (Barnes *et al.*, 1986b) and no kinetic data are available for CH₃SOH and CH₃S(O)₂CH₃. Therefore, the following discussion is based mainly on thermochemistry and on comparison of reactivity in the gas phase and liquid phase.

4.1. Reactions of CH₃SOH

Methanesulfenic acid, CH_3SOH , has not been directly detected but is believed to form by unimolecular decomposition of the adducts of $CH_3S(OH)CH_3$ and $CH_3SS(OH)CH_3$. It was proposed first by Hatakeyama and Akimoto (1983) that CH_3SOH reacts with O_2 to form CH_3SO_3H

$$CH_3SOH + O_2 \xrightarrow{M} CH_3SO_3H.$$

However, this one-step reaction is not consistent with the structural difference between CH_3SOH and CH_3SO_3H

$$CH_3 - S - OH$$
 $CH_3 - S - OH$

The structure of CH_3SOH has been confirmed by microwave spectroscopy to have form (A) rather than form (B) [Penn *et al.*, 1978],

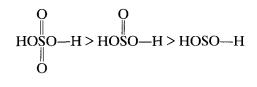
$$CH_3 - S - O - H \qquad CH_3 - S - H$$
(A)
(B)

By further examining the possibility of the reactions between CH₃SOH and O₂, it is concluded that O₂ cannot abstract a hydrogen from CH₃SOH to produce two radicals from two molecules since the H—OO bond is about 10* kcal/mole weaker than the CH₃SO—H bond (see discussion later). Also the addition of O₂ to the S atom on CH₃SOH will not be important since the similar reactions between O₂ and CH₃SCH₃ should be faster because of the electrophilic nature of O₂.

^{*} Since the BDE(CH₃SO—H) is estimated from the BDE(HOSO—H), the absolute value is less accurate than the relative trend. The importance of the $O_2 + CH_3SOH$ reaction will be determined by the relative strength of CH₃SO—H and OO—H bonds, which is unknown at this time.

However, due to the extremely large O_2 /radicals concentration ratio in the atmosphere, the reaction between O_2 and CH₃SOH cannot be ruled out completely, although it is clear that CH₃SO₃H cannot be formed directly from CH₃SOH + O_2 .

Although the importance of sulfenic acid (RSOH) intermediate in mechanistic organic sulfur chemistry is well recognized, simple alkanesulfenic acids are extremely reactive and unstable and only a few of them have been isolated and detected (Davis *et al.*, 1981). Sulfenic acids readily undergo hydrogen atom transfer to free radicals and they have been found to be active radical scavengers for peroxy radicals (Koelewijn and Berger, 1972), indicating that the bond dissociation energy of the RSO—H bond is less than that of the ROO—H bond, about 87 kcal/mole. The efficiency of sulfenic acids as hydrogen atom donors is undoubtedly a consequence of the appreciable stability of the sulfinyl radical, RSO, due to its delocalized π -structure.


In the liquid phase, both sulfenic acids and sulfinic acids undergo facile H-atom abstraction by either alkoxy or OH radicals (Gilbert *et al.*, 1975b; Block, 1978; Lunazzi and Pedulli, 1985). Based on these experimental studies in the liquid phase, we propose that H-atom abstraction is also a dominant atmospheric reaction pathway for both CH₃SOH and CH₃SO₂H (a possible product of the CH₃S(O)CH₃ + OH reaction). Thus, possible H-atom abstraction reactions for CH₃SOH and the bond dissociation energies of the corresponding formed H—X bonds are listed below:

BDE ((kcal/	mo]	le)
DDD	(nual/	IIIO.	(\mathbf{U})

$CH_3SOH + OH$	\rightarrow	$CH_3SO + H_2O$	119
$+ CH_3SO_3$		$CH_3SO + CH_3SO_3H$	(104)
$+ CH_3O$	>	$CH_3SO + CH_3OH$	104.4
$+ O(^{3}P)$	\rightarrow	$CH_3SO + OH$	102.2
$+ NO_3$	\rightarrow	$CH_3SO + HONO_2$	101.2
$+ CH_3O_2$	\rightarrow	$CH_3SO + CH_3OOH$	87.2
$+ HO_2$	\rightarrow	$CH_3SO + H_2O_2$	87.2
$+ NO_2$	\rightarrow	$CH_3SO + HONO$	78.3

(Benson, 1978; McMillen and Golden, 1982; Baulch *et al.*, 1984; Kerr, 1985). Of the reactions listed above, those with OH and CH_3SO_3 radicals, and with peroxy radicals at low NO_x concentration are important. These reactions may in fact be quite fast, since the bond dissociation energy of CH_3SO —H is expected to be much less than 87 kcal/mole.

Although no data are available for the BDE of O—H bond in $CH_3S(O)_xO$ —H compounds, some estimates can be obtained from the structurally similar species $HOS(O)_xO$ —H (Benson, 1978):

BDE (kcal/mole): 104 ± 3 81 59

Therefore, a similar bond strength trend can be expected for $CH_3S(O)_xO-H$ acids, i.e.,

$$CH_{3}SO-H > CH_{3}SO-H > CH_{3}SO-H$$

and the effect of CH₃ and OH groups on the bond dissociation energy is expected to be small compared to that of the group $S(O)_x$, since the bond dissociation energy of $HOS(O)_x$ —H species varies about 44 kcal/mole from HOSO—H to $HOS(O)_2O$ —H, although an OH group is attached to each of $HOS(O)_x$ —H. As a starting point, the bond dissociation energy of $CH_3S(O)_x$ —H can be assumed to be the same as that for the corresponding acids of $HOS(O)_x$ —H. This would assign 59 kcal/mole to the CH₃SO—H bond, a value consistent with our earlier estimate, i.e., much less than 87 kcal/mole. Since the bond dissociation energy of CH₃S(O)O— H is higher than that of CH₃SO—H, the H-atom abstraction from CH₃S(O)₂OH is much stronger than those in CH₃S(O)OH and CH₃SOH; thus these compounds are expected to react rapidly with CH₃SO₃ by H-atom abstraction.

It should be pointed out that the electrophilic addition of radicals such as OH and NO_3 to the S atom in CH₃SOH, although it is minor, may not be negligible since the adduct of OH + CH₃SOH is stabilized by the resonance effect of OH in CH₃SOH, although the weak electron-withdrawing resulting from OH inductive effect could decrease the tendency of OH addition to CH₃SOH.

4.2. Reaction of $CH_3S(O)_x CH_3$

While CH₃S(O)CH₃ was not observed as a product by Barnes *et al.* (1988), they suggested that CH₃S(O)CH₃ was likely to be produced and further oxidized rapidly to CH₃S(O)₂CH₃ and SO₂. The rate constant for OH + CH₃S(O)CH₃ has been measured to be $(5.8 \pm 2.3) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and $(6.2 \pm 2.2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ (Barnes *et al.*, 1986b, 1989), with SO₂ and CH₃S(O)₂CH₃ yields of 60% and 30%, respectively (Barnes *et al.*, 1988). The formation of SO₂ indicates that the addition pathway is not necessarily related only to the formation of CH₃SO₃H, but could also lead to the production of SO₂ as well. The same reaction has been studied by Meissner *et al.* (1967) in aqueous solutions of sulfoxides and a

similar reaction rate constant of 1.2×10^{-11} cm³ molecule⁻¹ s⁻¹ has been reported (Gilbert *et al.*, 1975a).

While $CH_3S(O)CH_3$ and $CH_3S(O)_2CH_3$ may react with a number of radicals in the atmosphere, their reaction with OH is likely to be the most important chemical loss process, and their reactions with NO₃ could also be important at nighttime in the atmosphere. The reaction of $CH_3S(O)CH_3$ with OH may involve abstraction or addition as follows:

$$\begin{array}{c} O \\ CH_{3}SCH_{3} + OH \rightarrow CH_{3}SCH_{2} + H_{2}O \\ + OH \stackrel{M}{\longrightarrow} CH_{3}SCH_{3} \\ OH \\ \end{array}$$

$$\begin{array}{c} O \\ + OH \stackrel{M}{\longrightarrow} CH_{3}SCH_{3} \\ OH \\ \end{array}$$

$$\begin{array}{c} O \\ CH_{3}SCH_{2} \\ + O_{2} \\ OH \\ \end{array} \stackrel{M}{\longrightarrow} CH_{3}SCH_{2}OO \\ \end{array}$$

$$\begin{array}{c} O \\ CH_{3}SCH_{3} \\ OH \\ \end{array}$$

$$\begin{array}{c} O \\ + O_{2} \\ OH \\ \end{array}$$

$$\begin{array}{c} O \\ CH_{3}SCH_{3} \\ OH \\ \end{array}$$

In turn, methanesulfinic acid, $CH_3S(O)OH$, may be further oxidized to SO_2 or CH_3SO_3H . Although no information is available regarding the relative importance of addition and abstraction pathways for the $OH + CH_3S(O)CH_3$ reaction, some indication can be obtained from studies in the liquid phase. For H-atom abstraction by the phenyl radical, the relative reactivity per H-atom is (Block, 1978):

$$CH_3SCH_2 - H > CH_3SSCH_2 - H > CH_3S(O)CH_2 - H$$

1.89 1.2 0.08

This indicates that the bond dissociation energy of $CH_3S(O)CH_2$ —H is much higher than that of CH_3SCH_2 —H of 96.6 ± 1.0 kcal/mole (Shum and Benson, 1985), but lower than that of Ph—H of 110.9 ± 2 kcal/mole (McMillen and Golden, 1982). This is also true for $CH_3S(O)_2CH_3$, since the reaction

$$CH_3S(O)_2CH_3 + C_6H_5 \rightarrow CH_3S(O)_2CH_2 + C_6H_6$$

takes place readily in the liquid phase. Thus, H-atom abstraction by OH is expected to be much slower for $CH_3S(O)CH_3$ and $CH_3S(O)_2CH_3$ than for CH_3SCH_3 . Since the observed rate constant of $CH_3S(O)CH_3$ with OH is about a factor of 10 higher than that of $CH_3SCH_3 + OH$, addition is therefore expected to be the major pathway for $CH_3S(O)CH_3 + OH$.

Studies by Norman and Pritchett (1965) and Lagercrantz and Forshult (1969) indicate that the reaction of OH with dialkyl sulfoxides involves addition onto the sulfur atom rather than H-atom abstraction. Gilbert *et al.* (1975a) studied the reaction of OH with $CH_3S(O)CH_3$ in aqueous solution at ambient temperature and found that the addition of OH to $CH_3S(O)CH_3$, followed by rapid decomposition of the adduct $CH_3S(O)(OH)CH_3$ is the dominant pathway. The adduct, $CH_3S(O)(OH)CH_3$, once formed, may either react with O_2 to produce $CH_3S(O)_2CH_3$ or undergo unimolecular decomposition to $CH_3S(O)OH$:

$$\begin{array}{ccc} O & O \\ CH_{3}SCH_{3} & \xrightarrow{M} & CH_{3}SOH + CH_{3} \\ OH \\ + O_{2} & \longrightarrow & CH_{3}SCH_{3} + HO_{2} \\ O \end{array}$$

The above decomposition may be faster than that of the adduct $CH_3S(OH)CH_3$ since BDE(CH₃S(O)-CH₃) = 55 ± 2 is much smaller than BDE(CH₃S-CH₃) = 75.0 ± 1 (Benson, 1978; Shum and Benson, 1983). This may be one of the reasons that $k_{CH_{3}S(O)CH_{3}+OH}$ is about a factor of 10 higher than $k_{CH_{3}SCH_{3}+OH}$. The rate constant of decomposition of the adduct, $CH_3S(\dot{O})(OH)CH_3$, is 1.5×10^7 s⁻¹ (Veltwisch et al., 1980) in aqueous solution. Thus, if the aqueous phase rate constant is used as a guide for estimating gas phase reactivity, the rate constant for $O_2 + CH_3S(\dot{O})(OH)CH_3$ would need to be about 3×10^{-12} cm³ molecule⁻¹ s⁻¹ to competitive with the unimolecular decomposition be of adduct $CH_3S(\dot{O})(OH)CH_3$ to form $CH_3S(O)_2CH_3$ in the atmosphere.

The hypothesis of addition being the dominant pathway for the $OH + CH_3S(O)CH_3$ reaction is consistent with the fact that $CH_3S(O)_2CH_3$ was observed as one of the major product only when O₂ was present for CH₃SCH₃ + OH reaction (Barnes et al., 1988). The independence of the rate constant for the reaction of CH₃S(O)CH₃ with OH on O₂ concentration, observed by Barnes et al. (1986b), indicates that the reverse reaction of the adduct decomposition $CH_3S(O)(OH)CH_3$ is much slower than its to $CH_3S(O)OH + CH_3$. Notice that the observation of SO_2 as the major product for the $CH_3S(O)CH_3 + OH$ reaction does not necessarily support the abstraction pathway since addition can also lead to SO_2 formation. The high yield of $CH_3S(O)_2CH_3$ observed by Barnes *et al.* (1988) indicates that $CH_3S(O)_2CH_3$ is relatively unreactive toward OH. This is not unexpected, since (a) the S atom in $CH_3S(O)_2CH_3$ is hexavalent and no further addition of OH to S is possible, and (b) H-atom abstraction is expected to be slow as a result of the polar effects of the $CH_3S(O)_2$ group.

The rate constant for $NO_3 + CH_3S(O)CH_3$ has been measured to be $(1.7 \pm 0.3) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ (Barnes *et al.*, 1989), and $CH_3S(O)_2CH_3$ and $HONO_2$ were observed from a preliminary product study on system $CH_3S(O)CH_3 - N_2O_5$ —air in the dark. Elucidation of the $CH_3S(O)CH_3 + NO_3$ reaction is not possible at present, and further experimental studies are needed.

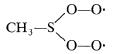
The above discussion indicates that CH_3SOH does not necessarily lead to the formation of CH_3SO_3H , and that both SO_2 and CH_3SO_3H can be produced by further oxidation of CH_3SOH and $CH_3S(O)_xCH_3$. Thus, there is no direct relation between the yields of SO_2 and CH_3SO_3H and the relative importance of OH addition and abstraction pathways.

5. Reactions of RSO_x Radicals

 CH_3SO_x and $CH_3S(O)_xOO$ radicals have not been detected in product studies. Only indirect evidence suggests their existence. That of CH_3S is suggested by the observation of CH_3SNO (Niki *et al.*, 1983b; Hatakeyama and Akimoto, 1983; MacLeod *et al.*, 1986; Barnes *et al.*, 1987b). The tentative identification of $CH_3S(O)OO-NO_2$ by Barnes *et al.* (1987b) suggests that CH_3SO and $CH_3S(O)OO$ radicals are involved as well. The recent study of the $CH_3S + NO_2$ reaction by Tyndall and Ravishankara (1988) suggests the formation of both CH_3SO_2 radicals. In the present sections, possible reactions of CH_3SO_x radicals are discussed, with focus on their further oxidation and unimolecular decomposition.

5.1. Reactions of RSO_x Radicals with O_2

The addition of molecular oxygen to CH_3S is arguably the most important reaction for CH_3S in the atmosphere. It is also the least characterized reaction of the CH_3S radical. Balla and Heicklen (1985) studied the photolysis of CH_3SSCH_3 in the presence of O_2 and proposed the following mechanism to explain the formation of SO_{22}


$$CH_{3}S + O_{2} \rightarrow CH_{3}SOO$$

$$CH_{3}SOO + O_{2} \rightarrow CH_{3}SO_{4}$$

$$CH_{3}SO_{4} \rightarrow HO + HCHO + SO_{2}$$

with the structure of the CH₃SO₄ radical given as

333

This structure is not correct, i.e., there should be another single unpaired electron (plus a pair of lone electrons) on the S atom. The CH_3SO_4 radical structure proposed by Balla and Heicklen would therefore include three single unpaired electrons, which is very unlikely. The structurally correct adduct of O_2 to CH_3SOO should be CH_3SOO —OO, which is very unstable and thermodynamically unfavorable. Furthermore, Tyndall and Ravishankara (1988) did not detect OH as a product in the reaction of CH_3S with O_2 , thus suggesting that SO_2 is not produced from the CH_3SO_4 radical.

The rate constant of the $CH_3S + O_2$ reaction has been measured, and only upper limits have been determined. These range from 2×10^{-17} to 2.5×10^{-18} cm³ molecule⁻¹ s⁻¹ (Balla et al., 1986; Tyndall and Ravishankara, 1988). Considering $k_{\rm CH_3+O_2} = 1.0 \times 10^{-12} \,\rm cm^3$ molecule⁻¹ s⁻¹, and the strong electrophilic character of O_2 , the reaction of CH₃S with O_2 seems unexpectedly slow. Before we attempt to explain this result, let us consider in more detail the bonding between S and O atoms in CH₃SOO. The isoelectronics of CH₃SOO are CH₃OOO and CH₃SSS, with estimated BDE of -22 to -11.8 kcal/mole for the CH₃O-OO bond and +41 kcal/mole for the CH₃S-SS bond (Benson and Shaw, 1970; Francisco and Williams, 1988; Benson, 1978). It can be seen that the adduct CH_3OOO is unstable and decomposes rapidly to CH₃O and O₂, which may be consistent with observation of the fast reaction between CH₃ and O₃ (Paltenghi et al., 1984) since this reaction may also involve the adduct CH₃OOO. The relatively strong bond of CH₃S—SS may reflect more resonance structures. Therefore the S—O bond in CH₃SOO is expected to be weak and the lifetime of the CH₃S + O_2 adduct will correspondingly be short. Based on these considerations, we suggest the following mechanism for the reaction between CH₃S and O₂:

$$\begin{array}{rcl} CH_3S + O_2 & \longrightarrow & CH_3SOO \\ CH_3SOO & \stackrel{M}{\longrightarrow} & CH_3S + O_2 \\ & \stackrel{M}{\longrightarrow} & CH_3SO_2 \\ & + & CH_3S & \longrightarrow & CH_3SO + CH_3SO \\ & + & NO & \longrightarrow & CH_3SO + NO_2 \end{array}$$

Further reactions of CH₃SO produce SO₂ and CH₃SO₃H. In the above scheme, the addition of O₂ to CH₃S is fast (with a rate constant about one order of magnitude smaller than that for the CH₃ + O₂ reaction), but the unstable adduct CH₃SOO, either rapidly decomposes back to CH₃S and O₂ or oxidizes reduced species in the system including CH₃S (or NO when NO_x is used). The rearrangement from CH₃SOO to CH₃SO₂ is slower than all other reactions.

The above mechanism is speculative, but is consistent with many experimental

observations. For example, the apparent slow reaction observed by Balla et al. (1986) and Tyndall and Ravishankara (1988) is consistent with fast decomposition of the adduct back to the reactants. The observed decay of CH₃S is the net effect of adduct decomposition and adduct reactions with other species. Our mechanism also predicts that the observed reaction rate should *increase* with *increasing* concentrations of species consuming the adduct and/or with any factor that stabilize the adduct, i.e., that decreases its rate of reverse decomposition. Balla and Heicklen (1985) reported increasing SO_2 yields with increasing light intensity, which is inconsistent with their mechanism. The observed SO_2 yield increase may be simply due to the increased steady-state concentration of CH₃S. Black et al. (1988b) studied the reaction between C_2H_5S and O_2 by laser induced fluorescence and estimated an upper limit of 2×10^{-17} cm³ molecule⁻¹ s⁻¹ for the rate constant. In contrast, the liquid phase rate constant for this reaction is 5.6×10^{-13} cm³ molecule⁻¹ sec⁻¹ (Schäfer *et al.*, 1978), which is comparable to the rate constant for addition of O₂ to C₂H₅, 1.0×10^{-12} cm³ molecule⁻¹ s⁻¹ (Atkinson and Lloyd, 1984). The observed high rate constant in solution may reflect solvent stabilization of the adduct and/or rapid removal by other species, in this case, possibly by C_2H_5SH as follows,

$$C_2H_5SOO + C_2H_5SH \rightarrow C_2H_5SOOH + C_2H_5S.$$

The large rate constants for the $i-C_3H_7S + O_2$ reaction $(1.1 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, (Black *et al.*, 1988a)) and the $C_6H_5S + O_2$ reaction $(2.52 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, (Shibuya *et al.*, 1988)) are also consistent with stabilization of the RSOO adduct by the substituted groups, although abstraction may also be involved in the $i-C_3H_7S + O_2$ reaction.

The attachment of electron-withdrawing groups to the adduct S atom stabilizes the adduct and increases its lifetime. The tentative identification of CH₃S(O)OO— NO₂ in the CH₃SSCH₃—NO₂—air system (Barnes *et al.*, 1987b) suggests a reasonably long lifetime for the CH₃S(O)OO radical. Interestingly, the same set of IR peaks assigned to CH₃S(O)OONO₂ by Barnes *et al.* (1987b) was also detected by MacLeod *et al.* (1986) in mixtures of both CH₃SSCH₃—N₂O₅—NO₂—air and CH₃SH—N₂O₅—NO₂—air, indicating CH₃S(O)OO—NO₂ may also be involved. The adduct CH₃S(O)₂OO should be even more stable, and the *apparent* addition of O₂ to CH₃SO₂ should be faster. A bond strength of about 16 kcal/mole can be estimated for the CH₃S(O)₂—OO bond by comparison with the similar bond in HOS(O)₂—OO (BDE(HOS(O)₂—OO = 16 kcal/mole (Benson, 1978)), which is stronger than the S—O bond in CH₃SOO radical. The reaction mechanisms for CH₃SO and CH₃SO₂ radicals with O₂ are similar to the mechanism for CH₃S with O₂ as discussed above.

 CH_3SOO may also rearrange to form the CH_3SO_2 radical. However, this rearrangement is expected to be unimportant. No decay of CH_3S was observed by Tyndall and Ravishankara (1988) in the CH_3SSCH_3 — O_2 system on the time scale of milliseconds. This intramolecular rearrangement, proceeding by a three-member ring, should be hindered by ring string and by the large lone-pair repulsion involving six lone-pairs of electrons in the CH₃SOO radical. Another point that argues against such intramolecular conversion is that similar rearrangement from CH₃S(O)OO to CH₃S(O)₂O is expected to be faster due to the effect of electronwithdrawing by attached oxygen on sulfur in CH₃S(O)OO radical, and CH₃SO₃H is predicted to be the major product from reactions CH₃SO_x + O₂, which is contrary to the experimental results (Hatakeyama and Akimoto, 1983; Yin *et al.*, 1990).

5.2. Reaction of RSO_x Radicals

 CH_3SO_x radicals can be readily oxidized in the atmosphere,

$$\begin{array}{rcl} \mathrm{CH}_{3}\mathrm{S} + \mathrm{O} &\longrightarrow & [\mathrm{CH}_{3}\mathrm{SO} &\longrightarrow & \mathrm{CH}_{3}\mathrm{SO} + \mathrm{Y} \\ \mathrm{CH}_{3}\mathrm{SO} + \mathrm{O} &\longrightarrow & [\mathrm{CH}_{3}\mathrm{S}(\mathrm{O})\mathrm{O} &\longrightarrow & \mathrm{CH}_{3}\mathrm{SO}_{2} + \mathrm{Y} \\ \mathrm{CH}_{3}\mathrm{SO}_{2} + \mathrm{O} &\longrightarrow & [\mathrm{CH}_{3}\mathrm{S}(\mathrm{O})_{2}\mathrm{O} &\longrightarrow & \mathrm{CH}_{3}\mathrm{SO}_{2} + \mathrm{Y} \end{array}$$

and undergo direct or intramolecular (via six-member ring) H-atom abstraction

$$CH_{3}S + O - Y \rightarrow [CH_{3}SO - Y]^{*} \rightarrow CH_{2}S + H - OY$$

$$CH_{3}SO + O - Y \rightarrow [CH_{3}SOO - Y]^{*} \rightarrow CH_{2}SO + H - OY$$

$$CH_{3}SO_{2} + O - Y \rightarrow [CH_{3}S(O)_{2}O - Y]^{*} \rightarrow CH_{2}SO_{2} + H - OY$$

(H—OY will be HO + Y for O_3) or regenerate CH₃S and CH₃SO. (Notice that the resonance structures of CH₃SO and CH₃SO₂ are CH₃SO and CH₃S(O)O):

$$\begin{array}{l} CH_3SO + O - Y \rightarrow [CH_3SOO - Y]^* \rightarrow CH_3S + O_2 + Y \\ CH_3S(O)O + O - Y \rightarrow [CH_3S(O)OO - Y]^* \rightarrow CH_3SO + O_2 + Y, \end{array}$$

where Y includes NO for ONO, NO₂ for ONO₂, OH for HOO, CH₃O for CH₃OO, O₂ for O₃, and CH₃S(O)_xO for CH₃S(O)_xOO, respectively. The relative importance of these oxidative species will depend on their ambient concentrations.

Several experimental studies have recently become available regarding the reactions of CH_3SO_x radicals. Tyndall and Ravishankara (1988) identified NO as the major product of the $CH_3S + NO_2$ reaction, with a yield of 0.80 ± 0.20 . They also observed a secondary production of NO and suggested that the CH_3SO radical formed could be oxidized further to CH_3SO_2 by NO_2 . The CH_3SO radical was indeed detected in another study of the $CH_3S + NO_2$ reaction by mass spectrometry (Mellouki *et al.*, 1988). Regarding the reactions of CH_3S with O_3 , Domine *et al.* (1989) have identified CH_3SO as one of the products with a yield of (0.156 ± 0.04) . Also CH_2SO and OH were detected in the CH_3S/O_3 system, possibly via H-atom abstraction as shown above. Their preliminary data also indicated that CH_3SO reacts with O_3 to regenerate CH_3S with a yield of about 0.22. Furthermore, both our experimental observations and computer simulation for CH_3SSCH_3 photooxidation (see detailed discussion in Part II) indicate that the

reactions of CH_3SO_x with O_3 are very important, and the rate constant of $CH_3S + O_3$, 6×10^{-12} cm⁻³ molecule⁻¹ s⁻¹ estimated entirely from the simulation of our experimental data, agrees reasonably well with the first reported rate constant, $(4.1 \pm 2.0) \times 10^{-12}$ cm⁻³ molecule⁻¹ s⁻¹ (Tyndall and Ravishankara, 1989) and better with the more recently reported value $(5.7 \pm 1.5) \times 10^{-12}$ cm⁻³ molecule⁻¹ s⁻¹ (Domine *et al.*, 1989).

With the exception of limited data for the $RSO_x + NO_2$ and $RSO_x + O_3$ reactions, kinetic data are not available for RSO_x reactions. In order to estimate the reactivity of CH_3S , CH_3SO and CH_3SO_2 radicals towards oxidants, let us compare the reaction enthalpies between the analogous reactions. Table III lists enthalpy changes for all oxidation reactions except those for $CH_3S(O)_xOO$ radicals, which will be discussed later. Examination of the data in Table III reveals two important features. First, for a given oxidant species the reaction enthalpy decreases from CH_3S to CH_3SO_2 radicals, indicating that the tendency of CH_3SO_x radicals toward oxidation is in the order

 $CH_3S > CH_3SO > CH_3SO_2$.

Second, for a given sulfur radical all oxidation reactions are considerably exo-

Oxidation reaction		ΔH°_{298} (kcal/mole)
$CH_3S + O-NO$	\rightarrow CH ₃ SO + NO	-32
+O—OH	\rightarrow CH ₃ SO + OH	-39
+ O—OCH ₃	\rightarrow CH ₃ SO + OCH ₃	-46
+000	\rightarrow CH ₃ SO + O ₂	-80
+ O-NO ₂	\rightarrow CH ₃ SO + NO ₂	-55
$CH_3SO + O-NO$	\rightarrow CH ₃ SO ₂ + NO	-26
+ OOH	\rightarrow CH ₃ SO ₂ + OH	-33
+ O—OCH ₃	\rightarrow CH ₃ SO ₂ + OCH ₃	-40
+ 0-00	\rightarrow CH ₃ SO ₂ + O ₂	-74
+ O—NO ₂	\rightarrow CH ₃ SO ₂ + NO ₂	-49
$CH_3SO_2 + O-NO$	\rightarrow CH ₃ SO ₃ + NO	-13
+ O—OH	\rightarrow CH ₃ SO ₃ + OH	-20
+ O-OCH3	\rightarrow CH ₃ SO ₃ + OCH ₃	-27
+ 0-00	\rightarrow CH ₃ SO ₃ + O ₂	-61
+ O-NO ₂	\rightarrow CH ₃ SO ₃ + NO ₂	-36

Table III. Summary of reaction enthalpies for CH₃SO_x oxidation

Note: The formation enthalpies of CH_3SO_x radicals are estimated from the bond dissociation energies of corresponding species estimated by Benson (1978) and Kerr and Calvert (1984). The formation enthalpies of other species are from Shum and Benson (1983) and Baulch *et al.* (1984).

thermic with similar enthalpy changes, thus suggesting that all these reactions are expected to proceed rapidly in the atmosphere. For comparison, Table IV presents the rate constants as well as the reaction enthalpies for CH_3SO_x oxidation by NO_2 and O_3 and for HSO_x reactions. For both CH_3SO_x and HSO_x radicals, the observed trend in kinetic data is quite consistent with that predicted from thermodynamic considerations. The rate constants for CH_3SO_x radicals are similar to those for HSO_x radicals, and so are the corresponding enthalpy changes. Therefore, rate constants for CH_3SO_x oxidation can be estimated from those of the corresponding HSO_x reactions. While no rate constant is available, the oxidation of the CH_3SO_2 radical by NO_2 may be fast since the similar reaction

$$HOSO_2 + NO_2 \rightarrow HOS(O)_2 - ONO \rightarrow HOS(O)_2O + NO$$

was estimated to be relatively fast at 300 K (Benson, 1978). Although no rate constants are available for the reactions of peroxy radicals with CH_3SO_x , they should be of a similar magnitude as those for the reaction with NO_2 since reaction enthalpies for the analogous reactions between NO_2 and peroxy radicals are similar. The observations of a high SO_2 yield in the photolysis of $CH_3SCH_3-H_2O_2$ mixtures in air (Barnes *et al.*, 1988) and in the photolysis of CH_3SSCH_3 in air (Hatakeyama and Akimoto, 1983; Yin *et al.*, 1990) are consistent with a rapid oxidation of CH_3S and CH_3SO by HO_2 and CH_3OO . Furthermore, the enthalpy changes listed in Table IV for all the possible pathways of $CH_3SO_x + O_3$ reactions indicate that oxidation is thermodynamically most favourable, although H-atom abstraction is also significantly exothermic.

In experiments carried out at high NO_x concentrations (Hatakeyama *et al.*, 1982; Hatakeyama and Akimoto, 1983; Grosjean, 1984; Barnes *et al.*, 1987b), CH₃SO_x radicals are oxidized mainly by NO₂. At much lower NO_x concentrations, e.g., in the marine atmosphere, reactions of CH₃SO_x with ozone may become the most important pathway for CH₃SO_x radicals.

Finally, the addition of NO₂ (or NO₃) to CH₃SO_x may also be a minor pathway for CH₃SO_x radicals. Although CH₃SNO₂ has been tentatively identified as a reaction product in several studies (Niki *et al.*, 1983a; Grosjean, 1984; MacLeod *et al.*, 1986; Barnes *et al.*, 1987b), the corresponding addition pathway is probably only a minor component of the CH₃SO_x + NO₂ reaction, which proceeds mainly via oxidation. Comparing the NO₂ reactions of CH₃O and CH₃S:

$$CH_{3}O + NO_{2} \rightarrow CH_{3}O - NO_{2} major$$

$$\rightarrow CH_{3}O - ONO negligible$$

$$CH_{3}S + NO_{2} \rightarrow CH_{3}S - NO_{2} minor$$

$$\rightarrow CH_{3}S - ONO major$$

the CH₃O—ONO bond is very weak and no CH₃OONO has been observed to form. In contrast, the CH₃S—ONO bond is expected to be stronger than that in CH₃S—NO₂ because of the larger difference of electronegativity. Thus, the domi-

Reaction		$k \times 10^{11}$ (cm ³ molecule ⁻¹ s ⁻¹)	ΔH [°] ₂₉₈ (kcal/mole)
NO ₂ Reaction			
$NO_2 + HS$	\rightarrow HSO + NO	2.4-8.6	-25.0
$+ CH_3S$	\rightarrow CH ₃ SO + NO	5.1-11.0	-32
$+ C_2 H_5 S$	\rightarrow C ₂ H ₅ SO + NO	9.2	~ -30
$+ i - C_3 H_7 S$	$\rightarrow i$ -C ₃ H ₇ SO + NO	5.9	~ -30
$NO_2 + HSO$	\rightarrow HSO ₂ + NO	0.41-0.96	-23.3
$+ CH_3SO$	\rightarrow CH ₃ SO ₂ + NO	0.8-3	-26
$NO_2 + HSO_2$	→ Product		
$+ CH_3SO_2$	\rightarrow CH ₃ SO ₃ + NO		-13
$O_3 + HS$	\rightarrow HSO + O ₂	0.29-0.32	-72.7
$+ CH_3S$	\rightarrow CH ₃ SO + O ₂	0.41-0.57	-80
	\rightarrow CH ₂ S + O ₂ + OH		-31
$O_3 + HSO$	\rightarrow HSO ₂ + O ₂	0.001-0.01	-71
	\rightarrow HS + 2O ₂		+5.9
$+ CH_3SO$	\rightarrow CH ₃ S + O ₂ + O ₂	~0.06	+12
$+ CH_3SO$	\rightarrow CH ₃ SO ₂ + O ₂		-74
	\rightarrow CH ₂ SO + OH + O ₂		-22
$O_3 + HSO_2$	→ Product		
$+ CH_3S(O)O$	\rightarrow CH ₃ SO + O ₂ + O ₂		+6
$+ CH_3SO_2$	\rightarrow CH ₃ SO ₃ + O ₂		-61
+ CH ₃ SO ₂	\rightarrow CH ₂ SO ₂ + OH + O ₂		-39

Table IV. Summary of kinetic data for NO₂ and O₃ reaction

Notes:

- 1. The rate constants were measured at room temperature and at low or high pressure by various techniques.
- 2. Only the dominant pathway is given for each reaction.

References:

NO₂ reactions:

Black (1984), Bulatov et al. (1984), Friedl et al. (1985), Wang et al. (1987), Schönle et al. (1987), Stachnik and Molina (1987), Lovejoy et al. (1987), Balla et al. (1986), Tyndall and Ravishankara (1988), Black et al. (1988a, b), Mellouki et al. (1988), Domine et al. (1989).

O₃ reactions:

Friedl *et al.* (1985), Schönle *et al.* (1987), Tyndall and Ravishankara (1987), Tyndall and Ravishankara (1989), Domine *et al.* (1989).

Reaction enthalpy:

The formation enthalpies of CH_3SO_x radicals are estimated from the bond dissociation energies of corresponding species estimated by Benson (1978) and Kerr and Calvert (1984). The formation enthalpy of HSO radical is uncertain within the range of (-5 ± 4) – (-0.4 ± 2) kcal/mole (Slagle *et al.*, 1978; Benson, 1978; Davidson *et al.*, 1982; Luke and McLean, 1985) and the value estimated by Benson (1978) was used. The formation enthalpies of other species

nant pathway in this case is the formation of the adduct CH_3SONO , which is thermally unstable and further decomposes rapidly to CH_3SO and NO. This may explain the relative difficulty of detecting CH_3SNO_2 in the experiments, which may also be true for the analogous species of $CH_3S(O)NO_2$ and $CH_3S(O)_2NO_2$.

5.3. Decomposition of RSO_x Radicals

Unimolecular decomposition reactions of CH_3SO_x radicals and the corresonding estimated bond dissociation energies are given below,

 $\Delta H^{\circ}_{298} \text{ (kcal/mole)}$ $CH_{3}SO \xrightarrow{M} CH_{3} + SO \qquad 50 \pm 2$ $CH_{3}SO_{2} \xrightarrow{M} CH_{3} + SO_{2} \qquad 17.2$ $CH_{3}SO_{3} \xrightarrow{M} CH_{3} + SO_{3} \qquad 22$

(Benson, 1978; Kerr and Calvert, 1984). Examination of BDE values suggests that the CH₃SO radical should be stable with respect to its decomposition, and that CH₃SO₂ and CH₃SO₃ radicals should decompose rapidly. According to the above mechanism, the CH₃ radical is postulated to form, but experimental studies so far have yield conflicting results. On the one hand, MacLeod *et al.* (1986) studied the reactions of CH₃SH + NO₃ and CH₃SSCH₃ + NO₃ in the dark and observed CH₃ONO₂ in both systems, strongly suggesting that the CH₃ radical was the intermediate species. CH₃ONO₂ was also observed in the CH₃SSCH₃ + NO₂ study of Barnes *et al.* (1987b), clearly indicating the formation of CH₃ radicals. On the other hand, the absence of CH₃ONO in the photolysis of CH₃SNO in air with light above 500 nm (Hatakeyama and Akimoto, 1983; Hatakeyama, 1987) was cited as an evidence for lack of CH₃ formation in their system, where CH₃ONO would be formed by:

$$CH_3 + O_2 \xrightarrow{M} CH_3O_2$$

$$CH_3O_2 + NO \longrightarrow CH_3O + NO_2$$

$$CH_3O + NO \xrightarrow{M} CH_3ONO$$

However, the same authors observed CH_3ONO in the system of $CH_3SSCH_3 + C_2H_5ONO + NO + h\nu$ (Hatakeyama and Akimoto, 1983). In this system, CH_3ONO is unlikely to form from CH_3CHO since in the analogous system of $CH_3SCH_3 + C_2H_5ONO + NO + h\nu$ Niki *et al.* (1983b) measured a lower limit of 25% of CH_3ONO without consuming the formed CH_3CHO .

It should be pointed out that lack of observation of CH_3ONO and CH_3ONO_2 does not necessarily indicate the absence of the formation of the CH_3 radical since

are obtained from Benson (1978), Hwang and Benson (1979), Shum and Benson (1983), and Baulch *et al.* (1984). The enthalpy changies for $C_2H_5S + NO_2$ and *i*- $C_3H_7S + NO_2$ reactions are estimated by Balck *et al.* (1988a, b).

the rate constants of $CH_3O + NO_x$ are uncertain and the competitive reaction of $CH_3O + O_2$ is the major loss pathway for CH_3O radical.

Another observation which has been used to argue against the formation of CH_3 radical by Hatakeyama and Akimoto (1983) is that little CH_3OH was formed from the photolysis of CH_3SSCH_3 in air although HCHO yield was more than 90% because from following mechanism and available rate constants,

$$CH_{3} + O_{2} \xrightarrow{M} CH_{3}O_{2}$$

$$CH_{3}O_{2} + CH_{3}O_{2} \rightarrow 2 CH_{3}O + O_{2}$$

$$\rightarrow HCHO + CH_{3}OH + O_{2}$$

$$CH_{3}O + O_{2} \rightarrow HCHO + HO_{2}$$

a yield of 46% CH₃OH was expected. However, such result not only was consistent with the generation of CH₃ radical in the system, but also was a clear evidence that $CH_3O_2 + CH_3S$ reaction occurred, i.e.,

 $CH_3O_2 + CH_3S \rightarrow CH_3O + CH_3SO$

therefore, HCHO should be expected to form, but not CH₃OH.

Mellouki *et al.* (1988) studied the decomposition of the CH_3SO_2 radical by a discharge flow-EPR-mass spectrometric technique and estimated $k_{CH_3SO_2}$ to be about 10 s⁻¹ at room temperature and 0.33 Torr pressure. This rate constant may be higher in the atmosphere since the reaction is probably pressure dependent. Moreover, the decomposition rate of CH_3SO_2 radical may be enhanced in sunlight because CH_3SO_2 absorbs strongly in the 300–600 nm region with a maximum at ca. 350 nm (Chatgilialogou *et al.*, 1987).

In summary, thermodynamic, kinetic and some (but not all) product data indicate that unimolecular decomposition is an important loss process for CH_3SO_x radicals.

5.4. Formation of CH₃SSCH₃

The formation of CH₃SSCH₃ has been observed in the systems of CH₃SNO air— $h\nu$ (Niki *et al.*, 1983a), CH₃SNO—NO_x—air— $h\nu$ (Hatakeyama, 1987) and CH₃SH—N₂O₅—air in the dark (MacLeod *et al.*, 1986). The formation of CH₃SSCH₃ is puzzling since CH₃S radical recombination to produce CH₃SSCH₃ ($k = 4.1 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ (Graham *et al.*, 1964b)) is too slow to compete with the CH₃S + NO₂ reaction ($k = 6.1 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ (Tyndall and Ravishankara, 1987)) at the high level of NO₂ used in the above studies. Therefore, there must be other routes to produce CH₃SSCH₃. Based on thermochemistry considerations, the following reaction is proposed to account for the formation of CH₃SSCH₃,

$$CH_3SNO + CH_3S \rightarrow CH_3S \rightarrow CH_3S \rightarrow CH_3S - SCH_3 + NO$$

Since BDE(CH₃S—NO) = 25 ± 1 kcal/mole is much less than BDE(CH₃S— SCH₃) = 74 ± 2 kcal/mole (Benson, 1978), the above reaction is expected to be fast. In fact, from the experimental data of CH₃S¹⁴NO + ¹⁵NO + N₂ system obtained by Niki *et al.* (1983a) and using a simple mechanism including CH₃S radical, NO, CH₃SNO and CH₃SSCH₃ species, we estimate a value of 5.5×10^{-12} cm³ molecule⁻¹ s⁻¹ for the rate constant of the CH₃S + CH₃SNO reaction. The validity of our proposed mechanism for formation of CH₃SSCH₃ can be further tested using Hatakeyama's (1987) experimental data for the CH₃SNO—NO_x—air—*hv* system. Assuming CH₃S is mainly consumed by the following two reactions,

$$CH_3S + CH_3SNO \rightarrow CH_3SSCH_3 + NO$$
 (a)

$$+ NO_2 \rightarrow CH_3SO + NO$$
 (b)

and that the reaction between CH₃S and CH₃SNO is the sole reaction responsible for the production of CH₃SSCH₃, the CH₃SSCH₃ yield is therefore proportional to the ratio of reaction rates, R_a/R_b , or to the ratio of [CH₃SNO]/[NO₂], i.e.,

$$\frac{R_a}{R_b} = \frac{5.5 \times 10^{-12}}{6.1 \times 10^{-11}} \times \frac{[\text{CH}_3\text{SNO}]}{[\text{NO}_2]}$$

As a first approximation, the yield of CH_3SSCH_3 should be roughly proportional to the initial concentration ratio, $[CH_3SNO]_o/[NO_2]_o$ (no time profiles of CH_3SNO and NO₂ were available). Initial concentration and CH_3SSCH_3 yields are listed in Table V, and indeed show a high degree of correlation. It should be pointed out that the CH_3SSCH_3 yield does not anticorrelate with the initial O₂ concentration directly, which was interpreted by Hatakeyama originally, because the consumption of CH_3S due to $CH_3S + O_2$ reaction is minor under such high concentration of NO₂ (1.3–10.5 ppm) according to the apparent rate constant of 2.5 × 10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ (Tyndall and Ravishankara, 1988). However, the presence of high O₂ concentration in the system is necessary to reconvert NO to NO₂ and maintain the high NO₂ concentration by the following reactions,

$$CH_{3} + O_{2} \xrightarrow{M} CH_{3}O_{2}$$

$$CH_{3}O_{2} + NO \longrightarrow CH_{3}O + NO_{2}$$

$$CH_{3}O + O_{2} \longrightarrow HCHO + HO_{2}$$

$$HO_{2} + NO \longrightarrow OH + NO_{2}$$

$$CH_{3}SSCH_{3} + OH \longrightarrow CH_{3}S + CH_{3}SOH$$

and also the reaction of $CH_3SSCH_3 + OH$ decreases the production yield of CH_3SSCH_3 . The high CH_3SSCH_3 yield observed in the absence of O_2 (which is shown in Table V at last line), despite the relatively low ratio of $[CH_3SNO]_{o}/$

341

$[CH_3SNO]_0/[NO_2]_0$	CH ₃ SSCH ₃ Yield	$[O_2]_{\theta}$ (Torr)
7.97	0.67	152
6.75	0.52	76
6.24	0.54	152
4,94	0.42	380
4.09	0.20	760
1.85	0.18	152
1.09	0.13	152
0.74	-	152
5.96	0.71	~0

Table V. Correlation between CH₃SSCH₃ yield and initial concentration

Note: The CH₃SSCH₃ yield is measured from the photolysis of CH₃SNO—NO_x—air mixtures by Hatakeyama (1987).

 $[NO_2]_o$, is not inconsistent with our mechanism since the competition cannot be maintained in this case.

In the dark reaction of CH₃SH with N₂O₅ in air (MacLeod *et al.*, 1986), several reactions may be responsible for the formation of CH₃SSCH₃. The formation of CH₃SSCH₃ was only observed in the presence of O₂ and CH₃ was also produced, as indicated by the observation of CH₃ONO₂. Thus, it is likely that OH was produced from CH₃O₂. Therefore, CH₃S could have formed by reaction of CH₃SNO₂ to produce CH₃SSCH₃:

$$CH_{3}S + CH_{3}SNO \rightarrow CH_{3}SSCH_{3} + NO$$
$$+ CH_{3}SNO_{2} \rightarrow CH_{3}SSCH_{3} + NO_{2}$$
$$+ CH_{3}SONO_{2} \rightarrow CH_{3}SSCH_{3} + NO_{3}$$

Although no bond dissociation energies are available for CH_3S — NO_2 and CH_3S — ONO_2 bonds, the S—N and S—O bonds in the above three species are expected to be weaker than the S—S bond of CH_3S — SCH_3 .

Due to the rapid photolysis of CH_3SNO , CH_3SSCH_3 formation by the reaction of CH_3S with CH_3SNO will *not* be important in the daytime atmosphere.

6. Reaction of RS(O)_rOO Radicals

The reactivity of $CH_3S(O)_xOO$ radicals may be more similar to that of peroxy radicals than to that of sulfur radicals. This is consistent with the prediction, from a recent *ab initio* molecular orbital calculation, that the electron spin density on O atoms in CH_3SOO is similar to that in CH_3OO (Swarts *et al.*, 1989). In fact, $CH_3S(O)_xOO$ radicals may be even more reactive than peroxy radicals by virtue of the weaker O—O bonds. Although no thermodynamic data are available, the relative reactivity of $CH_3S(O)_xOO$ radicals is expected to be

343

$$CH_3SOO > CH_3S(O)OO > CH_3S(O)_2OO$$

since the relative strength of O-O bond is in the order of

$$CH_3SO - O < CH_3S(O)O - O < CH_3S(O)_2O - O.$$

The major loss process for $CH_3S(O)_xOO$ radicals will be reduction reactions involving NO or CH_3SO_x , although self-reaction and H-atom abstraction may also be important. Thus, for NO and CH_3S :

$$CH_{3}SOO + NO \longrightarrow CH_{3}SO + NO_{2}$$
$$+ CH_{3}S \longrightarrow CH_{3}SO + CH_{3}SO$$
$$CH_{3}S(O)OO + NO \longrightarrow CH_{3}SO_{2} + NO_{2}$$
$$+ CH_{3}S \longrightarrow CH_{3}SO_{2} + CH_{3}SO$$
$$CH_{3}S(O)_{2}OO + NO \longrightarrow CH_{3}SO_{3} + NO_{2}$$
$$+ CH_{3}S \longrightarrow CH_{3}SO_{3} + CH_{3}SO$$

These reactions are expected to be fast and comparable to the reaction of CH_3O_2 with NO, $k = 7.6 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. At high NO concentration, $CH_3S(O)_xOO$ will oxidize NO to NO₂; at low NO_x concentration, the reactions between $CH_3S(O)_xOO$ and CH_3SO_x radicals become importat, competing with the reactions between other peroxy radicals and CH_3SO_x radicals.

The tentative identification of $CH_3S(O)OONO_2$ by Barnes *et al.* (1987b) suggests that the competition reaction of NO_2 for $CH_3S(O)OO$ is important; this may also hold true for the $CH_3S(O)_2OO$ radical.

7. Formation of SO₂ and CH₃SO₃H

Although SO₂ and CH₃SO₃H have been identified as major reaction products in several studies (Grosjean and Lewis, 1982; Hatakeyama *et al.*, 1982, 1985; Hatakeyama and Akimoto, 1983; Grosjean, 1984; Barnes *et al.*, 1987b, 1988), their formation pathways are still poorly characterized. In this section, we discuss SO₂ and CH₃SO₃H formation pathways, and examine the effects of high or low NO_x concentration on the yield distribution of SO₂ and CH₃SO₃H.

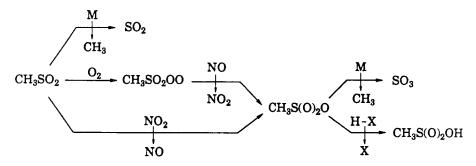
The analysis presented in the preceding sections makes it clear that SO_2 and CH_3SO_3H can be produced in both addition or abstraction pathways. The major formation pathways for SO_2 and CH_3SO_3H are compiled below:

$$CH_{3}SO_{2} \xrightarrow{M} SO_{2} + CH_{3}$$

$$CH_{3}SO_{3} + HCHO \longrightarrow CH_{3}SO_{3}H + HCO$$

$$+ CH_{3}SCH_{3} \longrightarrow CH_{3}SO_{3}H + CH_{3}SCH_{2}$$

$$+ CH_{3}SH \longrightarrow CH_{3}SO_{3}H + CH_{3}S$$


$$+ CH_{3}SOH \longrightarrow CH_{3}SO_{3}H + CH_{3}SO$$

$$+ CH_{3}SO_{2}H \rightarrow CH_{3}SO_{3}H + CH_{3}SO_{2}$$

+ HONO $\rightarrow CH_{3}SO_{3}H + NO_{2}$
+ $H_{2}O_{2} \rightarrow CH_{3}SO_{3}H + HO_{2}$
+ $CH_{3}OH \rightarrow CH_{3}SO_{3}H + CH_{2}OH$
+ $HO_{2} \rightarrow CH_{3}SO_{3}H + O_{2}$

The unimolecular decomposition of CH_3SO_2 is the dominant pathway for SO_2 production, and may be enhanced in sunlight as discussed earlier. The bond dissociation energies of the C—H, S—H and O—H bonds in the H-donors listed above are in the range 49–96 kcal/mole (Benson, 1978; McMillen and Golden, 1982; Shum and Benson, 1983, 1985; Kerr, 1985) and are much smaller than that for $CH_3S(O)_2O$ —H bond of about 104 kcal/mole or more. In smog chamber experiments, especially at high concentrations of RSR', the reactions of CH_3SO_3 with RSR' (including CH_3SOH) and with HCHO will be the dominant pathways for CH_3SO_3H formation compared with the decomposition of the CH_3SO_3 radical.

The relative importance of addition and abstraction is still uncertain for the reaction of CH_3SO_3 with organosulfur compounds. Considering the relatively strong C—H bonds in CH_3SCH_3 and CH_3SSCH_3 (about 97 kcal/mole) and the relatively high electron density on S atom, electrophilic addition of CH_3SO_3 to CH_3SCH_3 and CH_3SSCH_3 is probably more important than H-atom abstraction, as is the case for other free radicals including OH, NO_3 , $O(^{3}P)$ and IO.

Since SO_2 and CH_3SO_3H are produced mainly from CH_3SO_2 , the competition between CH_3SO_2 decomposition and further oxidation to CH_3SO_3 will determine their yield distribution, which is shown schematically as follows:

In the absence of NO_x or at very low NO_x concentration, neither the oxidation of CH_3SO_2 by peroxy radicals nor the reduction of $CH_3S(O)_2OO$ by CH_3SO_x radicals will be fast since the concentrations of those radicals are very low. In this case, the competition is dominated by the unimolecular decomposition of the CH_3SO_2 radical to form SO_2 . This is consistent with the observation of high SO_2 yield in the systems of $CH_3SCH_3-H_2O_2$ —air— $h\nu$ (Barnes *et al.*, 1988), and CH_3SSCH_3 —air— $h\nu$ (Hatakeyama and Akimoto, 1983; Yin *et al.*, 1990). At higher NO_x concentrations (>0.1 ppm), the reactions $CH_3SO_2 + NO_2$ and $CH_3S(O)_2OO + NO$,

especially the later, compete effectively with CH_3SO_2 decomposition. In this case, the yield of SO_2 decreases and that of CH_3SO_3H increases, in agreement with experimental observations (Grosjean and Lewis, 1982; Hatakeyama *et al.*, 1982, 1985; Hatakeyama and Akimoto, 1983; Grosjean, 1984; Barnes *et al.*, 1987b, Yin *et al.*, 1990).

The effects of NO_x on the yield distribution of SO₂ and CH₃SO₃H can be used to explain the NO_x effects on the observed rate constants of initial reactions mentioned in section 2.4.2. As the NO_x concentration increased in the systems, the formation rate of CH₃SO₃ is increased, and so is the rate of CH₃SO₃H formation. Also in those experiments, the concentration of CH₃SH and CH₃SCH₃ were very high and the reaction between CH₃SO₃ and CH₃SH or CH₃SCH₃ should be the dominant one for CH₃SO₃H formation. Therefore, the observed decay rate of CH₃SH or CH₃SCH₃ will be enhanced and the measured rate constants of the initial reactions will depend on the NO_x concentration. It should be mentioned that, although the difference between the bond dissociation energy of CH₃S(O)₂O—H and CH₃SCH₂—H bonds is relatively small (about 8 kcal/mole or more), the addition of CH₃SO₃ to CH₃SCH₃ may also contribute to the enhanced decay rate of CH₃SCH₃ since the CH₃SO₃ radical is analogous to NO₃ radical.

It should be pointed out that the formation mechanisms of SO₂ proposed by Balla and Heicklen (1985) and Hatakeyama (1987) do not predict SO₂ production in the absence of O₂, in contradiction with the observations of Barnes *et al.* (1987b) for the CH₃SSCH₃ $-NO_2-N_2$ system.

8. Missing Products

Experimental studies of organosulfur oxidation have so far yielded poor sulfur, nitrogen and carbon mass balances. Although concentrations of many measured compounds, including H_2SO_4 , CH_3SO_3H , HNO_3 and HCHO, may usually be underestimated due to wall losses, other unidentified products may also be produced, especially condensible species with high molecular weight. A speculative list of such products is given below:

$$\begin{array}{cccc} \mathrm{CH}_{3}\mathrm{S}(\mathrm{O})\mathrm{OO} + \mathrm{NO}_{2} & \xrightarrow{M} & \mathrm{CH}_{3}\mathrm{S}(\mathrm{O})\mathrm{OONO}_{2} \\ \mathrm{CH}_{3}\mathrm{S}(\mathrm{O})_{2}\mathrm{OO} + \mathrm{NO}_{2} & \xrightarrow{M} & \mathrm{CH}_{3}\mathrm{S}(\mathrm{O})_{2}\mathrm{OONO}_{2} \\ \mathrm{CH}_{3}\mathrm{SO}_{2} + \mathrm{RSR'} & \xrightarrow{M} & \mathrm{Adduct} \\ \mathrm{CH}_{3}\mathrm{SO}_{3} + \mathrm{RSR'} & \xrightarrow{M} & \mathrm{Adduct} \\ & & + \mathrm{NO} & \xrightarrow{M} & \mathrm{CH}_{3}\mathrm{S}(\mathrm{O})_{2}\mathrm{ONO} \\ & & + \mathrm{NO}_{2} & \xrightarrow{M} & \mathrm{CH}_{3}\mathrm{S}(\mathrm{O})_{2}\mathrm{ONO}_{2} \\ & & \mathrm{CH}_{3}\mathrm{SO}_{2} + \mathrm{NO}_{2} & \xrightarrow{M} & \mathrm{CH}_{3}\mathrm{S}(\mathrm{O})_{2}\mathrm{ONO} \end{array}$$

The peroxynitrate compounds may be thermally unstable and serve as a reservoir for both sulfur and nitrogen compounds. The CH₃SO₃ radical, which is analogous

to NO₃, may not only abstract hydrogen from RSR' or hydrocarbons but also add to RSR' or unsaturated hydrocarbons in the atmosphere. The adduct may undergo unimolecular decomposition to form condensible species. The possible $CH_3S(O)_2ONO_x$ products, which are similar to $HOS(O)_2ONO_x$ discussed by Benson (1978), may be easily absorbed on the reactor surfaces and exothermically hydrolyzed to CH_3SO_3H , HONO, or $HONO_2$. Two other condensible species, CH_3SOH and CH_3SO_2H , may also be lost on the reactor walls, although they could be further oxidized to SO_2 and CH_3SO_3H .

9. New Mechanisms for Atmospheric Oxidation of CH₃SCH₃ and CH₃SSCH₃

Based on the comprehensive analysis presented in the preceding sections, new mechanisms have been developed to describe the atmospheric chemistry of $CH_3SCH_3-NO_x$ —air— $h\nu$ (Tables VI, VII and IX) and $CH_3SSCH_3-NO_x$ —air— $h\nu$ (Table VIII). The difference between these two mechanisms lies mostly in their initial reactions. A detailed mechanism for CH_3SH photooxidation in the atmosphere could readily be developed using the appropriate initial reactions, with subsequent reactions identical to those presented here for CH_3SSCH_3 .

Major differences between the mechanisms presented here and those developed in our earlier work (Yin *et al.*, 1986) including the following:

- Detailed description of the reactions of CH₃S(O)CH₃, CH₃S(O)₂CH₃ and CH₃SOH.
- (2) Clear distinction between CH_3SO_x and $CH_3S(O)_xOO$ radicals.
- (3) Detailed elucidation of CH_3SO_x reaction mechanisms.
- (4) Delineation of the major pathways for SO_2 and CH_3SO_3H formation.

In order to evaluate the proposed new mechanisms and to determine the yield distribution of SO₂ and CH₃SO₃H under low NO_x conditions, a series of outdoor smog chamber experiments has been carried out for CH₃SCH₃—NO_x—air— $h\nu$ and CH₃SSCH₃—(NO_x)—air— $h\nu$ mixtures. The results of these experiments are presented in our companion paper, Part II.

Acknowledgement

This work was supported by National Science Foundation grant ATM-8503103. We thank Drs Barnes, Becker, Balla, Black, Hatakeyama and Akimoto, Hynes, Wine, Tyndall, and Ravishankara for communicating their results to us prior to publication.

Rea	ction	Rate constant ^a	Activation energy (K)	Ref.*	Note*
Inor	ganic Reactions				
1.	$NO_2 + h\nu \rightarrow NO + O(^3P)$				(1)
2.	$O(^{3}P) + O_{2} \xrightarrow{M} O_{3}$	1.5×10^{-14}	-5.60×10^{2}	2, 17	
3.	$O_3 + NO \rightarrow NO_2 + O_2$	1.8×10^{-14}	1.43×10^{3}	2	
4.	$O(^{3}P) + NO \xrightarrow{M} NO_{2}$	2.1×10^{-12}		3	
	$O(^{3}P) + NO_{2} \rightarrow NO + O_{2}$	9.7×10^{-12}	-1.2×10^{2}	3	
6.	$O(^{3}P) + NO_{2} \xrightarrow{M} NO_{3}$	1.8×10^{-12}	-4.2×10^{2}	6,17	
7.	$O(^{3}P) + NO_{3} \rightarrow NO_{2} + O_{2}$	1.0×10^{-11}		3	
8.	$O(^{3}P) + O_{3} \rightarrow 2 O_{2}$	8.0×10^{-15}	2.06×10^{3}	3	
9.	$O_3 + NO_2 \rightarrow NO_3 + O_2$	3.2×10^{-17}	2.45×10^{3}	3	
10.	$O_3 + NO_2 \rightarrow NO + 2O_2$	9.7×10^{-19}	2.45×10^{3}	17	
11.	$O_3 + OH \rightarrow HO_2 + O_2$	6.7×10^{-14}	1.0×10^{3}	3	
12.	$O_3 + HO_2 \rightarrow OH + 2 O_2$	2.0×10^{-15}	6.0×10^{2}	3	
13.	$O_3 + h\nu \rightarrow O(^{3}P) + O_2$	$4.0 \times 10^{-2} k_{NO_2}$		1, 19	
14.	$O_3 + H_2O + hv \rightarrow 2 OH + O_2$	$9.34 \times 10^{-22} k_{NO_2}$		1,9	(3)
15.	$HO_2 + OH \rightarrow O_2 + H_2O$	1.1×10^{-10}	-2.5×10^{2}	3	
16.	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	1.8×10^{-12}	-6.2×10^{2}	2	(2)
16.	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	1.8×10^{-12}	-6.2×10^{2}	2	(2)
17.	$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	1.3×10^{-12}	-9.8×10^{2}	2	(2)
18.	$HO_2 + HO_2 + H_2O \implies H_2O_2 + O_2 + H_2O$	4.0×10^{-30}	-2.8×10^{3}	2	(2)
19.	$HO_2 + HO_2 + H_2O \longrightarrow H_2O_2 + O_2 + H_2O$	2.8×10^{-30}	-3.2×10^{3}	2	(2)
20.	$H_2O_2 + OH \rightarrow HO_2 + H_2O$	1.7×10^{-12}	1.6×10^2	3	
21.	$H_2O_2 + h\nu \rightarrow 2 OH$	$7.1 \times 10^{-4} k_{NO_2}$		1	
22.	$NO + HO_2 \rightarrow NO_2 + OH$	8.3×10^{-12}	-2.4×10^2	3	
23.	$NO + NO + O_2 \rightarrow 2 NO_2$	$2.0 imes 10^{-38}$	-5.3×10^{2}	3	
24.	NO + OH \xrightarrow{M} HONO	6.6×10^{-12}		2	
25.	HONO + $h\nu \rightarrow \text{NO} + \text{OH}$	$1.7 \times 10^{-1} k_{NO_2}$		1	
26.	$HONO + OH \rightarrow NO_2 + H_2O$	4.9×10^{-12}	3.9×10^2	3	
27.	$HNO + O_2 \rightarrow NO + HO_2$	2.1×10^{-20}	5.0×10^{3}	17	
28.	$NO_2 + OH \xrightarrow{M} HONO_2$	1.1×10^{-11}		2, 17	
29.	$NO_2 + HO_2 \xrightarrow{M} HO_2 NO_2$	1.4×10^{-12}		2	
30.	$HO_2NO_2 \xrightarrow{M} HO_2 + NO_2$	8.5×10^{-2}	1.042×10^4	2	
31.	$HO_2NO_2 + OH \rightarrow NO_2 + H_2O + O_2$	5.0×10^{-12}	-3.6×10^{2}	3, 17	
32.	$NO_3 + OH \rightarrow NO_2 + HO_2$	2.3×10^{-11}		3	
33.	$NO_3 + NO \rightarrow 2 NO_2$	2.7×10^{-11}	-1.5×10^{2}	3	
34.	$NO_3 + NO_2 \rightarrow NO + NO_2 + O_2$	$4.0 imes 10^{-16}$	1.23×10^{3}	2	
35.	$NO_3 \xrightarrow{M} NO + O_2$	3.0×10^{-3}	6.84×10^{3}	17	
36.	$NO_3 + HO_2 \rightarrow HONO_2 + O_2$	4.3×10^{-12}		3	
37.	$NO_3 + h\nu \rightarrow 0.3 \text{ NO} + 0.7 \text{ NO}_2 + 0.7 \text{ O}(^3P)$	$1.55 \times 10^{1} k_{\rm NO_2}$		18	
38.	$NO_3 + NO_2 \xrightarrow{M} N_2O_5$	1.2×10^{-12}	$6.0 imes 10^{1}$	2, 17	

Table VI. Inorganic and aldehyde chemistry common to mechanisms of organosulfur species

Rea	stion	Rate constant ^a	Activation energy (K)	Ref.*	Note*
39.	$N_2O_5 \xrightarrow{M} NO_2 + NO_3$	5.2×10^{-2}	1.084×10^{4}	5, 17	
40.	$N_2O_5 + H_2O \rightarrow 2 HONO_2$	2.0×10^{-21}		3	
41.	$HONO_2 + OH \longrightarrow NO_3 + H_2O$	1.5×10^{-13}	-7.78×10^{2}	2, 3, 6	
42.	$CO + OH \xrightarrow{O_2} CO_2 + HO_2$	2.4×10^{-13}		3	
43.	$H_2 + OH \xrightarrow{O_2} HO_2 + H_2O$	6.7×10^{-15}	2.10×10^{3}	3	
Ald	chyde Reactions				
44.	HCHO + $h\nu \rightarrow H_2$ + CO	$3.3 \times 10^{-3} k_{\rm NO_2}$		19	
45.	HCHO + $h\nu \xrightarrow{O_2} 2 HO_2 + CO$	$2.3 \times 10^{-3} k_{\rm NO_2}$		19	
46.	HCHO + OH $\xrightarrow{O_2}$ HO ₂ + CO + H ₂ O	1.1×10^{-11}	1.1×10^{2}	3	
47.	$HCHO + NO_3 \xrightarrow{O_2} CO + HONO_2 + HO_2$	$6.0 imes 10^{-16}$		3	
48.	HCHO + O(³ P) $\xrightarrow{O_2}$ OH + HO ₂ + CO	1.6×10^{-13}	1.550×10^{3}	2	
49.	HCHO + HO ₂ \xrightarrow{M} O ₂ CH ₂ OH	7.0×10^{-14}	-6.25×10^{2}	3	
50.	$O_2CH_2OH \xrightarrow{M} HCHO + HO_2$	1.5×10^{2}	7.0×10^{3}	3	
51.	$O_2CH_2OH + NO \xrightarrow{O_2} HCOOH + NO_2 + HO_2$	7.6×10^{-12}	-1.8×10^{2}	2, 17	
52.	$O_2CH_2OH + HO_2 \rightarrow HO_2CH_2OH + O_2$	7.2×10^{-12}	-2.3×10^{3}	24, 25	
53.	$O_2CH_2OH + HO_2 \rightarrow HCOOH + H_2O + O_2$	4.8×10^{-12}	-2.3×10^{3}	24, 25	
54.	$2 O_2 CH_2 OH \rightarrow HCOOH + CH_2 (OH)_2 + O_2$	7.0×10^{-13}	-7.5×10^{2}	24, 25	
55.	$2 O_2 CH_2 OH \rightarrow 2 HCOOH + 2 HO_2 + O_2$	5.5×10^{-12}		24, 25	
56.	$HCOOH + OH \xrightarrow{O_2} H_2O + HO_2 + CO_2$	4.8×10^{-13}	7.7×10^{1}	3, 17	
57.	$CH_3 + O_2 \xrightarrow{M} CH_3O_2$	1.0×10^{-12}		2	
58.	$CH_3 + O_2 \rightarrow HCHO + OH$	5.0×10^{-17}		6	
59.	$CH_3O_2 + NO \rightarrow NO_2 + CH_3O$	7.6×10^{-12}	-1.80×10^{2}	3	
60.	$CH_3O_2 + NO_2 \xrightarrow{M} CH_3O_2NO_2$	4.1×10^{-12}		3	
61.	$CH_3O_2NO_2 \xrightarrow{M} CH_3O_2 + NO_2$	1.8	1.06×10^{4}	3	
62.	$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$	4.9×10^{-12}	-1.0×10^{3}	3	
63.	$CH_3O_2H + OH \rightarrow CH_3O_2 + H_2O$	3.9×10^{-12}	-1.9×10^{2}	26	
64.	$CH_3O_2H + OH \rightarrow HCHO + OH + H_2O$	1.5×10^{-12}	-1.9×10^{2}	26	
65.	$CH_3O_2 + CH_3O_2 \rightarrow CH_3OH + HCHO + O_2$	2.1×10^{-13}	-2.2×10^{2}	3	
66.	$CH_3O_2 + CH_3O_2 \rightarrow 2 CH_3O + O_2$	1.3×10^{-13}	-2.2×10^{2}	3	
67.	$CH_3O_2 + CH_3O_2 \rightarrow CH_3OOCH_3 + O_2$	3.0×10^{-14}	-2.2×10^{2}	3	
68.	$CH_3O + O_2 \rightarrow HCHO + HO_2$	1.9×10^{-15}	1.08×10^{3}	3	
69.	$CH_3O + NO_2 \xrightarrow{M} CH_3ONO_2$	1.5×10^{-11}		2	
70.	$CH_3O + NO_2 \rightarrow HCHO + HONO$	3.0×10^{-13}		3	
71.	$CH_3O + NO \xrightarrow{M} CH_3ONO$	3.0×10^{-11}		2	
72.	$CH_3ONO + h\nu \rightarrow CH_3O + NO$	$0.17 \ k_{NO_2}$		Е	(4)
73.	$CH_3O + NO \rightarrow HCHO + HNO$	1.3×10^{-12}		2	
74.	$CH_3OH + OH \xrightarrow{O_2} HCHO + HO_2 + H_2O$	9.0×10^{-13}	6.9×10^{2}	3, 17	

Table VI. (continued)

* References and notes are listed at the foot of Table IX.

Reaction	Rate constant ^a	Activation energy (K)	Ref.*	Note*
Initial Reactions				
75. $CH_3SCH_3 + OH \rightarrow CH_3SCH_2 + H_2O$	4.4×10^{-12}	2.34×10^{2}	3	(6)
76. $CH_3SCH_3 + OH \xrightarrow{M} CH_3S(OH)CH_3$	1.7×10^{-12}		3	(6)
77. $CH_3SCH_3 + O(^{3}P) \rightarrow CH_3SO + CH_3$	5.0×10^{-11}	-4.09×10^{2}	3, 8, 20	
78. $CH_3SCH_3 + O(^{3}P) \rightarrow CH_3S + CH_3O$	0.0		Е	(7)
79. $CH_3SCH_3 + NO_3 \rightarrow CH_3SCH_2 + HONO_2$	0.0		Е	(6)
80. $CH_3SCH_3 + NO_3 \xrightarrow{M} CH_3S(ONO_2)CH_3$	7.5×10^{-13}	-5.00×10^{2}	3, 27	(6)
81. $CH_3SCH_3 + NO_2 \rightarrow CH_3S(O)CH_3 + NO$	9.0×10^{-21}		4	
82. $CH_3SCH_3 + O_3 \rightarrow Product$	0.0		Е	(7)
Adduct Reactions and other Radical Reactions				
83. $CH_3S(OH)CH_3 \xrightarrow{M} CH_3SOH + CH_3$	5.0×10^{5}		Е	(6)
84. $CH_3S(OH)CH_3 + O_2 \rightarrow CH_3S(O)CH_3 + HO_2$	2.0×10^{-12}		Е	(6)
85. $CH_3S(OH)CH_3 + O_2 \xrightarrow{M}$				
CH ₃ S(OH)(OO)CH ₃	1.0×10^{-12}		E	(6)
86. $CH_3S(OH)(OO)CH_3 \xrightarrow{M_4}$				
$CH_3S(O)CH_3 + HO_2$	1.0×10^{1}		Е	(6)
87. $CH_3S(OH)(OO)CH_3 + NO \rightarrow$				
$CH_3S(OH)(O)CH_3 + NO_2$	5.0×10^{-12}		Е	(6)
88. $CH_3SCH_2 + O_2 \xrightarrow{M} CH_3SCH_2OO$	7.3×10^{-13}		15	
89. $CH_3SCH_2OO + NO \rightarrow CH_3SCH_2O + NO_2$	8.0×10^{-12}		E	(11)
90. $CH_3SCH_2OO + CH_3S \rightarrow CH_3SCH_2O$				
$+ CH_3SO$	6.1×10^{-11}		E	(11)
91. $CH_3SCH_2OO + CH_3SO \rightarrow CH_3SCH_2O$				
$+ CH_3SO_2$	4.0×10^{-12}		Е	(11)
92. $CH_3SCH_2OO + CH_3SO_2 \rightarrow CH_3SCH_2O$				
$+ CH_3SO_3$	2.5×10^{-13}		Е	(11)
93. $CH_3SCH_2OO + HO_2 \rightarrow CH_3SCH_2OOH$				
+ O ₂	1.5×10^{-12}		E	(11)
94. $CH_3SCH_2OO + CH_3O_2 \rightarrow CH_3SCH_2O$				
$+ CH_3O + O_2$	1.8×10^{-13}		Е	(11)
95. 2 CH ₃ SCH ₂ OO \rightarrow 2 CH ₃ SCH ₂ O + O ₂	$8.6 imes 10^{-14}$		Е	(11)
96. $CH_3SCH_2O \xrightarrow{M} CH_3S + HCHO$	1.0×10^{1}		E	(8)
97. $CH_3S(ONO_2)CH_3 \xrightarrow{M} CH_3SCH_2 + HONO_2$	1.0×10^{2}		E	(6)
98. $CH_3S(ONO_2)CH_3 + O_2 \rightarrow Product$	0.0		Е	(7)
99. $CH_3SONO_2 \xrightarrow{M} CH_3SO + NO_2$	1.0×10^{0}		Е	(8)
$CH_3S(O)CH_3$ Reactions				
100. $CH_3S(O)CH_3 + OH \rightarrow CH_3S(O)CH_2 + H_2O$	0.0		E	(7)
101. $CH_3S(O)CH_3 + OH \xrightarrow{M} CH_3S(OH)(O)CH_3$	5.8×10^{-11}		14	(6)
102. $CH_3S(OH)(O)CH_3 \xrightarrow{M} CH_3SO_2H + CH_3$	1.5×10^{7}		22	(6)

Table VII. Atmospheric photooxidation mechanism for dimethyl sulfide

349

Reaction	Rate constant ^a	Activation energy (K)	Ref.*	Note*
103. $CH_3S(OH)(O)CH_3 + O_2 \rightarrow CH_3S(O)_2CH_3$				
+ HO ₂	1.2×10^{-12}		Е	(6)
104. $CH_3S(O)CH_2 \xrightarrow{M} CH_3S + HCHO$	1.0×10^{2}		Е	(8)
105. $CH_3S(O)CH_2 + O_2 \xrightarrow{M} CH_3S(O)CH_2OO$	1.0×10^{-12}		Е	(10)
106. $CH_3S(O)CH_2OO + NO \rightarrow CH_3S(O)CH_2O$				
+ NO ₂	$6.0 imes 10^{-12}$		Е	(11)
107. $CH_3S(O)CH_2OO + CH_3S \rightarrow$				
$CH_3S(O)CH_2O + CH_3SO$	5.0×10^{-11}		Е	(11)
108. $CH_3S(O)CH_2OO + CH_3SO \rightarrow$				
$CH_3S(O)CH_2O + CH_3SO_2$	4.0×10^{-12}		Е	(11)
109. $CH_3S(O)CH_2OO + CH_3SO_2 \rightarrow$				
$CH_3S(O)CH_2O + CH_3SO_3$	2.5×10^{-13}		Е	(11)
110. $CH_3S(O)CH_2OO + HO_2 \rightarrow$				
$CH_3S(O)CH_2OOH + O_2$	1.5×10^{-12}		Е	(11)
111. $CH_3S(O)CH_2OO + CH_3O_2 \rightarrow$				
$CH_3S(O)CH_2O + CH_3O + O_2$	1.8×10^{-13}		Е	(11)
112. 2 CH ₃ S(O)CH ₂ OO \rightarrow 2 CH ₃ S(O)CH ₂ O				
$+ O_2$	$8.6 imes 10^{-14}$		Е	(11)
113. $CH_3S(O)CH_2O \xrightarrow{M} CH_3SO + HCHO$	1.0×10^2		È	(8)
$CH_3S(O)_2CH_3$ Reactions				
114. $CH_3S(O)_2CH_3 + OH \rightarrow CH_3S(O)_2CH_2$				
+ H ₂ O	$1.0 imes 10^{-14}$		Е	(6)
115. $CH_3S(O)_2CH_2 + O_2 \xrightarrow{M} CH_3S(O)_2CH_2OO$	7.3×10^{-13}		Е	(10)
116. $CH_3S(O)_2CH_2OO + NO \rightarrow CH_3S(O)_2CH_2O$				
$+ NO_2$	5.0×10^{-12}		Е	(11)
117. $CH_3SO_2CH_2OO + CH_3S \rightarrow$				
$CH_3S(O)_2CH_2O + CH_3SO$	5.0×10^{-11}		E	(11)
118. $CH_3S(O)_2CH_2OO + CH_3SO \rightarrow$				
$CH_3S(O)_2CH_2O + CH_3SO_2$	4.0×10^{-12}		Е	(11)
119. $CH_3S(O)_2CH_2OO + CH_3SO_2 \rightarrow$				
$CH_3S(O)_2CH_2O + CH_3SO_3$	2.5×10^{-13}		Е	(11)
120 $CH_3S(O)_2CH_2OO + HO_2 \rightarrow$				
$CH_3S(O)_2CH_2OOH + O_2$	$1.5 imes 10^{-12}$		Е	(11)
121. $CH_3S(O)_2CH_2OO + CH_3O_2 \rightarrow$				
$CH_3S(O)_2CH_2O + CH_3O + O_2$	1.8×10^{-13}		Е	(11)
122. 2 $CH_3S(O)_2CH_2OO \rightarrow 2 CH_3S(O)_2CH_2O$				
+ O ₂	8.6×10^{-14}		Е	(11)
123. $CH_3S(O)_2CH_2O \xrightarrow{M} CH_3SO_2 + HCHO$	1.0×10^{1}		Е	(8)
CH ₃ SOH and CH ₃ SO ₂ H Reactions				
124. $CH_3SOH + OH \rightarrow CH_3SO + H_2O$	1.1×10^{-10}		Е	(6)

Table VII. (continued)

Table VII. (continued)

Reaction	Rate constant ^a	Activation energy (K)	Ref.*	Note*
125. $CH_3SOH + CH_3SO_3 \rightarrow CH_3SO + CH_3SO_3H$	3.4×10^{-12}		E	(6)
126. $CH_3SOH + CH_3O \rightarrow CH_3SO + CH_3OH$	3.4×10^{-12}		Е	(5)
127. $CH_3SOH + O(^3P) \rightarrow CH_3SO + OH$	3.4×10^{-12}		Е	(5)
128. $CH_3SOH + NO_3 \rightarrow CH_3SO + HONO_2$	3.4×10^{-12}		Е	(5)
129. $CH_3SOH + HO_2 \rightarrow CH_3SO + H_2O_2$	8.5×10^{-13}		E	(6)
130. $CH_3SOH + CH_3O_2 \rightarrow CH_3SO + CH_3OOH$	8.5×10^{-13}		Е	(6)
131. $CH_3SOH + NO_2 \rightarrow CH_3SO + HONO$	0.0		Е	(7)
132. $CH_3SOH + O_3 \rightarrow CH_3SO + OH + O_2$	0.0		Е	(7)
133. $CH_3SOH + CH_3SOH \longrightarrow CH_3SS(O)CH_3$				
$+ H_2O$	3.6×10^{-18}		Е	
134. $CH_3SO_2H + OH \rightarrow CH_3SO_2 + H_2O$	1.6×10^{-11}		Е	(6)
135. $CH_3SO_2H + CH_3SO_3 \rightarrow CH_3SO_2$				
$+ CH_3SO_3H$	1.0×10^{-13}		Е	(6)
136. $CH_3SO_2H + CH_3O \rightarrow CH_3SO_2 + CH_3OH$	1.0×10^{-13}		Е	(5)
137. $CH_3SO_2H + O(^{3}P) \rightarrow CH_3SO_2 + OH$	1.0×10^{-13}		Е	(5)
138. $CH_3SO_2H + NO_3 \rightarrow CH_3SO_2 + HONO_2$	1.0×10^{-13}		Е	(5)
139. $CH_3SO_2H + HO_2 \rightarrow CH_3SO_2 + H_2O_2$	1.0×10^{-15}		E	(5)
140. $CH_3SO_2H + CH_3O_2 \rightarrow CH_3SO_2$				
+ CH ₃ OOH	1.0×10^{-15}		Е	(5)
CH_3SO_x and $CH_3S(O)_xOO$ Reactions				
141. $CH_3S + O_2 \xrightarrow{M} CH_3SOO$	5.8×10^{-17}		Е	(6)
142. $CH_3SOO \xrightarrow{M} CH_3S + O_2$	6.0×10^{2}		Е	(6)
143. $CH_3S + NO_2 \rightarrow CH_3SO + NO$	6.1×10^{-11}		21	(6)
144. $CH_3S + NO_2 \xrightarrow{M} CH_3SNO_2$	6.1×10^{-13}		Е	(6)
145. $CH_3S + NO_3 \rightarrow CH_3SO + NO_2$	6.4×10^{-11}		Е	(5)
146. $CH_3S + O_3 \rightarrow CH_3SO + O_2$	$6.0 imes 10^{-12}$		Е	(6)
147. $CH_3S + HO_2 \rightarrow CH_3SO + OH$	3.0×10^{-11}		Е	(6)
148. $CH_3S + CH_3O_2 \rightarrow CH_3SO + CH_3O$	6.1×10^{-11}		Е	(6)
149. $CH_3S + NO \xrightarrow{M} CH_3SNO$	2.87×10^{-11}		10	
150. $CH_3SNO + h\nu \rightarrow CH_3S + NO$	$0.5 \ k_{\rm NO_2}$		Е	
151. $CH_3S + CH_3S \xrightarrow{M} CH_3SSCH_3$	4.15×10^{-11}		11	
152. $CH_3S + CH_3SNO \rightarrow CH_3SSCH_3 + NO$	1.4×10^{-12}		E	(6)
153. $CH_3S + OH \xrightarrow{M} CH_3SOH$	5.0×10^{-11}		Е	(5)
154. $CH_3SOO + NO \rightarrow CH_3SO + NO_2$	1.4×10^{-11}		Е	(11)
155. $CH_3SOO + CH_3S \rightarrow CH_3SO + CH_3SO$	8.0×10^{-11}		Е	(11)
156. $CH_3SOO + CH_3SO \rightarrow CH_3SO + CH_3SO_2$	9.0×10^{-12}		Е	(11)
157. $CH_3SOO + CH_3SO_2 \rightarrow CH_3SO + CH_3SO_3$	3.0×10^{-13}		Е	(11)
158. $CH_3SOO + HO_2 \rightarrow CH_3SOOH + O_2$	4.0×10^{-12}		Е	(11)
159. $CH_3SOO + CH_3O_2 \rightarrow CH_3SO + CH_3O$				
+ O ₂	5.5×10^{-12}		Е	(11)

Reaction	Rate constant ^a	Activation energy (K)	Ref.*	Note*
160. $CH_3SOO + CH_3SOO \rightarrow 2 CH_3SO + O_2$	6.0×10^{-12}		E	(11)
161. $CH_3SO \xrightarrow{M} SO + CH_3$	5.0×10^{-5}	2.52×10^{4}	Е	(6)
162. $CH_3SO + O_2 \xrightarrow{M} CH_3S(O)OO$	7.7×10^{-18}		Е	(6)
163. $CH_3S(O)OO \xrightarrow{M} CH_3SO + O_2$	1.7×10^{2}		Е	(6)
164. $CH_3SO + NO_2 \rightarrow CH_3SO_2 + NO$	3.0×10^{-12}		Е	(6)
165. $CH_3SO + NO_2 \xrightarrow{M} CH_3S(O)NO_2$	0.0		Е	(7)
166. $CH_3SO + NO_3 \rightarrow CH_3SO_2 + NO_2$	8.0×10^{-12}		Е	
167. $CH_3SO + O_3 \rightarrow CH_3SO_2 + O_2$	2.0×10^{-12}		Е	(6)
168. $CH_3SO + HO_2 \rightarrow CH_3SO_2 + OH$	1.5×10^{-12}		Е	(6)
169. $CH_3SO + CH_3O_2 \rightarrow CH_3SO_2 + CH_3O$	3.0×10^{-12}		Е	(6)
170. $CH_3SO + NO \xrightarrow{M} CH_3S(O)NO$	0.0		Е	(7)
171. $CH_3SO + CH_3SO \rightarrow CH_3S + CH_3SO_2$	7.5×10^{-12}		Е	.,
172. $CH_3SO + CH_3SNO \rightarrow CH_3S(O)SCH_3 + NO$	6.8×10^{-13}		Е	
173. $CH_3SO + OH \xrightarrow{M} CH_3SO_2H$	5.0×10^{-11}		Е	(5)
174. $CH_3S(O)OO + NO \rightarrow CH_3SO_2 + NO_2$	8.0×10^{-12}		Е	(11)
175. $CH_3S(O)OO + CH_3S \rightarrow CH_3SO_2 + CH_3SO$	7.0×10^{-11}		Е	(11)
176. $CH_3S(O)OO + CH_3SO \longrightarrow CH_3SO_2$				
$+ CH_3SO_2$	8.1×10^{-12}		Е	(11)
177. $CH_3S(O)OO + CH_3SO_2 \rightarrow CH_3SO_2$				
$+ CH_3SO_3$	3.0×10^{-13}		Е	(11)
178. $CH_3S(O)OO + HO_2 \rightarrow CH_3S(O)OOH + O_2$	3.0×10^{-12}		Е	(11)
179. $CH_3S(O)OO + CH_3O_2 \rightarrow CH_3SO_2 + CH_3O$				
+ O ₂	5.5×10^{-12}		Е	(11)
180. $CH_3S(O)OO + CH_3S(O)OO \rightarrow$				
$2 \text{ CH}_3 \text{SO}_2 + \text{O}_2$	6.0×10^{-12}		Е	(11)
181. $CH_3S(O)OO + NO_2 \xrightarrow{M} CH_3S(O)OONO_2$	1.0×10^{-12}		Е	(11)
182. $CH_3S(O)OONO_2 \xrightarrow{M} CH_3S(O)OO + NO_2$	4.2×10^{-3}		Е	(9)
183. $CH_3S(O)OO + CH_3SOH \rightarrow CH_3S(O)OOH$				
+ CH ₃ SO	4.0×10^{-13}		Е	(11)
184. $CH_3SO_2 \xrightarrow{M} SO_2 + CH_3$	1.1×10^{1}	8.656×10^{3}	Е	(6)
185. $CH_3SO_2 + O_2 \xrightarrow{M} CH_3S(O)_2OO$	2.6×10^{-18}		Е	(6)
186. $CH_3S(O)_2OO \xrightarrow{M} CH_3SO_2 + O_2$	3.3×10^{0}		Е	(6)
187. $CH_3SO_2 + NO_2 \rightarrow CH_3SO_3 + NO$	1.0×10^{-14}		Е	(6)
188. $CH_3SO_2 + NO_2 \xrightarrow{M} CH_3S(O)_2NO_2$	0.0		Е	(7)
189. $CH_3SO_2 + NO_3 \rightarrow CH_3SO_3 + NO_2$	1.0×10^{-14}		Е	(5)
190. $CH_3SO_2 + O_3 \rightarrow CH_3SO_3 + O_2$	5.0×10^{-15}		Е	(6)
191. $CH_3SO_2 + HO_2 \rightarrow CH_3SO_3 + OH$	2.5×10^{-13}		Е	(6)
192. $CH_3SO_2 + CH_3O_2 \rightarrow CH_3SO_3 + CH_3O$	2.5×10^{-13}		Е	(6)
193. $CH_3SO_2 + NO \xrightarrow{M} CH_3S(O)_2NO$	0.0		Е	(7)
194. $CH_3SO_2 + CH_3S \rightarrow CH_3S(O)_2SCH_3$	4.2×10^{-11}		Е	(5)
195. $CH_3SO_2 + CH_3SO_2 \rightarrow CH_3SO + CH_3SO_3$	7.5×10^{-12}		Е	(5)

Reaction	Rate constant ^a	Activation energy (K)	Ref.*	Note*
196. $CH_3SO_2 + CH_3SNO \rightarrow CH_3S(O)_2SCH_3$				
+ NO	6.8×10^{-13}		Е	
197. $CH_3SO_2 + OH \xrightarrow{M} CH_3SO_3H$	5.0×10^{-11}		E	(5)
198. $CH_3S(O)_2OO + NO \rightarrow CH_3SO_3 + NO_2$	1.0×10^{-11}		Е	(11)
199. $CH_3S(O)_2OO + CH_3S \rightarrow CH_3SO_3 + CH_3SO$	$6.0 imes 10^{-11}$		Е	(11)
200. $CH_3S(O)_2OO + CH_3SO \rightarrow CH_3SO_3$				
$+ CH_3SO_2$	8.0×10^{-12}		Е	(11)
201. $CH_3S(O)_2OO + CH_3SO_2 \rightarrow CH_3SO_3$				
+ CH ₃ SO ₃	3.0×10^{-13}		Е	(11)
202. $CH_3S(O)_2OO + HO_2 \rightarrow CH_3S(O)_2OOH$				
$+ O_2$	2.0×10^{-12}		Е	(11)
203. $CH_3S(O)_2OO + CH_3O_2 \rightarrow CH_3SO_3$				
$+ CH_3O + O_2$	5.5×10^{-12}		Е	(11)
204. $CH_3S(O)_2OO + CH_3S(O)_2OO \rightarrow$				
$2 \text{ CH}_{3}\text{SO}_{3} + \text{O}_{2}$	6.0×10^{-12}		Е	(11)
205. $CH_3S(O)_2OO + NO_2 \xrightarrow{M} CH_3S(O)_2OONO_2$	1.0×10^{-12}		Е	(11)
206. $CH_3S(O)_2OONO_2 \xrightarrow{M} CH_3S(O)_2OO + NO_2$	4.2×10^{-3}		Е	(9)
207. $CH_3S(O)_2OO + CH_3SOH \rightarrow$				
$CH_3S(O)_2OOH + CH_3SO$	4.0×10^{-13}		Е	(11)
CH ₃ SO ₃ H Formation				
208. $CH_3SO_3 \xrightarrow{M} SO_3 + CH_3$	1.6×10^{-1}		Е	(6)
209. $CH_3SO_3 + HCHO \xrightarrow{O_2} CH_3SO_3H + HO_2$				
+ CO	1.6×10^{-15}		Е	(6)
210: $CH_3SO_3 + CH_3SCH_3 \rightarrow CH_3SO_3H$				
$+ CH_3SCH_2$	6.8×10^{-14}		Е	(6)
211. $CH_3SO_3 + CH_3SCH_3 \xrightarrow{M} Adduct$	0.0		Е	(6)
212. $CH_3SO_3 + HO_2 \rightarrow CH_3SO_3H + O_2$	5.0×10^{-11}		Е	
213. $CH_3SO_3 + HONO \rightarrow CH_3SO_3H + NO_2$	6.6×10^{-16}		E	
214. $CH_3SO_3 + H_2O_2 \rightarrow CH_3SO_3H + HO_2$	3.0×10^{-16}		Е	
215. $CH_3SO_3 + CH_3OOH_5 \rightarrow CH_3SO_3H + CH_3O_2$	3.0×10^{-16}		Е	
216. $CH_3SO_3 + CH_3OH \xrightarrow{O_2} CH_3SO_3H + HO_2$				
+ HCHO	1.0×10^{-16}		Е	
217. $CH_3SO_3 + NO_2 \xrightarrow{M} CH_3S(O)_2ONO_2$	3.0×10^{-15}		Е	(6)
218. $CH_3S(O)_2ONO_2 + H_2O \rightarrow CH_3SO_3H$				
+ HONO ₂	1.0×10^{-15}		E	(5)
219. $CH_3SO_3 + NO \xrightarrow{M} CH_3S(O)_2ONO$	3.0×10^{-15}		Е	(6)
220. $CH_3S(O)_2ONO + H_2O \rightarrow CH_3SO_3H$				
+ HONO	1.0×10^{-15}		Е	(5)

Table VII. (continued)

* References and notes are listed at the foot of Table IX.

Reaction	Rate constant ^a	Activation energy (K)	Ref.*	Note*
Initial Reactions				
221. $CH_3SSCH_3 + OH \rightarrow CH_3SSCH_2 + H_2O$	0.0		Е	(6)
222. $CH_3SSCH_3 + OH \rightarrow CH_3SOH + CH_3S$	2.0×10^{-10}	-3.80×10^{2}	3	(6)
223. $CH_3SSCH_3 + O(^3P) \rightarrow CH_3SO + CH_3S$	1.3×10^{-10}	-2.50×10^{2}	3, 8, 20	
224. $CH_3SSCH_3 + NO_3 \rightarrow CH_3SSCH_2$				
$+ HONO_2$	0.0		Е	(7)
225. $CH_3SSCH_3 + NO_3 \xrightarrow{M} CH_3S(ONO_2)SCH_3$	7.0×10^{-13}	0.0	3	(6)
226. $CH_3SSCH_3 + h\nu \rightarrow CH_3S + CH_3S$	$5.0 \times 10^{-3} k_{\rm NO_2}$		Е	(6)
Adduct Reactions and other Radical Reactions				
227. $CH_3S(ONO_2)SCH_3 \xrightarrow{M} CH_3SONO_2 + CH_3S$	1.0×10^2		Е	(8)
228. $CH_3S(ONO_2)SCH_3 + O_2 \rightarrow Product$	0.0		Е	(7)
229. $CH_3SONO_2 \xrightarrow{M} CH_3SO + NO_2$	$1.0 \times 10^{\circ}$		Е	(8)
CH ₃ SOH and CH ₃ SO ₂ H Reactions				
230. $CH_3SOH + OH \rightarrow CH_3SO + H_2O$	1.1×10^{-10}		Е	(6)
231. $CH_3SOH + CH_3SO_3 \rightarrow CH_3SO + CH_3SO_3H$	3.4×10^{-12}		Е	(6)
232. $CH_3SOH + CH_3O \rightarrow CH_3SO + CH_3OH$	3.4×10^{-12}		Е	(5)
233. $CH_3SOH + O(^{3}P) \rightarrow CH_3SO + OH$	3.4×10^{-12}		Е	(5)
234. $CH_3SOH + NO_3 \rightarrow CH_3SO + HONO_2$	3.4×10^{-12}		Е	(5)
235. $CH_3SOH + HO_2 \rightarrow CH_3SO + H_2O_2$	8.5×10^{-13}		Е	(6)
236. $CH_3SOH + CH_3O_2 \rightarrow CH_3SO + CH_3OOH$	$8.5 imes 10^{-13}$		Е	(6)
237. $CH_3SOH + NO_2 \rightarrow CH_3SO + HONO$	0.0		Е	(7)
238. $CH_3SOH + O_3 \rightarrow CH_3SO + OH + O_2$	0.0		Е	(7)
239. $CH_3SOH + CH_3SOH \rightarrow CH_3SS(O)CH_3$				
$+ H_2O$	3.6×10^{-18}		Е	
240. $CH_3SO_2H + OH \rightarrow CH_3SO_2 + H_2O$	1.6×10^{-11}		Е	(6)
241. $CH_3SO_2H + CH_3SO_3 \rightarrow CH_3SO_2$				
+ CH ₃ SO ₃ H	1.0×10^{-13}		Е	(6)
242. $CH_3SO_2H + CH_3O \rightarrow CH_3SO_2 + CH_3OH$	1.0×10^{-13}		Е	(5)
243. $CH_3SO_2H + O(^3P) \rightarrow CH_3SO_2 + OH$	$1.0 imes 10^{-13}$		Е	(5)
244. $CH_3SO_2H + NO_3 \rightarrow CH_3SO_2 + HONO_2$	1.0×10^{-13}		Е	(5)
245. $CH_3SO_2H + HO_2 \rightarrow CH_3SO_2 + H_2O_2$	1.0×10^{-15}		Е	(5)
246. $CH_3SO_2H + CH_3O_2 \rightarrow CH_3SO_2$				
+ CH ₃ OOH	1.0×10^{-15}		Е	(5)
$CH_{3}SO_{x}$ and $CH_{3}S(O)_{x}OO$ Reactions				
247. $CH_3S + O_2 \xrightarrow{M} CH_3SOO$	5.8×10^{-17}		Е	(6)
248. CH ₃ SOO \xrightarrow{M} CH ₃ S + O ₂	6.0×10^{2}		Е	(6)
249. $CH_3S + NO_2 \rightarrow CH_3SO + NO$	6.1×10^{-11}		21	(6)
250. $CH_3S + NO_2 \xrightarrow{M} CH_3SNO_2$	6.1×10^{-13}		Е	(6)
251. $CH_3S + NO_3 \rightarrow CH_3SO + NO_2$	6.4×10^{-11}		Е	(5)
252. $CH_3S + O_3 \longrightarrow CH_3SO + O_2$	6.0×10^{-12}		Е	(6)
253. $CH_3S + HO_2 \rightarrow CH_3SO + OH$	3.0×10^{-11}		E	(6)

Table VIII. Atmospheric photooxidation mechanism for dimethyl disulfide

Reaction	Rate constant ^a	Activation energy (K)	Ref.*	Note*
254. $CH_3S + CH_3O_2 \rightarrow CH_3SO + CH_3O$	6.1 × 10 ⁻¹¹		E	(6)
255. $CH_3S + NO \xrightarrow{M} CH_3SNO$	2.87×10^{-11}		10	
256. $CH_3SNO + h\nu \rightarrow CH_3S + NO$	0.5 k_{NO_2}		Е	
257. $CH_3S + CH_3S \xrightarrow{M} CH_3SSCH_3$	4.15×10^{-11}		11	
258. $CH_3S + CH_3SNO \rightarrow CH_3SSCH_3 + NO$	1.4×10^{-12}		Е	(6)
259. $CH_3S + OH \xrightarrow{M} CH_3SOH$	5.0×10^{-11}		Е	(5)
260. $CH_3SOO + NO \rightarrow CH_3SO + NO_2$	1.4×10^{-11}		Е	(11)
261. $CH_3SOO + CH_3S \rightarrow CH_3SO + CH_3SO$	8.0×10^{-11}		Е	(11)
262. $CH_3SOO + CH_3SO \rightarrow CH_3SO + CH_3SO_2$	9.0×10^{-12}		Е	(11)
263. $CH_3SOO + CH_3SO_2 \rightarrow CH_3SO + CH_3SO_3$	3.0×10^{-13}		Е	(11)
264. $CH_3SOO + HO_2 \rightarrow CH_3SOOH + O_2$	4.0×10^{-12}		Е	(11)
265. $CH_3SOO + CH_3O_2 \rightarrow CH_3SO + CH_3O$				
$+ O_2$	5.5×10^{-12}		Е	(11)
266. $CH_3SOO + CH_3SOO \rightarrow 2 CH_3SO + O_2$	6.0×10^{-12}		Е	(11)
267. CH ₃ SO \xrightarrow{M} SO + CH ₃	5.0×10^{-5}	2.52×10^{4}	Е	(6)
268. $CH_3SO + O_2 \xrightarrow{M} CH_3S(O)OO$	7.7×10^{-18}		Е	(6)
269. CH ₃ S(O)OO \xrightarrow{M} CH ₃ SO + O ₂	1.7×10^{2}		Е	(6)
270. $CH_3SO + NO_2 \rightarrow CH_3SO_2 + NO$	3.0×10^{-12}		E	(6)
271. CH ₃ SO + NO ₂ \xrightarrow{M} CH ₃ S(O)NO ₂	0.0		Е	(7)
272. $CH_3SO + NO_3 \rightarrow CH_3SO_2 + NO_2$	8.0×10^{-12}		Е	
273. $CH_3SO + O_3 \rightarrow CH_3SO_2 + O_2$	2.0×10^{-12}		Е	(6)
274. $CH_3SO + HO_2 \rightarrow CH_3SO_2 + OH$	1.5×10^{-12}		Е	(6)
275. $CH_3SO + CH_3O_2 \rightarrow CH_3SO_2 + CH_3O$	3.0×10^{-12}		Е	(6)
276. $CH_3SO + NO \xrightarrow{M} CH_3S(O)NO$	0.0		Е	(7)
277. $CH_3SO + CH_3SO \rightarrow CH_3S + CH_3SO_2$	7.5×10^{-12}		Е	
278. $CH_3SO + CH_3SNO \rightarrow CH_3S(O)SCH_3 + NO$	6.8×10^{-13}		Е	
279. $CH_3SO + OH \xrightarrow{M} CH_3SO_2H$	5.0×10^{-11}		Е	(5)
280. $CH_3S(O)OO + NO \rightarrow CH_3SO_2 + NO_2$	8.0×10^{-12}		Е	(11)
281. $CH_3S(O)OO + CH_3S \rightarrow CH_3SO_2 + CH_3SO$	7.0×10^{-11}		Е	(11)
282. $CH_3S(O)OO + CH_3SO \rightarrow CH_3SO_2$				
+ CH ₃ SO ₂	8.1×10^{-12}		Е	(11)
283. $CH_3S(O)OO + CH_3SO_2 \rightarrow CH_3SO_2$				
+ CH ₃ SO ₃	3.0×10^{-13}		Е	(11)
284. $CH_3S(O)OO + HO_2 \rightarrow CH_3S(O)OOH + O_2$	3.0×10^{-12}		Е	(11)
285. $CH_3S(O)OO + CH_3O_2 \rightarrow CH_3SO_2$				
$+ CH_3O + O_2$	5.5×10^{-12}		Е	(11)
286. $CH_3S(O)OO + CH_3S(O)OO \rightarrow 2 CH_3SO_2$				
+ O ₂	6.0×10^{-12}		Е	(11)
287. $CH_3S(O)OO + NO_2 \xrightarrow{M} CH_3S(O)OONO_2$	1.0×10^{-12}		Е	(11)
288. $CH_3S(O)OONO_2 \xrightarrow{M} CH_3S(O)OO + NO_2$	4.2×10^{-3}		Е	(9)
289. $CH_3S(O)OO + CH_3SOH \rightarrow CH_3S(O)OOH$				
+ CH ₃ SO	4.0×10^{-13}		Е	(11)

Table VIII. (continued)

Reaction	Pate constant ^a	Activation energy (K)	Ref.*	Note*
290. $CH_3SO_2 \xrightarrow{M} SO_2 + CH_3$	1.1×10^{1}	8.656×10^{3}	E	(6)
291. $CH_3SO_2 + O_2 \xrightarrow{M} CH_3S(O)_2OO$	2.6×10^{-18}		Е	(6)
292. $CH_3S(O)_2OO \xrightarrow{M} CH_3SO_2 + O_2$	3.3×10^{0}		Е	(6)
293. $CH_3SO_2 + NO_2 \rightarrow CH_3SO_3 + NO$	1.0×10^{-14}		Е	(6)
294. $CH_3SO_2 + NO_2 \xrightarrow{M} CH_3S(O)_2NO_2$	0.0		Е	(7)
295. $CH_3SO_2 + NO_3 \rightarrow CH_3SO_3 + NO_2$	1.0×10^{-14}		Е	(5)
296. $CH_3SO_2 + O_3 \rightarrow CH_3SO_3 + O_2$	5.0×10^{-15}		Е	(6)
297. $CH_3SO_2 + HO_2 \rightarrow CH_3SO_3 + OH$	2.5×10^{-13}		Е	(6)
298. $CH_3SO_2 + CH_3O_2 \rightarrow CH_3SO_3 + CH_3O$	2.5×10^{-13}		Е	(6)
299. $CH_3SO_2 + NO \xrightarrow{M} CH_3S(O)_2NO$	0.0		Е	(7)
300. $CH_3SO_2 + CH_3S \rightarrow CH_3S(O)_2SCH_3$	4.2×10^{-11}		Е	(5)
301. $CH_3SO_2 + CH_3SO_2 \rightarrow CH_3SO + CH_3SO_3$	7.5×10^{-12}		E	(5)
302. $CH_3SO_2 + CH_3SNO \rightarrow CH_3S(O)_2SCH_3$				
+ NO	6.8×10^{-13}		Е	
303. $CH_3SO_2 + OH \xrightarrow{M} CH_3SO_3H$	5.0×10^{-11}		Е	(5)
304. $CH_3S(O)_2OO + NO \rightarrow CH_3SO_3 + NO_2$	1.0×10^{-11}		Е	(11)
305. $CH_3S(O)_2OO + CH_3S \rightarrow CH_3SO_3$				
+ CH ₃ SO	6.0×10^{-11}		Е	(11)
306. $CH_3S(O)_2OO + CH_3SO \rightarrow CH_3SO_3$				
$+ CH_3SO_2$	8.0×10^{-12}		Е	(11)
307. $CH_3S(O)_2OO + CH_3SO_2 \rightarrow CH_3SO_3$				
$+ CH_3SO_3$	3.0×10^{-13}		Е	(11)
308. $CH_3S(O)_2OO + HO_2 \rightarrow CH_3S(O)_2OOH$. ,
$+ O_2$	2.0×10^{-12}		Е	(11)
309. $CH_3S(O)_2OO + CH_3O_2 \rightarrow CH_3SO_3$				
$+ CH_3O + O_2$	5.5×10^{-12}		Е	(11)
310. $CH_3S(O)_2OO + CH_3S(O)_2OO \rightarrow$				
$2 \text{ CH}_3 \text{SO}_3 + \text{O}_2$	$6.0 imes 10^{-12}$		Е	(11)
311. $CH_3S(O)_2OO + NO_2 \xrightarrow{M} CH_3S(O)_2OONO_2$	1.0×10^{-12}		Е	(11)
312. $CH_3S(O)_2OONO_2 \xrightarrow{M} CH_3S(O)_2OO + NO_2$	4.2×10^{-3}		E	(9)
313. $CH_3S(O)_2OO + CH_3SOH \rightarrow$. /
$CH_3S(O)_2OOH + CH_3SO$	4.0×10^{-13}		Е	(11)
CH ₃ SO ₃ H Formation				
314. $CH_3SO_3 \xrightarrow{M} SO_3 + CH_3$	1.6×10^{-1}		Е	(6)
315. $CH_3SO_3 + HCHO \xrightarrow{O_2} CH_3SO_3H + HO_2$				
+ CO	1.6×10^{-15}		Е	(6)
316. $CH_3SO_3 + CH_3SSCH_3 \rightarrow CH_3SO_3H$				
$+ CH_3SSCH_2$	0.0		Е	(6)
317. $CH_3SO_3 + CH_3SSCH_3 \xrightarrow{M} Adduct$	0.0		Е	(6)
318. $CH_3SO_3 + HO_2 \rightarrow CH_3SO_3H + O_2$	5.0×10^{-11}		Е	
319. $CH_3SO_3 + HONO \rightarrow CH_3SO_3H + NO_2$	$6.6 imes 10^{-16}$		Е	

Table VIII. (continued)

Reaction	Rate constant ^a	Activation energy (K)	Ref.*	Note*
320. $CH_3SO_3 + H_2O_2 \rightarrow CH_3SO_3H + HO_2$	3.0×10^{-16}		Е	
321. $CH_3SO_3 + CH_3OOH \rightarrow CH_3SO_3H$				
$+ CH_3O_2$	3.0×10^{-10}		Е	
322. $CH_3SO_3 + CH_3OH \xrightarrow{O_2} CH_3SO_3H + HO_2$				
+ HCHO	1.0×10^{-16}		Е	
323. $CH_3SO_3 + NO_2 \xrightarrow{M} CH_3S(O)_2ONO_2$	3.0×10^{-15}		Е	(6)
324. $CH_3S(O)_2ONO_2 + H_2O \rightarrow CH_3SO_3H$				
+ HONO ₂	1.0×10^{-15}		Е	(5)
325. $CH_3SO_3 + NO \xrightarrow{M} CH_3S(O)_2ONO$	3.0×10^{-15}		Е	(6)
326. $CH_3S(O)_2ONO + H_2O \rightarrow CH_3SO_3H$				
+ HONO	1.0×10^{-15}		E	(5)

Table VIII. (continued)

* References and notes are listed at the foot of Table IX.

Reaction	Rate constant ^a	Activation energy (K)	Ref.	Note
SO _x Reactions				
327. $SO + O_2 \rightarrow SO_2 + O(^3P)$	$6.7 imes 10^{-17}$	2.275×10^{3}	3	
328. $SO + NO_2 \rightarrow SO_2 + NO$	1.4×10^{-11}		3	
329. $SO + O_3 \rightarrow SO_2 + O_2$	8.9×10^{-14}	1.17×10^{3}	3	
330. SO + O(³ P) \xrightarrow{M} SO ₂	2.2×10^{-11}		12	
331. SO + OH $\xrightarrow{O_2}$ SO ₂ + HO ₂	1.1×10^{-10}		12	
332. $SO + SO_3 \rightarrow SO_2 + SO_2$	2.0×10^{-15}		12	
333. $SO_2 + OH \xrightarrow{M} HOSO_2$	1.1×10^{-12}	-2.31×10^{2}	3, 17	(12)
334. $SO_2 + O(^3P) \xrightarrow{M} SO_3$	3.4×10^{-14}	1.0×10^{3}	6, 17	
335. $SO_2 + HO_2 \rightarrow SO_3 + OH$	$1.0 imes 10^{-18}$		2, 3	
336. $SO_2 + CH_3O_2 \rightarrow CH_3O + SO_3$	5.0×10^{-17}		2, 3	
337. $SO_2 + CH_3O \xrightarrow{M} CH_3OSO_2$	5.5×10^{-13}		7	
338. $SO_2 + CH_3 \xrightarrow{M} CH_3SO_2$	2.9×10^{-13}		12	
339. $SO_2 + h\nu \rightarrow SO_2^*$	$2.0 k_{NO_2}$		12	
340. $SO_2^* \xrightarrow{M} SO_2$	3.7×10^{6}		12	
341. $SO_2^* + SO_2 \rightarrow SO_3 + SO_3$	$6.3 imes 10^{-13}$		12	
342. $SO_2^* + CO \rightarrow SO + CO_2$	1.1×10^{-14}		12	
343. $HOSO_2 + O_2 \rightarrow SO_3 + HO_2$	4.0×10^{-13}	1.0×10^{3}	3, 17	
344. $HOSO_2 + OH \xrightarrow{M} H_2SO_4$	1.0×10^{-11}		E13 ^b	
345. $SO_3 + H_2O \xrightarrow{M} H_2SO_4$	9.1×10^{-13}		2, 17	
346. $SO_3 + O(^{3}P) \rightarrow SO_2 + O_2$	7.0×10^{-13}		28	
Wall Effects				
347. $CH_3SCH_3 \rightarrow Wall$	1.5×10^{-6}		23	
348. CH ₃ SSCH ₃ → Wall	$1.6 imes 10^{-6}$		23	
349. $SO_2 \rightarrow Wall$	$3.0 imes 10^{-6}$		23	
350. $O_3 \rightarrow Wall$	4.5×10^{-6}		23	
351. $HNO_3 \rightarrow Wall$	5.8×10^{-5}		16	
352. $NO_2 + H_2O + Wall \rightarrow HONO$	$6.8 imes 10^{-24}$		19	
353. $NO_2 + Wall \rightarrow HONO$	6.5×10^{-7}		19	
354. N_2O_5 + Wall (or aerosol) $\rightarrow 2 \text{ HONO}_2$	8.3×10^{-3}		Е	

Table IX. Reactions common to all organosulfur reaction mechanisms: SO_x chemistry and chamber wall reactions

^a Rate constants are at 298 K, 1 atm in units of molecule, cm³ and sec. See Part II for detailed discussion.

^b 'E' is used to indicate the rate constant was estimated in the reference whose number follows 'E'. In the absence of a number following 'E', the rate constant has been estimated in the present work.

References:

Atkinson et al. (1980); 2. Atkinson and Lloyd (1984); 3. Atkinson et al. (1989); 4. Balla and Heicklen (1984); 5.
 Baulch et al. (1982); 6. Baulch et al. (1984); 7. Calvert and Stockwell (1984); 8. Cvetanović et al. (1981); 9.
 Demore et al. (1982); 10. Balla et al. (1986); 11. Graham et al. (1964a); 12. Graedel (1977); 13. Graedel (1979);
 14. Barnes et al. (1986b); 15. Schäfer et al. (1978); 16. Grosjean (1985); 17. Kerr and Calvert (1984); 18. Leone and Seinfeld (1984); 19. Leone et al. (1985); 20. Nip et al. (1981); 21. Tyndall and Ravishankara (1988); 22. Veltwisch et al. (1980); 23. Yin et al. (1990); 24. Veyret et al. (1989); 25. Burrows et al. (1989); 26. Vaghjiani and Ravishankara (1989); 27. Wallington et al. (1986b); 28. Calvert et al. (1978).

Notes:

- k_{NO2} was estimated theoretically (Demerjian *et al.*, 1980) for simulation of the experiments. See Part II for discussion.
- 2. The rate constant data of reaction between HO₂ and HO₂ were fit by the expression (Atkinson and Lloyd, 1984),

 $k = [2.2 \times 10^{-13} \exp(620/T) + 1.9 \times 10^{-33} [M] \exp(980/T)] \times [1 + 1.4 \times 10^{-21} [H_2O] \exp(2200/T)]$

- cm^3 molecule⁻¹ s⁻¹, which can be expressed by reactions of (16)–(19).
- 3. Reaction (14) is the combination of the following three reactions,

 $O_3 + h\nu \rightarrow O(^1D) + O_2$ $O(^1D) + O_2 \rightarrow O(^3P) + O_2$ $O(^1D) + H_2O \rightarrow 2 OH$

- 4. CH₃ONO is assumed to have the same photolysis rate as HONO
- 5. The system reactivity and the product distribution are not sensitive to the values of these reactions.
- 6. See text of Part I and II for detailed discussion.
- 7. These reactions are assumed to be negligible.
- 8. These unimolecular reactions are assumed to decompose rapidly and the simulations are not sensitive to them.
- 9. These unimolecular reactions are assumed to decompose rapidly, however, the system reactivity and the product distribution are sensitive to these rate constants, which are estimated mainly based on the product studies.
- 10. The rate constants are estimated from the similar reactions of $R + O_2$.
- 11. These rate constants are basically estimated from the corresponding reactions of similar peroxy radicals. Also the structural difference of the peroxy radicals is considered.
- 12. The temperature coefficient, which is a function of the total pressure, has been expressed for the temperature range 200-300 K by Kerr and Calvert (1984) as

 $-(E/R)/K = 3.6896 \times 10^{-4} \times (P/Torr)^2 - 6.793 \times 10^{-1} \times (P/Torr) + 5.3374 \times 10^2.$

References

- Andreae, M. O. and Raemdonck, H., 1983, Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view, *Science* 221, 744–747.
- Andreae, M. O., Ferek, R. J., Bermond, F., Byrd, K. P., Engstrom, R. T., Hardin, S., Houmira, P. D., Le Marrec, F., Raemdonck, H., and Chatfield, R. B., 1985, Dimethyl sulfide in the marine atmosphere, *J. Geophys. Res.* **90**, 12891–12901.
- Atkinson, R., Perry, R. A., and Pitts, J. N. Jr., 1977, Rate constants for the reaction of the OH radical with CH₃SH and CH₃NH₂ over the temperature range 299–426 K, J. Chem. Phys. 66, 1578–1581.
- Atkinson, R., Carter, W. P. L., Darnall, K. R., Winer, A. M., and Pitts, J. N. Jr., 1980, A smog chamber and modeling study of the gas phase NO_x—air photooxidation of toluene and the cresols, *Int. J. Chem. Kinet.* 12, 779–836.
- Atkinson, R., Pitts, J. N., and Aschmann, S. M., 1984, Tropospheric reactions of dimethyl sulfide with NO₃ and OH radicals, *J. Phys. Chem.* 88, 1584–1587.
- Atkinson, R. and Lloyd, A. C., 1984, Evaluation of kinetic and mechanistic data for modeling of photochemical smog, J. Phys. Chem. Ref. Data 13, 315-444.
- Atkinson, R., 1985, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, *Chem. Rev.* **85**, 69–201.
- Atkinson, R., Aschmann, S. M., and Pitts, J. N. Jr., 1988, Kinetics of the reaction of NO₃ radical with CH₃SSCH₃, J. Geophys. Res. **93**, 7125–7126.
- Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F. Jr., Kerr, J. A., and Troe, J., 1989, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III, J. Phys. Chem. Ref. Data 13, 881–1097.
- Balla, R. J. and Heicklen, J., 1984, Oxidation of sulfur compounds. II. Thermal reactions of NO₂ with aliphatic sulfur compounds, *J. Phys. Chem.* **88**, 6314–6317.

- Balla, R. J. and Heicklen, J., 1985, Oxidation of sulfur compounds III: The photolysis of (CH₃S)₂ in the presence of O₂, J. Photochem. **29**, 297–310.
- Balla, R. J., Nelson, H. H., and McDonald, J. R., 1986, Kinetics of the reaction of CH₃S with NO, NO₂ and O₂, *Chem. Phys.* **109**, 101–107.
- Balla, R. J., Weiner, B. R., and Nelson, H. H., 1987, Kinetics of the reaction of CH₃S with unsaturated hydrocarbons, J. Am. Chem. Soc. 109, 4804–4808.
- Barnes, I., Bastian, V., and Becker, K. H., 1984, Reactions of OH radicals with reduced sulfur compounds under atmospheric conditions, in B. Versino and E. Angeletti (eds.), *Physico-Chemical Behaviour of Atmospheric Pollutants*, Proceedings of the Third European Symposium, Varese, Italy, pp. 149–157.
- Barnes, I., Bastian, V., Becker, K. H., Fink, E. H., and Nelsen, W., 1986a, Oxidation of sulphur compounds in the atmosphere: I. Rate constants of OH radical reactions with sulphur dioxide, hydrogen sulphide, aliphatic thiols and thiophenol, J. Atmos. Chem. 4, 445–466.
- Barnes, I., Bastian, V., and Becker, K. H., 1986b, Products and kinetics of the OH initiated oxidation of SO₂, CH₃SH, DMS, DMSO, in E. Angeletti and A. Restelli (eds.), *Physico-Chemical Behaviour of Atmospheric Pollutants*, Proceedings of the Fourth European Symposium, Stresa, Italy, pp. 327–337.
- Barnes, I., Becker, K. H., Carlier, P., and Mouvier, G., 1987a, FTIR study of the DMS/NO₂/I₂/N₂ photolysis system: The reaction of IO radical with DMS, *Int. J. Chem. Kinet.* **19**, 489–501.
- Barnes, I., Bastian, V., Becker, K. H., and Niki, H., 1987b, FTIR spectroscopic studies of the CH₃S + NO₂ reaction under atmospheric conditions, *Chem. Phys. Lett.* **140**, 451–457.
- Barnes, I., Bastian, V., and Becker, K. H., 1988, Kinetics and mechanisms of the reaction of OH radicals with dimethyl sulfide, *Int. J. Chem. Kinet.* 20, 415–431.
- Barnes, I., Bastian, V., Becker, K. H., and Martin, D., 1989, Fourier transform IR studies of the reactions of dimethyl sulfoxide with OH, NO₃, and Cl radicals, in E. S. Saltzman and W. J. Cooper (eds.), *Biogenic Sulfur in the Environment*, American Chemical Society, Washington, DC, pp. 476– 488.
- Baulch, D. L., Cox, R. A., Crutzen, P. J., Hampson, R. F. Jr., Kerr, J. A., Troe, J., and Watson, R. T., 1982, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement I, J. Phys. Chem. Ref. Data 11, 327–496.
- Baulch, D. L., Cox, R. A., Hampson, R. F. Jr., Kerr, J. A., Troe, J., and Watson, R. T., 1984, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II, J. Phys. Chem. Ref. Data 13, 1259–1380.
- Benson, S. W. and Shaw, R., 1970, Thermochemistry of organic peroxides, hydroperoxides, polyoxides, and their radicals, in D. Swern (ed.), *Organic peroxides, Vol. I*, Wiley, New York, pp. 105–139.
- Benson, S. W., 1978, Thermochemistry and kinetics of sulfur-containing molecules and radicals, *Chem. Rev.* 78, 23–35.
- Black, G., 1984, Reactions of HS with NO and NO₂ at 298 K, J. Chem. Phys. 80, 1103-1107.
- Black, G., Jusinski, L. E., and Patrick, R., 1988a, Reactions of *i*-C₃H₇S with O₂, NO₂, and NO at 296 K, *J. Phys. Chem.* **92**, 1134–1138.
- Black, G., Jusinksi, L. E., and Patrick, R., 1988b, Kinetics of the reactions of C₂H₅S with NO₂, NO, and O₂ at 296 K, J. Phys. Chem. 92, 5972–5977.
- Block, E., 1978, Reactions of Organosulfur Compounds, Academic Press, New York.
- Burrows, J. P., Moortgat, G. K., Tyndall, G. S., Cox, R. A., Jenkin, M. E., Hayman, G. D., and Veyret, B., 1989, Kinetics and mechanism of the photooxidation of formaldehyde. 2. Molecular modulation studies, J. Phys. Chem. 93, 2375–2382.
- Busfield, W. K., Ivin, K. J., Mackle, H., and O'Hare, P. A. G., 1961, Studies in the thermochemistry of sulphones, *Trans. Faraday Soc.* 57, 1064–1069.
- Calvert, J. G., Su, F., Bottenheim, J. W., and Strausz, O. P., 1978, Mechanism of the homogeneous oxidation of sulfur dioxide in the troposphere, *Atmos. Environ.* 12, 197–226.
- Calvert, J. G. and Stockwell, W. R., 1984, The mechanism and rates of the gas phase oxidations of sulfur dioxide and nitrogen oxides in the atmosphere, in J. G. Calvert (ed.), SO₂, NO and NO₂ Oxidation Mechanisms: Atmospheric Considerations, Butterworth, Boston, pp. 1–62.
- Carton, P. M., Gilbert, B. C., Laue, H. A. H., Norman, R. O. C., and Sealy, R. C., 1975, Electron spin resonance studies. Part XLVII. Sulphinyl- and sulphonyl-substituted aliphatic radicals, J. Chem. Soc., Perkin Trans. 2, 1245–1249.

Chatgilialoglu, C., Griller, D., and Guerra, M., 1987, Experimental and theoretical approaches to the optical absorption spectra of sulforyl radicals, *J. Phys. Chem.* **91**, 3747–3750.

- Cox, R. A. and Sheppard, D., 1980, Reactions of OH radicals with gaseous sulphur compounds, *Nature* 284, 330-331.
- Cvetanović, R. J., Singleton, D. L., and Irwin, R. S., 1981, Gas-phase reactions of O(³P) atoms with methanethiol, ethanethiol, methyl sulfide, and dimethyl disulfide. 2. Reaction products and mechanisms, J. Am. Chem. Soc. 103, 3530-3539.
- Domine, F., Ravishankara, A. R., and Howard, C. J., 1989, Atmospheric reactions of some reduced sulfur radicals, *Trans. Am. Geophys. Union* 70, 1008.
- Davidson, F. E., Clemo, A. R., Duncan, G. L., Browett, R. J., Hobson, J. H., and Grice, R., 1982, Reactive scattering of a supersonic oxygen atom beam: O + H₂S, *Mol. Phys.* 46, 33–40.
- Davis, F. A., Jenkins, R. H. Jr., Rizvi, S. Q. A., and Yocklovich, S. G., 1981, J. Org. Chem. 46, 3647-3474.
- Demerjian, K. L., Schere, K. L., and Peterson, J. T., 1980, Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere, Adv. Environ. Sci. Technol. 10, 369–459.
- Demore, W. B., Watson, R. T., Golden, D. M., Hampson, R. F., Kurylo, M., Howard, C. J., Molina, M. J., and Ravishankara, A. R., 1982, Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Report 82-57.
- Dlugokencky, E. J.and Howard, C. J., 1988, Laboratory studies of NO₃ radical reactions with some atmospheric sulfur compounds, *J. Phys. Chem.* **92**, 1188–1193.
- Francisco, J. S. and Williams, I. H., 1988, The thermochemistry of polyoxides and polyoxy radicals, Int. J. Chem. Kinet. 20, 455–466.
- Friedl, R. R., Brune, W. H., and Anderson, J. G., 1985, Kinetics of SH with NO₂, O₃, O₂, and H₂O₂, *J. Phys. Chem.* **89**, 5505–5510.
- Gilbert, B. C., Norman, R. O. C., and Sealy, R. C., 1975a, Electron spin resonance studies. Part XLIII. Reaction of dimethyl sulphoxide with the hydroxyl radical, J. Chem. Soc. Perkin Trans. 2, 303–308.
- Gilbert, B. C., Norman, R. O. C., and Sealy, R. C., 1975b, Electron spin resonance studies. Part XLIV. The formation of alkylsulphonyl radicals by the oxidation of aliphatic sulphoxides with the hydroxyl radical and by the reaction of alkyl radicals with sulphur dioxide, J. Chem. Soc., Perkin Trans. 2, 308–312.
- Gleason, J. F., Sinha, A., and Howard, C. J., 1987, Kinetics of the gas-phase reaction $HOSO_2 + O_2 \rightarrow HO_2 + SO_3$, J. Phys. Chem. 91, 719-724.
- Good, A. and Thynne, J. C. J., 1967, Reaction of free radicals with sulphur dioxide, *Trans. Faraday* Soc. 63, 2708–2719.
- Graham, D. M., Mieville, R. L., and Sivertz, C., 1964a, Photo-initiated reactions of thiols and olefins I. The thiyl radical catalyzed isomerization of butene-2 and 1,2-ethylene-d₂, *Can. J. Chem.* **42**, 2239–2249.
- Graham, D. M., Mieville, R. L., Pallen, R. H., and Sivertz, C., 1964b, Photo-initiated reactions of thiols and olefins II. The addition of methanethiol to unconjugated olefins, *Can. J. Chem.* **42**, 2250– 2255.
- Grosjean, D. and Lewis, R., 1982, Atmospheric photooxidation of methyl sulfide, *Geophys. Res. Lett.* 9, 1203–1206.
- Grosjean, D., 1984, Photooxidation of methyl sulfide, ethyl sulfide, and methanethiol, *Environ. Sci. Technol* 18, 460–468.
- Grosjean, D., 1985, Wall loss of gaseous pollutants in outdoor Teflon chambers, *Environ. Sci. Technol.* **19**, 1059–1065.
- Harvey, G. R. and Lang, R. F., 1986, Dimethylsulfoxide and dimethylsulfone in the marine atmosphere, *Geophys. Res. Lett.* 13, 49–51.
- Hatakeyama, S., Okuda, M., and Akimoto, H., 1982, Formation of sulfur dioxide and methanesulfonic acid in the photooxidation of dimethyl sulfide in the air, *Geophys. Res. Lett.* 9, 583–586.
- Hatakeyama, S. and Akimoto, H., 1983, Reactions of OH radicals with methanethiol, dimethyl sulfide. and dimethyl disulfide in air, J. Phys. Chem. 87, 2387-2395.
- Hatakeyama, S., Izumi, K., and Akimoto, H., 1985, Yield of SO₂ and formation of aerosol in the photo-oxidation of DMS under atmospheric conditions, *Atmos. Environ.* **19**, 135–141.

- Hatakeyama, S., 1987, Mechanism for the reaction of CH₃S with NO₂, paper presented at the meeting of the Environmental Chemistry, American Chemical Society, New Orleans, Louisiana.
- Horowitz, A., 1976, Radiolytic decomposition of methanesulfonyl chloride in liquid cycloexane. A kinetic determination of the bond dissociation energies $D(Me-SO_2)$ and $D(c-C_6H_{11}-SO_2)$, *Int. J. Chem. Kinet.* **8**, 709–723.
- Hsu, Y. C., Chen, D. S., and Lee, Y. P., 1987, Rate constant for the reaction of OH radicals with dimethyl sulfide, *Int. J. Chem. Kinet.* 19, 1073–1082.
- Hwang, R. J., and Benson, S. W., 1979, Kinetics of iodination of hydrogen sulfide by iodine and the heat of the formation of the SH radical, *Int. J. Chem. Kinet.* **11**, 579–583.
- Hynes, A. J., Wine, P. H., and Semmes, D. H., 1986, Kinetics and mechanism of OH reactions with organic sulfides, J. Phys. Chem. 90, 4148-4156.
- Hynes, A. J. and Wine, P. H., 1987, Kinetics of the OH + CH₃SH reaction under atmospheric conditions, J. Phys. Chem. 91, 3672–3676.
- Hynes, A. J. and Wine, P. H., 1989, OH-initiated oxidation of biogenic sulfur compounds, in E. S. Saltzman and W. J. Cooper (eds.), *Biogenic Sulfur in the Environment*, American Chemical Society, Washington, DC, pp. 424–436.
- Kerr, J. A. and Calvert, J. G., 1984, Chemical Transformation Modules for Eulerian Acid Decomposition Models, Volume I: The gas-phase chemistry, Boulder, Colorado, December, 1984.
- Kerr, J. A., 1985, Strengths of chemical bonds, in Weast et al. (eds.), CRC Handbook of Chemistry and Physics, 66th edn, CRC Press, Boca Raton, pp. F-174–F-193.
- Koelewijn, P. and Berger, H., 1972, Mechanism of the antioxidant action of dialkyl sulfoxides, *Recl. Trav. Chim. Pays-Bas* 91, 1275–1286.
- Lagercrantz, C. and Forshult, S., 1969, Trapping of short-lived free radicals as nitroxide radicals detected by ESR spectroscopy. The radicals formed in the reaction between OH-radicals and some sulphoxides and sulphones, *Acta Chem. Scand.* 23, 811–817.
- Leone, J. A. and Seinfeld, J. H., 1984, Updated chemical mechanism for atmospheric photooxidation of toluene, *Int. J. Chem. Kinet.* 16, 159–193.
- Leone, J. A., Flagan, R. C., Grosjean, D., and Seinfeld, J. H., 1985, An outdoor smog chamber and modeling study of toluene—NO_x photooxidation, *Int. J. Chem. Kinet.* **17**, 177–216.
- Lovejoy, E. R., Wang, N. S., and Howard, C. J., 1987, Kinetic studies of the reactions of HSO with NO₂, NO, and O₂, J. Phys. Chem. **91**, 5749–5755.
- Luke, B. T. and McLean, A. D., 1985, A theoretical investigation of atmospheric sulfur chemistry. 1. The HSO/HOS energy separation and the heat of formation of HSO, HOS, and HS₂, J. Phys. Chem. 89, 4592–4596.
- Lunazzi, L. and Pedulli, G. F., 1985, Structure and reactivity of sulphur containing organic free radicals: recent advances, in Bernardi *et al.* (eds.), *Studies in Organic Chemistry 19: Organic Sulfur Chemistry*, Elsevier, New York, pp. 484–567.
- MacLcod, H., Aschmann, S. M., Atkinson, R., Tuazon, E. C., Sweetman, J. A., Winer, A. M., and Pitts, J. N. Jr., 1986, Kinetics and mechanisms of the gas phase reactions of the NO₃ radical with a series of reduced sulfur compounds, J. Geophys. Res. 91, 5338–5346.
- Margitan, J. J., 1984, Mechanism of the atmospheric oxidation of sulfur dioxide. Catalysis by hydroxyl radicals, J. Phys. Chem. 88, 3314–3318.
- Martin, D., Jourdain, J. L., and Le Bras, G., 1985, Kinetic study for the reactions of OH radicals with dimethylsulfide, diethylsulfide, tetrahydrothiophene, and thiophene, *Int. J. Chem. Kinet.* **17**, 1247–1261.
- Martin, D., Jourdain, J. L., and Le Bras, G., 1986, Discharge flow measurements of the rate constants for the reactions $OH + SO_2 + He$ and $HOSO_2 + O_2$ in relation with the atmospheric oxidation of SO_2 , J. Phys. Chem. **90**, 4143–4147.
- Martin, D., Jourdain, J. L., Laverdet, G., and Le Bras, G., 1987, Kinetic study of the reaction of IO with CH₃SCH₃, *Int. J. Chem. Kinet.* **19**, 503–512.
- Meissner, A. H. and Beck, G., 1967, Pulsradiolytische Untersuchung von Dimethylthioäther und Dimethylsulfoxyd in wäßriger Lösung, Z. Naturforsch. 22b, 13–19.
- Mellouki, A., Jourdain, J. L., and Le Bras, G., 1988, Discharge flow study of the CH₃S + NO₂ reaction mechanism using Cl + CH₃SH as the CH₃S source, *Chem. Phys. Lett.* **148**, 231–236.
- McMillen, D. F. and Golden, D. M., 1982, Hydrocarbon bond dissociation energies, Ann. Rev. Phys. Chem. 33, 493–532.

- Nielsen, O. J., Treacy, J., Nelson, L., and Sidebottom, H., 1986, Photo-oxidation of sulphur containing compounds, in G. Angeletti and G. Restelli (eds.), *Physico-Chemical Behaviour of Atmospheric Pollutants*, Proceedings of the Fourth European Symposium, Stresa, Italy, pp. 205–211.
- Niki, H., Maker, P. D., Savage, C. M., and Breitenbach, L. P., 1983a, Spectroscopic and photochemical properties of CH₃SNO, *J. Phys. Chem.* 87, 7–9.
- Niki, H., Maker, P. D., Savage, C. M., and Breitenbach, L. P., 1983b, An FTIR study of the mechanism for the reaction HO + CH₃SCH₃, Int. J. Chem. Kinet. 15, 647–654.
- Nip, W. S., Singleton, D. L., and Cvetanović, R. J., 1981, Gas-phase reactions of O(³P) atoms with methanethiol, ethanethiol, methyl sulfide, and dimethyl disulfide. 1. Rate constants and Arrhenius parameters, J. Am. Chem. Soc. 103, 3626–3530.
- Paltenghi, R., Ogryzlo, E. A., and Bayes, Kyle D., 1984, Rates of reaction of alkyl radicals with ozone, J. Phys. Chem. 88, 2595–2599.
- Panter, R., and Penzhorn, R. D., 1980, Alkyl sulfonic acids in the atmosphere, Atmos. Environ. 14, 149-151.
- Penn, R. E., Block, E., and Revelle, L. K., Methanesulfenic acid, J. Am. Chem. Soc. 100, 3622-3623.
- Rahamàn, M. M., Becker, E., Benter, T., and Schindler, R. N., 1988, A gasphase kinetic investigation of the system F + HNO₃ and the determination of absolute rate constants for the reactions of the NO₃ radical with CH₃SH, 2-methylpropene, 1,3-butadiene and 2,3-dimethyl-2-butene, *Ber. Bunsenges. Phys. Chem.* 92, 91–100.
- Saltzman, E. S., Savoie, D. L., Zika, R. G., and Prospero, J. M., 1983, Methane sulfonic acid in the marine atmosphere, J. Geophys. Res. 88, 10,897–10,902.
- Schäfer, K., Bonifačić, Bahnemann, D., and Asmus, K.-D., 1978, Addition of oxygen to organic sulfur radicals, J. Phys. Chem. 82, 2777–2780.
- Schönle, G., Rahman, M. M., and Schindler, R. N., 1987, Kinetics of the reaction of atmospheric fluorine with H₂S and elementary reactions of the HS radical, *Ber. Bunsenges. Phys. Chem.* 91, 66–75.
- Semmes, D. H., Ravishankara, A. R., Gump-Perkins, C. A., and Wine, P. H., 1985, Kinetics of the reactions of hydroxyl radical with aliphatic aldehydes, *Int. J. Chem. Kinet.* 17, 303–313.
- Shibuya, K., Nemoto, M., Yanagibori, A., Fukushima, M., and Obi, K., 1988, Spectroscopy and kinetics of thiophenoxy radicals in the gas phase, *Chem. Phys.* **121**, 237-244.
- Shum, L. G. S. and Benson, S. W., 1983, Thermochemistry and kinetics of the reaction of methyl mercaptan with iodine, *Int. J. Chem. Kinet.* 15, 433–453.
- Shum, L. G. S. and Benson, S. W., 1985, Iodine catalyzed pyrolysis of dimethyl sulfide. Heats of formation of CH₃SCH₂I, the CH₃SCH₂ radical, and the pibond energy in CH₂S, *Int. J. Chem. Kinet.* 17, 277–292.
- Slagle, I. R., Baiocchi, F., and Gutman, D., 1978, Study of the reactions of oxygen atoms with hydrogen sulfide, methanethiol, ethanethiol, and methyl sulfide, J. Phys. Chem. 82, 1333–1336.
- Stachnik, R. A. and Molina, M. J., 1987, Kinetics of the reactions of SH radicals with NO₂ and O₂, J. Phys. Chem. 91, 4603–4606.
- Stern, J. E., Flagan, R. C., Grosjean, D., and Seinfeld, J. H., 1987, Aerosol formation and growth in atmospheric aromatic hydrocarbon, *Environ. Sci. Technol.* 21, 1224–1231.
- Swarts, S. G., Becker, D., DeBolt, S., and Sevilla, M. D., 1989, An electron spin resonance investigation of the structure and formation of sulfinyl radicals: reaction of peroxyl radicals with thiols, J. Phys. Chem. 93, 155–161.
- Tyndall, G. S., Burrows, J. P., Schneider, W., and Moortgat, G. K., 1986, Rate coefficient for the reaction between NO₃ radicals and dimethyl sulphide, *Chem. Phys. Lett.* **130**, 463–466.
- Tyndall, G. S. and Ravishankara, A. R., 1987, Atmospheric reactions of CH₃S radicals, Paper presented at the meeting of the Environmental Chemistry, American Chemical Society, New Orleans, Louisiana.
- Tyndall, G. S. and Ravishankara, A. R., 1988, Kinetics and mechanisms of the reactions of CH₃S with O₂ and NO₂ at 298 K, *J. Phys. Chem.* (in press).
- Tyndall, G. S. and Ravishankara, A. R., 1989, Kinetics of the reaction of CH₃S with O₃ at 298 K, J. *Phys. Chem.* **93**, 4707–4710.
- Vaghjiani, G. L. and Ravishankara, A. R., 1989, Kinetics and mechanism of OH reaction with CH₃OOH, J. Phys. Chem. 93, 1948-1959.
- Veltwisch, D., Janata, E., and Asmus, K-D., 1980, Primary processes in the reaction of OH-radicals with sulphoxides, J. Chem. Soc., Perkin Trans. 2, 146–153.

- Veyret, B., Lesclaux, R., Rayez, M-T., Rayez, J-C., Cox, R. A., and Moortgat, G. K., 1989, Kinetics and mechanism of the photooxidation of formaldehyde. 1. Flash photolysis study, J. Phys. Chem. 93, 2368–2374.
- Wallington, T. J., Atkinson, R., Tuazon, E. C., and Aschmann, S. M., 1986a, The reaction of OH radical with dimethyl sulfide, Int. J. Chem. Kinet. 18, 837–846.
- Wallington, T. J., Atkinson, R., Winer, A. M., and Pitts, J. N. Jr., 1986b, Absolute rate constants for the gas-phase reactions of the NO₃ radical with CH₃SCH₃, NO₂, CO, and a series of alkanes at 298±2 K, J. Phys. Chem. **90**, 4640–4644.
- Wallington, T. J., Atkinson, R., Winer, A. M., and Pitts, J. N., 1986c, Absolute rate constants for the gas-phase reactions of the NO₃ radical with CH₃SH, CH₃SCH₃, CH₃SSCH₃, H₂S, SO₂, and CH₃OCH₃ over the temperature range 280–350 K, *J. Phys. Chem.* **90**, 5393–5396.
- Wang, N. S., Lovejoy, E. R., and Howard, C. J., 1987, Temperature dependence of the rate constant for the reaction HS + NO₂, J. Phys. Chem. 91, 5743–5749.
- Wine, P. H., Kreutter, N. M., Gump, C. A., and Ravishankara, A. R., 1981, Kinetics of OH reactions with the atmospheric sulfur compounds H₂S, CH₃SH, CH₃SCH₃, and CH₃SSCH₃, J. Phys. Chem. 85, 2660–2665.
- Wine, P. H., Thompson, R. J., and Semmes, D. H., 1984, Kinetics of OH reactions with aliphatic thiols, Int. J. Chem. Kinet. 16, 1623–1636.
- Yin, F., Grosjean, D., and Seinfeld, J. H., 1986, Analysis of atmospheric photooxidation mechanisms for organosulfur compounds, J. Geophys. Res. 91, 14417-14438.
- Yin, F., Grosjean, D., Flagan, R. C., and Seinfeld, J. H., 1990, Atmospheric photooxidation of dimethyl sulfide and dimethyl disulfide. II. Mechanism evaluation, J. Atmos. Chem. 11, 365–399.