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Abstract. Nonlinear flexural vibrations of a rectangular plate with uniform stretching are studied for the case when it is 
harmonically excited with forces acting normal to the midplane of the plate. The physical phenomena of interest here arise 
when the plate has two distinct linear modes of vibration with nearly the same natural frequency. It is shown that, 
depending on the spatial distribution of the external forces, the plate can undergo harmonic motions either in one of the 
two individual modes or in a mixed-mode. Stable single-mode and mixed-mode solutions can also coexist over a wide range 
in the amplitudes and frequency of excitation. For low damping levels, the presence of Hopf bifurcations in the 
mixed-mode response leads to complicated amplitude-modulated dynamics including period doubling bifurcations, chaos, 
coexistence of multiple chaotic motions, and crisis, whereby the chaotic attractors suddenly disappear and the plate 
resumes small amplitude harmonic motions in a single-mode. Numerical results are presented specifically for 1 : 1  
resonance in the (1, 2) and (3, 1) plate modes. 
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1. Introduction 

Nonlinear motions of thin elastic plates have been investigated for free vibrations, forced 
vibrations with forces normal to the midplane as well as parametrically excited motions with forces 
in the plane of the plate. A review of the literature can be found in Nayfeh and Mook [1] and 
Sathyamoorthy [2, 3]. 

In recent years, many studies [4-7] have appeared on the multi-degree-of-freedom systems 
where internal resonance gives rise to coupling between the modal responses and results in 
amplitude-modulated as well as chaotic motions, even under harmonic excitation. Such responses 
can also arise in continuous structural systems, specially when the structural members satisfy 
certain symmetry requirements. For example, in square plates, antisymmetric modes appear in 
pairs with one linear natural frequency of oscillation. Among the studies in continuous systems 
accounting for internal resonance, and thus involving more than one mode, are the works of 
Sridhar et al. [8], Maewal [9], Yasuda and Torii [10], Johnson and Bajaj [11], and Yang and 
Sethna [12]. 

In the present work, the dynamic response of a rectangular plate to harmonic excitations is 
investigated. It is known that for appropriate aspect ratios, the plate has two or more modes with 
identical frequencies. The analysis here is a generalization of the study of Yasuda and Asano [13] 
who studied the response of a rectangular membrane. The von Karman plate equations, 
accounting for membrane forces, are first reduced via the Galerkin procedure, to two second= 
order nonlinear modal equations. The method of averaging [1, 14] is then utilized to transform the 
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modal equations to four first-order differential equations representing the slow-time evolution of 
amplitudes of harmonic motion of the two modes. These amplitude or averaged equations are a 
generalization of those that describe the motion of square plates [12] and membranes [10] and, 
when the additional restriction of circular symmetry is imposed, they have arisen in the study of 
resonant motions of a spherical pendulum [4], a stretched string [11], and forced response of 
axisymmetric shells [15] and beams [9]. The amplitude equations for the rectangular plate depend 
on three nonlinear coefficients, in contrast to the two independent nonlinear coefficients found in 
the above mentioned studies. 

The amplitude equations are analyzed for steady-state constant solutions and their various 
bifurcations as the excitation frequency and amplitude, and the modal damping are varied. The 
motions of rectangular plates with two identical frequencies are classified depending on the 
nonlinear coefficients defining the plate aspect ratio and the spatial modes in resonance. Dynamic 
solutions bifurcating from constant solutions are obtained by using AUTO [16] and a direct time 
integration of the amplitude equations. 

2. Formulation of the Problem 

Consider a rectangular plate of thickness h and edge lengths a and b. Let Oxyz  be a Cartesian 
coordinate system with Oxy in the midplane of the plate and the origin at a corner. The plate is 
subjected to a uniform stretching force N 0. Under these conditions, the yon Karman-type 
equations of motion for the plate are as follows: 

p h w , :  t - N o ( w  x x -]- W yy) -]- D ( w  . . . . .  + 2W,xxyy -1- W yyyy) 

--  F ,  yyW,x x - 2F ,  xyW,xy + F x x W , y y  - c w  t -]- q ,  (1) 

F . . . . . .  at- 2 F x x y y  -}- F ,  yyyy = E h ( W , 2 y  - W x x W , y y ) ,  (2)  

where w(x,  y, t), F(x, y, t) and q(x, y, t) are the transverse deflection, the stress function, and the 
external force normal to the plate, respectively. The parameters p, E, D and c are the density, the 
Young's modulus, the bending stiffness, and the damping coefficient, respectively. Furthermore, 
the subscript x, y or t denotes a partial differentiation with respect to that variable. We should 
note here that more general plate models are now available in the literature [17]. For thin plates, 
however, von Karman equations are a sufficiently accurate approximation. 

Introducing the following transformations for the variables and parameters in equations (1) 
and (2) 

x y a 
x '  = - -  y '  a '  = ~ ,  K = - ~ ,  

w 
ff  = -  W '  -- a Vph  t '  h '  

a , ~ -  a 2 

c' - - -  V ~  c , q'  - o 
- ~c 1r-hNo 

- - q ,  
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F Eh3K 2 
F '  - - -  e' - - -  

Eh3K2 , NoTr2b 2 , 

D 
O t  _ _ _  

,TT2N0 a2 
(3) 

and omitting primes, equations (1) and (2) take the following nondimensional forms: 

1 
W,t  t --  ~ ( W , x  x Jr- K 2 W , y y )  -b D(w ~ + 2 4 , 2 K  W,xxyy  + K W,yyyy )  

= e ( f y y W x  x - 2 F ,  xyW,xy  + F x x W y y  ) - c w , t  + q ,  (4) 

2 4 2 F . . . .  + 2K fxxyy @ K f y y y y  ~- W xy - W , x x W , y y  , (5)  

where the dimensionless parameters e, K, D and c represent the thickness parameter, the aspect 
ratio, the ratio of bending stiffness to uniform stretching force and the damping coefficient, 
respectively. 

The boundary conditions considered here are that all the edges are simply supported and 
immovable. The transverse displacement w then satisfies 

W=Wxx=O at x = 0 , 1 ,  

and w = W , y y  = 0 at y = O, 1. 

The in-plane boundary conditions of u = v = 0 along the four sides of the plate, where u and v are 
the in-plane displacements in the x and y direction, respectively, can be satisfied only on the 
average [13]. These conditions put in terms of the stress function F and expressed in nondimen- 
sional form, are as follows: 

~: Fyy-  , - ~ w  d x d y = 0 ,  

folfol(F ~ 1 2) xx - vK-F,y - ~  w y dx dy = 0, 

fol fol(2(l + v)K2Fxy+ W xW y)dxdy=O, (6) 

where v is the Poisson's ratio. 
The interest in the present study is in motions when the plate is harmonically excited by the 

external force q(x, y, t). Large amplitude motions occur when the excitation frequency is near a 
linear natural frequency and the motions of the plate are approximated by the linear vibratory 
modes. Employing the Galerkin method, equations (4)-(5) can be transformed into a set of 
nonlinear ordinary differential equations governing the modal amplitudes of response for the 
plate. 

The plate deflection function w can, in general, be chosen as 

y, t) = E y) (7) 
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where cbi(x, y) are a set of comparison functions. In this study, we assume the deflection to be a 
superposition of two distinct linear modes as follows: 

w(x, y, t) = Xl(t  ) sin rnwx sin nTry + S2(t ) sin rwx sin sTry. (8) 

Thus, the motion consists of a linear combination of the two spatial modes of orders (m, n) 
and (r, s). The modal amplitudes X 1 and X 2 are functions of time and the nonlinear terms in the 
system determine their time evolution. Substituting equation (8) into equation (5), the solution 
for the resulting linear partial differential equation in the stress function F can be written as 

F(x, y, t) = Fh(x, y, t) + FP(x, y, t) , (9) 

where F h is the homogeneous solution which includes the effect of the in-plane stretching forces 
independent of the transverse deflection, and F p is the particular solution that includes the effect 
of out-of-plane boundary conditions. The particular solution F p can be easily shown to be [13] 

l ( n  2 m 2 ) 
FP(x, y, t) = ~ -  \~-7 cos 2mrcx + ~ cos 2n~ry X21 

/ q K  

+ ~ cos 2rwx + --7--£ cos 2swy X 2 
S K 2 

1 [ (ms -- nr) 2 
+-4 { ( m + r ) 2 + K Z ( n + s ) 2 } a c o s ( m + r ) r c x c o s ( n + s ) r c y  

(ms + nr) 2 
+ ((m + r) 2 q- K2(/2 - -  S)2} 2 COS (I,72 q- r)rrx cOS (n -- s)wy 

(ms + nr) 2 
+ { ( m  -- r )  2 + K2(n  + S)2} 2 c o s  (/T/ -- r)rrx cos (n + s)rry 

- (ms - nr) 1 
+ {(m - r) 2 + K2(n -s)2} z cos (m - r)zrx cos (n - s ) r r y  X x X  2 . (10) 

For F h to satisfy the boundary conditions, equations (6), the homogeneous solution F h can be 
assumed as 

1 1 2 
Fh(x, y, t) = -~ Nxoy 2 + ~ Nvox + NxyoXy . (11) 

Substituting F = F'P + F h into the in-plane boundary conditions, equations (6), and carrying 
though the algebra, the time dependent functions Nx0, Ny0, and Nxyo turn out to be 

2 
_ _  2 /  2 ~ 7 2  - -  7r [(rn2X~ + r2X 2) + uK tn 21 1 ± s2X~)l, Nx° 8(1 - vz)K 4 

2 
~r 2, 2..2 rZX2)] (12) NY° - 8(1 - v2)K 4 [K4(n2X] + s2X2) + vK im di. 1 -~- 

and 

Nxy0 ~ 0 .  
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Nxy 0 is nonzero only when both (m -+ r) and (n -+ s) are odd numbers and its expression is given in 
[13]. Substituting the solution F obtained above and the assumed two mode solution, equation 
(8), into equation (4), multiplying successively, by sin m~rx sin nTry and sin rrrx sin s~ry, and 
integrating over the domain of the plate, we get the following discretized equations of motion: 

X1 +p2aX1 = e N I ( X , ,  X2) - c-3~1 + q l ,  

+ p2X2 = eN2(Xl ,  )22) - cX2 + q2,  (13) 

where e N  1 and e N  2 are nonlinear functions of order 3 in X, and X2, 

2 2 Pl =Prom = ( m2 + K2n2) + Dr r4(  m2 + KZn2) 2 , 

P22 =pr,2 = (r 2 q_ K2s 2) _~_ Dvr4(r  2 + K2S2)2 (14) 

 01f01 ql = 4 q(x,  y ,  t) sin m ~ x  sin nTry dx dy , 

and 

 01i ' q a = 4  ~ q(x,  y , t )  s i n r z r x s i n s c r y d x d y .  (15) 

Here Pl and P2 are the nondimensional natural frequencies for the two linear fin, n) and (r, s) 
modes of the plate, and ql and q2 are the contributions of the transverse excitation q to the two 
modes. If the external force q is expanded as 

q(x,  y ,  t) = ~ qq(t) sin irrx sin j r r y ,  (16) 
i,j 

equation (15) gives 

ql = qm, ( t ) ,  

q2 = qrs(t) " (17) 

Using equations (14), it can be easily shown that there exist various combinations of two specific 
linear modes and the corresponding values of the aspect ratio K which result in degeneracy of 
modes, that is, for some specific value of K, two different spatial modes have the same natural 
frequency. The results for lower mode numbers (i, j ) ,  1 -< i, j -< 5 are shown in Figure 1. Using 
equations (14) it is easy to show that the values of K at which the degeneracy of two specific 
modes arise are independent of the bending stiffness D of the plate. Thus, for a particular mode 
combination determined by (m, n) and (r, s), the two linear natural frequencies are equal at a 
specific aspect ratio K. Clearly, there are many aspect ratios K at which multiple eigenmodes arise. 
The likelihood of more than one set of multiple eigenmodes arising at the same aspect ratio 
increases with the mode numbers. In the present work we assume that only two linear natural 
frequencies are coincident and that no other internal or combination resonances arise. The 
numerical values of natural frequencies do depend on the bending stiffness D. For specific 
numerical results we have selected the two interacting modes to be the (1, 2) and (3, 1) plate 
modes. The analysis, however, is completely general and applies to all the cases with two modes in 
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Fig. 1. Dependence of linear natural frequencies for the various plate modes on the aspect ratio K. 

1 " 1 internal resonance. Their natural frequencies are identical when the aspect ratio K is 1.633. 

The excitation force is assumed to be harmonic so that ql and q2 in equations (17) are given by 

qi = Qi cos cot, i = 1, 2 .  (18) 

Under  these conditions equations (13) become 

2 = e(A 2 A2X2)X1 CXl q- 0 1  c o s  o)t J~l q-plX1 1 2 1  At- - ' 

& 2 a3x~)X2 C J(2 + Q2 COS cot q-p2X2 = e(AzX21 q- - , (19) 

where A1, A 2 and A 3 a r e  the constant non-linear coefficients which are determined for the 

specific mode  combinations,  and Pl and P2 are the corresponding natural frequencies of the two 

linear modes.  The expressions for A1, Aa and A3, in terms of the mode  numbers  (m, n) and (r, s) 
and the aspect ratio K, are given in the Appendix.  

Let  

X I = R 1 cos (cot - 7 t ) ,  

X 2 = R 2 cos (cot - Y2)" (2o) 

Then,  using a variation of constants procedure and the method of averaging [1, 14, 18], and noting 
that  the excitation frequency co is near  the two close natural frequencies, equations (19) result in 

the following averaged equations for the amplitudes R i and the phases Yz: 

c Q1 eA2 2 
/~1 = - - ~  R1 + ~ sin 3'2 + ~ R2R1 sin 2(3'2 - 72), 

w a-P~  + Q1 3eA1 2 ea ,  
5'1- 2co 2coR,  c ° s  T1 + N-m--co R 1 + -8-~co - R 2 { 2  + c o s  2(T1 - T2)} ' 
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c Q ,  e A  2 : 
/~2 = - ~  R2 + ~ sin 7: + ~ RaR2 sin 2(y z - 3q), 

2 2 

o) --P2 Q2 3cA3 2 cA2 2 
Y2 - 2------~-- + ~ c°s y2 + -~-w R 2 + -'-~-~w R l { 2 + cos 2(Y2 - 71)}- (21) 

These equations were also derived and studied by Yasuda and Asano in [13] for the case of a 
rectangular membrane. Given a specific value of the aspect ratio K, and the degeneracy of two 
specific modes, the plate and the membrane have the same averaged or amplitude equations. The 
nonlinear coefficients A1, A2 and A 3 depend only on the mode combinations, the Poison's ratio, 
and the form of the nonlinearity assumed (von Karman-type nonlinearities). The values of the 
natural frequencies Pl and P2 are however different. 

We should note that the procedure used here in deriving the averaged equations is along the 
lines of [13] although it can be easily formalized by introducing a small parameter and by scaling 
the modal amplitudes Xi, i = 1, 2, the damping c, and the external force amplitudes Qi, i = 1, 2, 
appropriately (e.g., see Nayfeh and Mook [1] and Johnson and Bajaj [11]). The resulting 
amplitude equations will be identical to equations (21), except for the small parameter multiplying 
the right hand side. Thus, the amplitude equations should be treated in the sense of a slow time 

- -  v "~ 2 

scale. Also note that p~ ~-p~ ~ o) , and thus, the problem under study is an example of primary 
resonant motions in systems of coupled oscillators with 1 :1  internal resonance and cubic 
nonlinearities [1]. 

In a general external loading case, the force amplitudes Q1 and Q2 are not zero. There can be 
special situations when one (both) of them is (are) zero depending on the spatial distribution of 
the loading and the mode numbers in internal resonance. Yasuda and Asano [13] presented results 
for Q1 = Qz = 10.0. Here, we are much more interested in the situation when only one mode is 
externally excited and the second mode is driven due to its nonlinear coupling to the excited 
mode. Two such specific cases arise, i.e., Q1 # 0 and Q2 = 0, or Q1 = 0 and Q2 7~ 0. Due to the 
similar nature of the equations for (R1, YI) and for (R2, Y2), the analytical expressions for various 
steady-state constant solutions turn out to be identical except for the role of the nonlinear 
coefficients A 1 and A 3. In view of the possible bifurcations and stability considerations, however, 
considerable qualitative as well as quantitative differences in the overall response can arise in the 
two cases. We describe these in the next section where a local bifurcation analysis of equations 
(21) is carried out. In fact, it is shown that the qualitative behavior is strongly dependent on the 
nonlinear coefficients, and rectangular plates with two interacting modes in 1 : 1 resonance can be 
classified based on the nonlinear coefficients. 

Finally, it is easy to see that the divergence of the averaged system (21), when expressed in 
Cartesian form (equations (28)), 

,9 £ (0., 0 i\ 
i=1 \ 0 . ,  + ' 

is - 2 c  from which it follows that the volume in (//1, U1, U2, U2) space contracts and that every 
solution trajectory must ultimately be confined to a limiting subspace of dimension less than four. 
Furthermore,  equations (21) can be combined to show that 

dE c 
m 

dt 2 

• Q2(R2 n ) 
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where E 2= R~ + R~. This has the implicit solution 

E( t )= E(O)e-(C/2)'+ fo' [2~ (R1 ~n ~1)+ 2 ~  (R2 En 72-)] e-2 ('-O dr .  

Noting that IR; s i n x / E ]  <-1, i = 1, 2, we get the inequality 

[E( t ) -  E(O)e-7' I < - - -  1 -  e-7; Q1 + Q2). 
CO) 

Thus, the steady-state solution is ultimately (t---~oo) bounded and confined to a hypersphere of 
radius (Q1 + Q2) ~co). 

3. Steady-State Solutions and Bifurcation Analysis 

3.1. Steady-State Solutions 

As already discussed, we emphasize the cases when only one of the two modes is externally 
excited. First, consider the case when Q2 = 0 and Q1 ¢ 0. Thus, the (m, n) mode is directly excited 
by an external harmonic force. There are two types of steady-state constant solutions. One set of 
solutions is characterized by the fact that R 2 = 0, that is, the indirectly excited mode is absent. 
Then the only response is in the (m, n) mode with R I ¢ 0 and this is called the single-mode 
solution. The other class of solutions corresponds to both R 1 and R 2 being nonzero and such 
motions are called the coupled-mode response. A similar situation exists when the (r, s) mode is 
directly excited and Q1 = 0. 

From equations (21), the steady-state constant solutions for single-mode motions are 
determined by 

¢ - Q 1  . 
R1 - -~w sm Z/1 = 0, 
"7 ") 

o)--P1 3eA1 -3 
-27 fi l + --g~ R1 

/~2 = 0 ,  

1 + ~ cos ~/1 = O, 

(22) 

where an overbar indicates the single-mode steady-state solutions. Combining the equations for R 1 
and 9'i results in the following polynomial in/~1: 

8(o, 2 -p~l) 16[o)~c2 + (o)2 _p~)q 3602, 
l~ + 3cA1 k~ + 9e2A ~ R~ 9s2A ~ - O. (23) 

Real roots of equation (23) determine the single-mode steady-state constant solutions. Note that 
equations (22), or equivalently the polynomial (23), are identical to those arising in the primary 
resonant response of the harmonically excited Duffing equation [1]. 

Differentiating equation (23) with respect to/~1 and setting Oo)/OR 1 = 0 gives, the saddle-node 
bifurcation points [18] or, the points of vertical tangency for single-mode steady-state solutions: 
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-2 4 [_2(092_p~)+_~/(co2_p2a)2_3c2092].  (24) 
(R  I)SNS - 9 e A  I 

Here the subscript SNS implies the saddle-node bifurcation for single-mode solutions. We will 
show later that equation (24) also corresponds to the occurrence of zero eigenvalues when the 
stability of solutions in the single-mode branches is considered. 

The problem of finding steady-state constant solutions for coupled-mode response ( R  1 ¢ 0 ,  

R 2 ¢ 0) can also be formulated as that of finding the real roots of a polynomial of the 8th order in 
62 

R2, where a hat indicates the coupled-mode steady-state solution. Due to its complexity, the 
polynomial expression in R 2 has been determined by using symbolic algebra programs (e.g., SMP, 
MACSYMA) and is not presented here. The corresponding expression for the coupled-mode 
steady-state solution /)1 is given by 

V[~__ ~ /)2+ 4 (092-p~)12 16 092c2 ~2 FA3 ^2 4 (092_p2)] 
R 1= - 2  [-~2 R2 + 3 - J +- 3 eA  2 3 ~ 2.  (25) 

8 -A  2 

When damping is absent, the equation governing the amplitude/)2 is of the form 

~2 
C1/) ~- C2/)62 -}- C3/) 2 q- C4R 2 + C 5 = 0  , 

where the coefficients of the polynomial are a function of the parameters A 1, A2, A 3, w, Pl, P2, e 
and Q I. The expressions for coefficients Ci, i = 1, 2, 3, 4, 5, are given in the Appendix. 

Setting/)2 = 0 in equation (25), we can obtain the critical points for the onset of coupled- 
mode steady-state harmonic response. The condition for the occurrence of pitchfork bifurcation 
from the single-mode response is 

~2 4 [_2(092_pZ)+_ V ( 0 9 2 _ p ~ ) 2 _  3c20921, (26) 
(R1)PF = 3eA2 

where PF refers to a pitchfork bifurcation [18]. We will show later that equation (26) also 
corresponds to the occurrence of a zero eigenvalue. 

It is clear from the polynomials (23) and (25) that, given the mode numbers (m, n) and (r, s), 
and the aspect ratio K, the number of real solutions of the single-mode and the coupled-mode type 
depends on the physical parameters Pl, P2, c, w, and Q1. While the condition of K = 1.633 fixes 
the two natural frequencies Pl = P:, any small deviations from the precise value of the aspect ratio 
lead to small mistuning in the internally resonant modes and thus (p~ _p2)  is an important 
"internal" mistuning parameter. The other frequency parameter is (092- p~) or (o92 _p22) which 
represents the "external" mistuning. Numerical values of the natural frequencies Pl and Pe, as 
indicated earlier, depend also on the bending stiffness D and the Poisson's ratio v. The nonlinear 
coefficients A1, A2, and A3, however, depend only on the Poisson's ratio. 

Figure 2 shows the various single-mode and coupled-mode steady-state constant solutions R 1 
and R e as a function of the excitation frequency 09. These response curves are for (1, 2) and (3, 1) 
interacting modes with the damping c = 0.0, and force amplitudes Q1 = 10.0 and Qa = 0.0. For all 
the numerical results presented in this work e = 6 x 10 -4, ~, = 0.3, p~ =p~ = 35/3, and D = 0.0. 
The nonlinear coefficients for the (1, 2) and (3, 1) modes are A 1 = -326.27, A 2 = -274.79 and 
A 3 = -268.32. The frequency axis is divided into 4 intervals, I, II, III, and IV, according to the 
nature of solutions. Over the interval I, there exists only one single-mode solution. Over the 
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Fig. 2. Constant  amplitude response R1, for the (1, 2) plate mode,  and R2, for the (3, 1) plate mode,  as a function of the 
excitation frequency w; Q1 = 10.0, Q,  = 0.0, c = 0.0. 

interval II, we have a stable coupled-mode solution and an unstable single-mode solution. 
Therefore, in the intervals I and II, the initial condition is not critical to determining the final 
steady-state response. Over the frequency intervals III and IV, there exist a stable single-mode 
and a stable coupled-mode solution, and two stable single-mode and a stable coupled-mode 
solutions, respectively. Thus, the initial condition is very important in determining the final 
steady-state response reached in any experiment or numerical simulation. Note also that for every 
mixed-mode solution with some 3'2, there is another solution with phase angle 3'2 + ¢r for the 
amplitude R a. Thus, the response curve really represent two coupled-mode solutions which are 
phase shifted by 1r radians. 

The points A and C in Figure 2 are associated with equation (26), that is, the pitchfork 
bifurcation points, and the point B is associated with equation (24), that is, a saddle-node 
bifurcation point for single-mode solution. The corresponding frequencies at the points A, B, and 
C coincide with the boundaries of the intervals. 

The single-mode and the coupled-mode harmonic motions of the plate can also be interpreted 
in terms of standing and rotating nodal patterns. Clearly, for the single-mode response, the nodal 
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lines are stationary and the plate vibrates harmonically in the (1, 2) mode. When both (1, 2) and 
(3, 1) modes are present in the response, the nodal pattern depends on the phases 71 and %. Only 
in the case of 71 = Y2 or 71 = 72 -+ ~- are the nodal patterns stationary. Otherwise, the nodal pattern 
changes continuously in a periodic manner, resulting in a traveling wave motion of the plate. 

A similar analysis can be performed for the case when Q~ = 0 and Q2 ¢ 0. Figure 3 shows the 
response curves for this case with Q~ = 0 and Q2 = 10.0. From the figure, it is seen that over the 
intervals I, II, and III, we have qualitatively the same results. Over the interval IV, however,  there 
exist one stable single-mode and one stable coupled-mode solution in this case, whereas, there are 
two stable single-mode solutions and one stable coupled-mode solution for the case with Q1 = 10.0 
and Q2 = 0. This qualitative difference arises due to the fact that here one of the pitchfork 
bifurcations from the single-mode solutions occurs in the lower branch (point C) while in the 
earlier case both the pitchfork bifurcations occur only in the upper branch of the single-mode 
solutions. As is shown in Section 4, this is a consequence of the relative magnitude of the 
nonlinear coefficients Ai,  i =  1, 2, 3. Further discussion about other qualitative differences 
between the responses for the two cases will be given following the stability analysis. 
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3.2. Stability Analysis 

Stability analysis of steady-state constant solutions of the averaged equations is most readily 
accomplished with equations in Cartesian form. Letting 

u i = R i cos Yt , v i = R t sin N , i = 1, 2 ,  (27) 

the transformed averaged equations in Cartesian variables (ui, vi), = 1, 2, are given by 

2 2 
C o9 --Pl 3cA1 EA2 

~ta = - ~  u 1 2w v~ 8o9 vl(u2a + v2) + ~ (-vluZ2 - 3vW2 - 2UlU2V2)' 

2 2 

C ~w o9 --Pl 3eA1 2 8A2 2 
01 = - 2  vl + + 2 T  us + ~ ul(ui + v~) + ~ (3ulu ~ + uw2 + 2vlu2v2), 

2 2 
C o9 --P2 3eA3 eA2 

/~2 : ---2" U2 2O) U2 -- 8~-~-'- U2(u~ "q- v2) q- ~ (--V2U~ -- 3v~v~ - 2 u 2 u l o , )  , 

2 2 
c ~ o9 -P~  3eA3 2 ", eA~ . ., 2 

v2 = -2- v2 + + 2o9 u2 q- ~ / ' t 2 ( U 2  + 02) q- ~ ('3U2U7 q- U2UI -1- 202UlU1)" (28) 

The eigenvalues of the Jacobian matrix of (28), which determine the stability of the 
single-mode solutions (u 2 = v 2 = 0, or R 2 = 0) with Q2 = 0, can be shown to satisfy the two 
quadratics: 

1 [  __27e2A~ -4 38A1(wZ-P~) -2  (0) 2 - - P ~ )  2]  
/~2 _}_ CA q- ~- C 2 -1- 16o)2 R1 + 09 2 R~ + o92 J = 0 , (29a) 

2 2 eA2(o92 p~) ] I 3e A 2 /~4 + _ / ~  + (w2 _p2)2. = 0 (29b) 
~2-~CAq- 1 C2.q- 16092 O9 o9 2 j ' 

where A represents the eigenvalue. Using equations (29) and the fact that/~a is a root of (23), it 
can be easily shown that no eigenvalue can be purely imaginary for c ~ 0 and, as a result, Hopf 
bifurcation [18] cannot arise from the single-mode steady-state solutions. Therefore, the single- 
mode steady-state solutions can lose their stability only when an eigenvalue becomes zero. Using 
equations (29), the conditions for the loss of stability with a zero eigenvalue turn out to be 

27eZA~/~+  3eA*(w2-P~) -2 (w2-PZl) 2 
c 2 -t 16w2 w2 R1 + o92 = 0,  (30a) 

2 9 3e~A~ ~4 eA2(wZ_p2) (o92_ 22)2 
C2 + 16092 1 + o92 " /~12 q- OgP O. (30b) 

Equation (30a) is really equivalent to equation (24), the condition for a saddle-node bifurcation or 
a turning point. Similarly, equation (30b) is equivalent to equation (26), the condition for a 
pitchfork bifurcation. It can thus be concluded that the single-mode steady-state constant solutions 
lose their stability either at the saddle-node bifurcation points or at the pitchfork bifurcation 
points. 

These saddle-node and pitchfork bifurcation sets for the single-mode solutions can be 
obtained in the parameter space by combining equations (23) and (30). Due to their complexities, 
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Fig. 4. Saddle-node and pitchfork bifurcation sets for the single-mode solutions; Q2 = 0.0, c = 0.195. 

the equations for the bifurcation sets are not given here. A representative set of these graphs for 
(1,2) and (3, 1) modes are shown in Figure 4 for c=0.195.  Here, SNS and PF denote, 
respectively, the saddle-node and the pitchfork bifurcation sets for the single-mode solutions. 
Note that as the force amplitude Q1 is increased for a fixed damping, the single-mode solution first 
develops multiplicity and only then pitchfork bifurcations arise. This can be also shown to be the 
case by a careful examination of equations (30a) and (30b). 

The geometry of solutions in the phase space (ul, v 1, u 2, v2) is quite interesting and 
understanding it is essential to explaining some of the phenomena and response behavior found in 
the study. First note that Q2 = 0 implies that the (u~, v~) surface, that is, (u2, v2) = (0.0, 0.0) is an 
invariant of the vector field defined equivalently by equations (21) or equations (28), If initial 
conditions are chosen in (u~, v~) plane, the motion governed by solutions of equations (28) 
remains confined to it, that is, the dynamics of the plate is a single-mode motion. For single-mode 
constant solutions, the instability boundary defined by equation (30a) corresponds to disturbances 
restricted to the (Ul, vl) plane. The instability condition (30b) arises only when disturbances in the 
(u s, v~) plane, that is, out of the (ut, vt) plane are allowed. Thus, pitchfork bifurcation from 
single-mode to coupled-mode constant solutions arises only because of coupled-mode distur- 
bances. 

A similar stability analysis can be carried out for the coupled-mode steady-state constant 
solutions though the algebra becomes unmanageable and symbolic algebra programs have been 
utilized. Due to the complexity, this analysis is not presented here except to note that now both 
zero and pure-imaginary pair of eigenvalues are possible as criterion for the loss of stability. A 
zero eigenvalue can lead to a saddle-node bifurcation and the associated multiple coupled-mode 
responses, whereas, a pure-imaginary eigenvalue leads to Hopf bifurcation and the possibility of 
limit cycle solutions [18] for the amplitude equations. Pitchfork bifurcations also arise in the 
coupled-mode branches for a zero eigenvalue but they are found to correspond only to the points 
where the coupled-mode solutions arise from the single-mode solutions and this set is already 
identified above. The saddle-node and the Hopf bifurcation sets for the coupled-mode responses 
were obtained using AUTO [16], are denoted SNC and HB, and are shown in Figure 5 for 
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Fig. 5. Saddle-node and Hopf bifurcation sets for the coupled-mode solutions; Qz = 0.0, c = 0.195. 

c = 0.195. Points at which the various bifurcation sets intersect, (see both Figures 4 and 5) have, in 
most cases, no special significance since the intersecting lines or curves represent instability 
boundaries for different solutions. The point D in Figures 4 and 5 corresponds to a double-zero 
eigenvalue and is therefore a codimension-2 point [18]. More complicated bifurcation phenomena 
are expected for values of parameters near the codimension-2 point and results of analytical 
investigations will be reported in a future work. 

The system response depends on four parameters Q1, o), c and (p~ -p22). The bifurcation sets 
2 2 shown in Figures 4 and 5 correspond to zero internal mistuning (p~ =P2) and a fixed value of 

damping. The parameters Qa and c play opposite roles and, in fact, Q1 can be eliminated by an 
additional scaling. It is therefore expected and seen that the bifurcation sets at other damping 
values are qualitatively similar to the ones shown here. Though physically more realistic, we have 
not yet studied in sufficient detail the case of nonzero internal mistuning. 

Figures 4 and 5 show that, beginning with very small values of Q1, as the amplitude of 
excitation is slowly raised, the plate response undergoes interesting and significant qualitative 
changes. Figures 6a-e are a series of bifurcation diagrams depicting these changes with ul as a 
function of the excitation frequency w. For small forcing amplitudes, the response is harmonic and 
single-valued, that is, for each forcing frequency, the plate undergoes a unique harmonic motion 
in the (1, 2) mode (Figure 6a). At force levels above the cusp point on the SNS curve, the 
single-mode response undergoes saddle-note bifurcations and now three single-mode responses 
exist between the frequency boundaries SNS1 and SNS 2 (Figure 6b). The upper and the lower 
solution branches are stable whereas the middle branch is unstable. Next qualitative change occurs 
when the pitchfork bifurcation set appears. For a very small interval in the amplitude Q1, the 
pitchfork bifurcations, which occur in the upper single-mode branch, are supercritical and all the 
coupled-mode motions are stable. Above the codimension-2 point (point D), the pitchfork 
bifurcation from the right boundary, PF 2, becomes subcritical with two possible coupled-mode 
motions now existing between the curves PF 2 and SNCt (Figure 6c). The subcritical branch is 
unstable and saddle-type with one real positive eigenvalues. Further increase in the forcing 
amplitude results in two additional turning points in the coupled-mode branch, SNC 2 and SNC 3, 
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so that two stable coupled-mode motions are possible. One of the coupled-mode solutions then 
develops Hopf bifurcation points that asymptotically approach the saddle-node bifurcation points 
SNC z and SNC 1 as Q1 becomes large. One example of such response curves is shown in Figures 
6d and e. Over the frequency interval bounded by the two branches of the Hopf bifurcation set, it 
is expected from the Hopf bifurcation theorem [18] that the amplitude equations will possess limit 
cycle solutions. These solutions will be explored in some detail in the next section. 
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Fig. 7. Saddle-node and pitchfork bifurcation sets for the single-mode solutions; Q1 = 0.0, c = 0.195. 

A similar stability analysis can be performed for the case of Q1 = 0. Analytical expressions for 
the results are not given here, but the corresponding bifurcation sets are shown in Figures 7 and 8. 
The set in Figure 7 is for the single-mode branch, now in the plane defined by (u2, Va). Figure 8 
gives the bifurcation sets for the coupled-mode motions. There are many qualitatively distinct 
response diagrams determined by the forcing amplitude Q:. The most significant difference from 
the case where the (1, 2) mode is excited occurs in that now there is a codimension-2 point, 
identified as E in Figures 7 and 8. At this point, the saddle-node, the pitchfork, and the Hopf 
bifurcation sets meet. In fact the saddle-node and the pitchfork bifurcation sets are tangent 
without crossing each other. As the forcing amplitude Q2 is increased this allows for one of the 
pitchfork points to move from the upper to the middle branch in the single-mode solutions. 
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Fig. 8. Saddle-node and Hopf bifurcation sets for the coupled-mode solutions; Q1 = 0.0, c = 0.195. 
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Numerical evidence of this behavior is provided in Figure 9 by the amplitude response curves for 
three close values of Q2- For Q; = 6.0 (Figure 9a), the right pitchfork bifurcation point in the 
single-mode branch is to the left of the turning point with the single-mode solution being stable in 
the frequency interval (PF z - SNSa). The Hopf bifurcation in the coupled-mode branch is at HB: 
and the coupled-mode solution is stable over the frequency interval (HB 2 - PF2). For Q: = 6.98 
(Figure 9b), the three points are nearly coincident, whereas, for Q2 = 7.3, (Figure 9c), all the 
solutions are unstable and the pitchfork bifurcation takes place in the middle single-mode branch. 

In the above discussion, it has been shown for the (1, 2) and (3, 1) interacting modes that for 
the second case with Q1 = 0, the two pitchfork bifurcation points in the single-mode solutions arise 
in two different branches. This leads to significant qualitative differences in the response curves 
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for the two cases and they can be explained easily, for any interacting modes with 1 : 1 internal 
resonance, by a careful consideration of the equations governing single-mode response and its 
stability under coupled-mode disturbances. The single-mode motions for c = 0 are, in general, 
solutions of a polynomial of the form (equation (23)) 

83 4 1632 172 ( 40  ~2 
R6 + ' - 3 ~  R +9e2A -- - - -~  = \ 3 e A /  ' 

which can be factored as 

{ 4Q1 2 4Q} 
R 2 +  ~ + ~ R  + ~ 3 e A R  = 0 ,  

where 3 = w 2 - p 2 .  The first factor represents the upper branch of single-mode solutions, whereas, 
the second factor represents the middle and the lower branches. The condition for pitchfork 
bifurcation (equation (30b)) for the undamped system is of the form 

382B2R4  

16 
+ e B 3 R  2 ..1.. 3 2 = 0 , 

where B is the nonlinear coupling coefficient. The two pitchfork points are the roots given by 

3 1 
61 = - 4  eBR2 and 3 2 = - ~  eBR 2 , 

with 61 > 62 for B < 0. Using these roots in the expressions for the upper and the lower branches, 
and requiring that R 2 >  0, it is easy to show that 6 z occurs in the upper branch if B / A  < 3. 

Otherwise, this point occurs in the middle branch. Similarly, the point corresponding to 31 occurs 
in the upper branch if B / A  < 1, otherwise it arises in the middle branch. These conclusions assume 
that both A and B are negative. 

The results derived above allow us to classify all the rectangular plate responses with two 
interacting modes in 1 : 1 resonance, based on the nonlinear coefficients. Consider, for example, 
the results of interaction of (1, 2) and (3, 1) modes presented here. In case of Q2 = 0, A = A 1 = 
-326.27 and B = A 2 = -274.74, so that B / A  = 0.84 < 1.0. Thus, both the points corresponding to 
31 and 32 should appear in the upper branch. In case of Q I = 0 ,  A = A  3 = - 2 6 8 . 3 2  and 
B = A z = -274.74, so that B / A  = 1.02. Thus, the point 3 2 should arise in the upper branch and 
the point 81 should arise in the middle branch. The response curves in Figures 2 and 3 are 
completely consistent with these predictions. 

Response curves have also been determined for mode interactions at many other aspect 
ratios. In particular, Figure 1 shows that (2,2) and (3, 1) modes are in 1 :1  resonance for 
K ~1.291. The corresponding nonlinear coefficients are calculated to be A 1 = -500 .70 ,  A 2 = 
-664.55, and A 3 = -630.52. The above analysis then predicts that the two pitchfork bifurcation 
points for both the cases of Q2 = 0 and Q1 = 0 arise in different branches, and these results are 
found to be completely consistent with the numerically calculated response curves. 

Results presented in this section clearly show that, depending on the amplitude and frequency 
of the external force, the plate can vibrate in various harmonic motions: single-mode, coupled- 
mode, etc. There also exists the possibility that the amplitude and phase of the response execute 
limit cycle motions and this is explored in the next section. 
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4. Periodic and Chaotic Solutions 

The numerical study on periodic solutions of the averaged equations has been performed using 
direct time integration as well as using AUTO [16] a software package which can perform 
two-parameter bifurcation analysis and continuation for ordinary differential equations. Both the 
cases of Q1 ¢ 0, Q2 = 0 and Q1 = 0, Q2 ¢ 0 have been investigated though the results here will be 

restricted mostly to the former case. 
Consider the averaged equations (28) for Q2 = 0. The plane defined by u 2 = v 2 = 0 is an 

invariant manifold and on this submanifold the dynamical behavior is determined by two 
first-order differential equations governing the variables u 1 and v 1. The divergence of the vector 

field restricted to the u 2 = v 2 = 0 submanifold, O/~I/OU 1 ~-OO1/OU1, is - c  which is always of the 
same sign. Thus, for the planar system, Bendixon's criterion [18] is satisfied and limit cycles are 
ruled out. If there are periodic solutions for the averaged equations, they only arise in the 

complete 4-dimensional system. 
From the bifurcation sets in Figures 4 and 5, it has been seen that so long as the excitation 
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Fig. 11. Response amplitude u~ as a function of the excitation frequency; Qa = 10.0, Q2 = 0.0, c = 0.195. 

force Q~ is sufficiently low, say, less than Q ~, the response is limited to the directly excited (1, 2) 
mode. For a higher level of the excitation force Q1, however, the (3, 1) mode also gets excited 
due to the interaction between the two modes. As the excitation Q~ increases further, say, above 
Q ~ , some of the coupled-mode steady-state constant solutions excited through the mechanism of 
internal resonance lose stability due to a Hopf bifurcation and the averaged system develops 
periodic solutions from the Hopf bifurcation point. These periodic solutions, denoted as P~ 
solutions, correspond to amplitude- and phase-modulated motions of the rectangular plate. The 
modulated motions result in slow, harmonic oscillations of the nodal pattern. The P~ solutions 
branch connects the two Hopf bifurcation points in a coupled-mode steady-state solution branch 
and is initially (for Q~ near Q~*) stable over the frequency interval over which it exists. Figure 10 
shows the response curve of steady-state solutions for Q~ = 10.0 and c = 0.20 for the amplitude 
component u~, as obtained by AUTO. Here the stable limit cycles branch is denoted by small 
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solid circles. Both the left and the right Hopf points are supercritical. As the damping is lowered, 
the P1 solutions lose stability due to a period-doubling bifurcation. The newly developed branch of 
periodic solutions with twice the period (denoted as /'2 solutions) connects the two period- 
doubling bifurcation points in the P1 solutions branch. (Figure 11; Q1 = 10.0, c = 0.195). Here, 
open circles denote unstable periodic solutions. Decreasing the damping gradually we observe 
much more complex phenomena including a cascade of period-doubling bifurcations which results 
in chaotic solutions. We concentrate our discussion on the parameter values Q1 = 10.0,  Q2 = 0.0,  
and c = 0.19, for which a portion of the response diagram with periodic solutions is shown in 
Figure 12. Direct integration of the averaged system with these parameter values for values of 
excitation frequency m near the left Hopf bifurcation point ~o = 4.195, leads to the steady-state 
solutions shown in Figure 13. Clearly, the amplitude response at ~o = 4.237 is chaotic and results 

u 2 4o(  
-I.0 0,0 

-3 .0  , 

(a) 

&O 

-2.0 

(b) 

0.0 4.0 
r 

u 2 

-4 .0  

- 2.0 

0.0 4.0 

u I 

(c) 

-4.0 

-2.0 

(d) 

0.0 4 . 0  
• p 

u 1 

u 2 

2.0 

0~0 6.0 

u 1 

(e) 

-2.0 

0.0 

u 1 

(t) 

6,0 P 

Fig .  13. Phase plots for the steady-state solutions in the Hopf bifurcating branch; Q~ = 10.0 ,  Q2 = 0 .0 ,  c = 0 .19 .  (a)  ~o = 4 .2  
(P~) ,  (b )  ~o = 4 .23  (P2) ,  (c) w = 4 .235  (P4) ,  (d) ,o = 4 .237  ( C h . ) ,  (e)  w = 4 .2425  (P3) ,  ( f )  w = 4 .248  ( C h . ) .  



454 S. I. C H A N G  E T  A L .  

from a period-doubling cascade. In the frequency interval with chaotic solutions, there also arise 
the usual windows of various periods, with the prominent period-3 (P3) solution at ~o = 4.2425 
shown in the figure. No stable steady-state solutions in this branch are found beyond w = 4.248, 
that is, almost every initial condition for frequencies to the right of ~0 =4.248 results in 
steady-state motions quite distinct from the one at o) = 4.248. A very similar sequence of periodic 
solutions and period-doubling bifurcations takes place from the right Hopf point (o) = 4.313) in 
the coupled-mode constant solutions branch. No steady-state motions are found in this branch for 

< 4.289. It is interesting to note that two distinct stable single-mode constant solutions coexist 
over most of the frequencies where these periodic and chaotic motions are found in the 
coupled-mode solutions branch. Thus, the plate motions are highly dependent on initial 
conditions. A Poincar6 section of the chaotic solution for ~o = 4.248, and with the section taken at 
U 2 = 3.0, is shown in Figure 14. 

While numerically investigating the above solutions branch developed from the Hopf 
bifurcation points, a new and different solutions branch was discovered and the results of direct 
integration are shown in Figure 15. This branch (henceforth called the "isolated" branch) 
corresponds to a limit cycle as the primary solution and arises due to a saddle-node bifurcation, 
that is, a stable and an unstable limit cycle arise at some low enough damping and the branch 
exists over a small frequency interval. As the damping c is decreased, the stable limit cycle branch 
undergoes a sequence of period-doubling bifurcations which ultimately lead to chaotic attractors. 
For c = 0.19, the isolated branch arises at o)~4.238, goes through bifurcations and ultimately 
terminates at o)= 4.291, again, via a saddle-node bifurcation. Figure 16 shows qualitatively the 
relationship between the isolated branch and the branch originating at Hopf points. 
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Fig. 15. Phase plots for the steady-state solutions in the isolated branch; Q1 = 10 .0 ,  Q2 = 0 . 0 ,  c = 0 .19 .  (a) w = 4 . 2 3 8  (P~) ,  

(b) ~o = 4.241 (P2), (c) ~o = 4.243 (Ch.), (d) w = 4.2485 (Ch.), (e) ~o = 4.249 (P3), (f) o)= 4.255 (Ch.). 

The qualitative behavior  conjectured here has since been verified using A U T O  [16] where it 

is also found that the isolated branch itself has a complicated structure. Similar behavior  was 
observed by Bajaj and Johnson [11, 19] in the amplitude dynamics of stretched strings. Figures 13 

and 15 clearly show that different periodic and chaotic solutions also coexist with other simpler 

stable steady-state solutions. In the frequency interval 4.263-< o)_< 4.268, Figure 16, no noncon- 

stant steady-state solutions are found for the averaged equations. Almost  all initial conditions 
result in the transients being ultimately captured by the domain of attraction of the single-mode 
constant  steady-state solutions. This can be explained by the concept of a 'crisis' [20], whereby,  
the chaotic attractor touches the stable manifold of a saddle-type equilibrium point or limit cycle 

and is destroyed. Figure 17a shows the chaotic attractor at ~o = 4.262. The Sil 'nikov [21, 22] type 
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Fig. 16. Qualitative relationship between the Hopf  and the isolated solution branches;  Q1 = 10.0, Q2 = 0.0, c = 0.19. 
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spiral structure near the right side of the attractor is very evident. This is in the vicinity of the 
saddle-type coupled-mode constant solution which has a positive real eigenvalue, a negative real 
eigenvalue and a complex conjugate pair in the left-half plane. Thus, the saddle-point has a 
one-dimensional unstable manifold and a three-dimensional stable manifold. The chaotic attractor 
is the closure of the unstable manifold and is enclosed by the stable manifold. For m = 4.264, 
Figure 17b shows the transient chaos where the solution traces the ghost of the previous attractor 
for some time, touches the stable manifold of the saddle-point (CM) and then is quickly attracted 
by the single-mode constant solution (SM). Figure 18 shows the Poincar6 section of the chaotic 
attractor for ~o = 2.262, with the surface defined by u 2 = 4.0. 

Before closing let us make a few remarks regarding the solutions expected of the discretized 
two-degrees-of-freedom system represented by equations (19) when the averaged equations 
possess limit cycle and chaotic solutions. The theorems in method of averaging [14, 18] and the 
theory of integral manifolds [14] predict that the limit cycle solutions of the amplitude or averaged 
equations correspond to quasi periodic solutions of equations (19) with two fundamental 
frequencies. These quasiperiodic motions can be interpreted as motion on a two-torus. Also, for 
sufficiently small motions characterized by the small parameter of asymptotic analysis, chaotic 
solutions of the averaged equations are expected to correspond to chaotic amplitude- and 
phase-modulated solutions of the coupled oscillators. Strong numerical evidence of the ability of 
asymptotic methods in predicting the complex responses, including chaotic motions and 'crisis', is 
provided in recent investigations with the string [19, 23]. Since the two oscillators represent 
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amplitudes of the two interacting modes, the plate responds in a chaotically modulated manner in 
time although the spatial response is simple, consisting of a combination of only two spatial 
modes. 

5. Summary and Conclusions 

This work considered the nonlinear vibratory response of a uniformly stretched rectangular plate 
pinned to immovable supports at its edges. The plate is harmonically excited near primary 
resonance when two distinct spatial modes are in 1:1 internal resonance. The method of 
averaging is used to investigate the response of the two coupled oscillators representing the 
dynamics of the two modes in resonance. 

Steady-state solutions of the averaged equations are studied in considerable detail. Emphasis 
is on determining the conditions which lead to coupled-mode response when only one of the 
modes in resonance is externally excited. It is shown that, depending on the mode combinations in 
response, as well as the mode that is excited, qualitatively distinct response diagrams can be 
obtained. Stable single-mode and coupled-mode responses are found to coexist over a wide 
frequency interval. At low damping levels, the mixed-mode periodic response undergoes Hopf 
bifurcation to amplitude- and phase-modulated motions. These limit cycles in the averaged 
equations are found to lead to period-doubling bifurcations to chaotic motions which represent 
chaotic amplitude- and phase-modulated response of the plate. At lower levels of damping, a 
'crisis' can interrupt the chaotic behavior and the plate can unexpectedly jump to small amplitude 
single-mode harmonic motions as the frequency of excitation is varied. 
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Appendix 

The expressions for the nonlinear coefficients A1,  A 2 and A 3 in equation (19) are given as 
follows: 

A 1 - 

A 3 - 

A2= 

4 7r 
16K4(1 - v 2) [( v2 - 3)(m 4 + K4n 4) _ 4pK2m2n2], 

4 ,/.j- 
161<4(1 - v 2) [( v2 - 3)(r 4 + K4s 4) _ 4vKerZsZ], 

4 
8K4(1 -- v) 2 [ mzr2 + vK2(r2n 2 + s2m 2) + K4s2n 2] 

I 4 ] 1 - - - ~  (nr - ms) 4 B 
+ [(m - r) 2 + t<2(n -- S)2] 2 (m z - r2)(n 2 - s 2) 
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i 4 1 - - i - 6  (nr  + m s )  4 
+ [(m + 0 2 + Ka(n - ,)212 [4 

1 - ~  ( n r  + m s )  4 
+ [ ( m  --  r )  2 + K2(rt  -I- s)2]  2 [4 "/7" 

1 - 1 6  (nr  - m s )  4 
+ [(m + r) 2 + K2(n +s)2] 2 

B5 + 
K2(1 + v)(m 2 - r2)2(n2 _ s2) 2 '  

B 2 ] 
(m 2 - rZ)(n 2 - s 2) J 

] 
(m 2 - r2 ) ( r /2  - s 2) 

] 
( m  2 --  r 2 ) ( n  2 --  S 2) 

where  B i = 0, i = 1, 2, 3, 4, 5 for Nxy o = 0, and 

9 1  = 32mnrs(nr - m s )  2 , 

9 2 = - 3 2 m n r s ( n r  + m s )  2 , 

B 3 = - 3 2 m n r s ( n r  + m s )  z , 

B 4 = 3 2 m n r s ( n r  - m s )  z , 

B 5 = 128m2nZr2s 2 

for Nxyo # 0 .  

The  expressions for coefficients C/, i = 1, 2, 3, 4, 5 in equat ion (15) depend  on the solutions 
/)1 in equat ion (25), and are given as follows: 

(a) For  + r e  sign in equat ion (25): 

C 1 - 

C 2 - 

C3 - m 

C 4 - 

C 5 - 

2 A 2 / ~ 2  9 e _/-13lz-I 2 - -  9A1A3) 2 
2 4 64 w A 2 

3 e A 3 ( A  2 - 9 A  aA3) 
8 0)2A4 [3A2A3O-a + (A2 - 18A 1A3)o-2] ' 

2 

1 2 2 2 2 2 2 
4AZ2w2 [9AzA3O-1 + 6 A 2 A 3 ( 2 A  2 - 27A 1A3)o-lo- 2 + ( A  4 - 5 4 A 1 A ~ A  3 + 486A1A3)O-2], 

3 A 3  Q~ 2°-2 2 2 Az(AZ2 27A~A3)o.o.  2 3AI(A~ 18A1A3)o.22] + ~ [3A2A3O-a + - _ _ , 
4 A 2 0) 80) asl 2 

4o-2 [ Q ~  ~ - ~ O " 2  ( A g o - 1 -  3 A l o - 2 ) 2 ]  , 
e A  2 I_4o9 2 8~120) 

where o-1 = 0) 2 --P~ and o-2 = 0)2 _p~.  

(b) For  - r e  sign in equat ion (25): 

2 - - 2 / a 2  9 e _,~t3~.tz]. 2 --  A1A3) 2 
C1 = 6--4- ~o A 2 2 4 

3 e A 3 ( A  2 - AIA3)  [AzA3o.1  + (A22 _ 2A1A3)O-2] 
C 2 ~ - 8  0) A ,  2 4 
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1 r a 2 - - 2  2 2 2 2 
C3= z 2[~aza3O- l+ZAzA3(ZA~-3ArA3)O- l° ' z+(A~-6A1AZA3+6A1A3)O-2] ,  

4A 2 w 

1 A 3 QA 2% 2 2 A2(AZ2_ 3A1A3)o.o_ 2- 3 A I ( A ~ -  2AsA3)o -2] C'4 - 4 A 2 (.0 2 q- 2 ~  [AzA3°-a  + " , 3ew A 2 

4o -2 [Q~ o2 (A20.1 AlO'2) 2] 
C5 = 3eA~ 1_4092 + 3 2 -- " 3eA2w 
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