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Abstract. Non-linear stability of the libration point L4 of the restricted three-body problem is studied
when the more massive primary is an oblate spheroid with its equatorial plane coincident with the
plane of motion. Moser’s conditions are utilised in this study by employing the iterative scheme of
Henrard for transforming the Hamiltonian to the Birkhoff’s normal form with the help of double
D’ Alembert’s series. It is found that L4 is stable for all mass ratios in the range of linear stability
except for the three mass ratios:

fter = 0.0242- .- - 0.1790 - - - Ay,
pe2 = 0.0135--- ~0.0993 - -- A,
pes = 0.0109 - ~0.0294 - -. 4,.

Key words: restricted 3-body problem, more massive primary oblate, non-linear stability, triangular
point L4, double D’ Alembert’s series method

1. Introduction

The perturbed restricted three-body problem, when the secular effects of oblateness
of the more massive primary are taken into consideration, can be modelled in terms
of two parameters: the mass parameter (1) and the oblateness coefficient (4). Of
the five equilibrium solutions for the problem, the three collinear equilibria Ly, L,
and L are unstable, while the two triangular solutions L4 and L are stable, in the
linear analysis, for only a certain range of 4 which decreases with A; (cf. Subba
Rao and Sharma, 1975, 1976; Sharma and Subba Rao, 1978; 1986). The linear
analysis, however, is inconclusive as the second-order part of the Hamiltonian ( H>)
is indefinite. The present endevour is to provide an account of the investigation
carried out relating to the non-linear aspects of the stability of L4/Ls, making
use of Moser’s conditions by employing the iterative scheme of Henrard (Deprit
and Deprit-Bartholme, 1967), for transforming the involved Hamiltonian to the
Birkhoff’s normal form with the help of double D’ Alembert’s series. It is found
that the triangular equilibria are stable in the non-linear sense too for 0 < u < g
except when o = p; (4 = 1,2,3) which decrease with A;.

It is to be pointed out that a study of the non-linear aspects of the stability of Lg4
was attempted by Bhatnagar, Gupta and Bhardwaj (1994) for perturbed potentials,
of which the results of the present investigation can be derived as a particular case.
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However, it is noticed that some expressions in Bhatnagar, Gupta and Bhardwaj
(1994) are erroneus leading to results contrary to those reported herein. While some
of the corrections for Bhatnagar, Gupta and Bhardwaj (1994) are pointed out in
the text, the complete details will be addressed to separately. Another noteworthy
difference in the present approach is that the transformations, utilised for reduction
of the Hamiltonian to the normal form and for subsequent analysis, are dependent
on the perturbed frequencies (directly available from the characteristic equation)
rather than the unperturbed ones as in Bhatnagar, Gupta and Bhardwaj (1994) and
Bhatnagar and Hallan (1983) and this symplifies the derivation significantly.

2. Equations of Motion and Linear Stability

Using dimensionless variables and a synodic coordinate system (z,y), the equa-
tions of motion are Szebehely (1967) and Sharma and Subba Rao (1976):

Z—2ny = g, U+ 2nz =y, )]
where

2
_ 2 2, (1—p) M (1-p)A
Q= 2 [(1 = p) Ry + R3] + i +R2+—__2R§ ,

1
2 (N2 a2 R = 1= )2 4+ 2 —_ ™
Ri=(z—pw +v, s=(z+1-p) 4y, u Tty <2
my,ma(m; > my) being the masses of the primaries. Overhead dots indicate
differentiation with respect to time, and the perturbed mean motion of the primaries
n, is given by

3A
’I’l2=1+71, A1=

(R: - R})
5R?

R, and R, being, respectively, the equatorial and polar radii of the more massive
primary, while R is the distance between the primaries.
The locations (a, £b) of the triangular libration points L4 and Ls are given by

1
=1, R =,
R, ) 2= 3
resulting in
3 A )
a=—3v+4), b=§(1—71>, withy =1 —2p,

to first-order terms in the oblateness coefficient A;.
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The Lagrangian of the system (1) is

(2% + 9% N n?(z? +y?)
2 2

(l-p)  » (1—p) 4
T
R R, 2R

L =

+n(zy — 2y) +

Shifting the origin to L4 and expanding in power series of x and y, we note that

L= Lo+ Ly+ Lot Lyt Lot @)
where
_(1+9) (13447 +377)
Lo = 3 + 16 A,
3
L, = _§(12+5A) — 5[4y + (4 +3y) Ay,

Lo = L@+ 9% + F(4 +34)(zg — ay) + £[2 + (5 + 47)A)]z?
+2(6+ 114))y? —£[6w+ (6+ 137)A oy,
. ; V3 2
Ly = =514y + (=6 +257)Ailz’ — 35[6+ (43 + 607) AiJz7y

3
+ 322y + (22 + 657) A]ay? — %(6 +2341)8°

5v/3
L4 = —5k[14+ (285 + 2007) Ay]z* + %2—[307 + (=54 + 53y)A4,]z*

+ 135182 + (405 + 3407) A;]z2y>
_5V3

64 o |
The second-order part H, of the corresponding Hamiltonian H takes the form

18y + (18 + 717) A |zy® + 5% (2 + 6541)y*

Hy + 5(p2 + p2) + n(yps — zpy) + Ex? + F1? + Gy, 3)
where

E = £[2-3(1 +47)A4],
F=—%(10+214,),

G = ~—[6y+ (6 + 137)A44],

°°|&
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and p;, py defined as

Pz = T — ny, py:g]—i—nx,
are the momenta, conjugate to = and y, respectively.

To investigate the stability of the motion, as in Whittaker (1965: § 84), we
consider the following set of linear equations in the variables x, y:

OH. H.
~)\pz=—2=2Ex+Gy—npy, Aa:za 2=pz+ny,
o P @)
0H, O0H,
—Apy = — =2Fy+G , Ay=——=p, —
ie, AX =0,
where
z 2E G A -n
Y G 2F n )\
X = and _A =
o -An 10
Evidently, det. A = 0 implies that
16A% + 8(2 — 37A1)A2 + 9(1 — 4%)(3 + 134;) = 0. )
Equation (5) is the characteristic equation whose descriminant is
D = 64[(27 + 1174,)v* — 124y + 1174, — 23]. (6)

Stability is assured only when D > 0, implying that (Subba Rao and Sharma, 1975)

1 13
< = —=1+ ———) Al = —0.2850017877 - - - Ay, 7
p< fheo = Mo 9( NG 1= pho 1 N
where
Lo = —;— (1 — —96—9> = (0.0385208965 . . -,

When D > 0, the roots *iwy and *iw; (w;,w, being the long-/short-period
frequencies) are related to each other as

wi +wi = 1(2-341), (8)
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1
wiws = Z(1 —*)(3 + 134)), (0 <w <wy < 72) . 9)

From (4), it may be noted that w; (j = 1, 2) satisfy (see Subba Rao and Sharma,
1988):

817% = 3(16w] — 16w} + 27) + 8A w}(9y — 26w] + 26),
ie, 7’ = + 1241 + A, (10)

where
4 2
(l6w] — 16w; + 27)

"= 27 ) T2 = %wz(l - ) 1= %wJZ
Alternatively, it can also be seen that if v = wywy, then
7= (1 - $u?) + PP A =1 + 1AL (11)

It may be noted (Subba Rao and Sharma, 1988) that the perturbed frequencies w;
are related to the unperturbed ones (w; o) as

w?

—4 26 w? 9v]A;.
12(1—2w]o)[ (1= wjo) 971

2 2
wj =wjo+

3. Determination of the Normal Coordinates

For expressing H, in a simpler form, we consider the set of linear equations (4),
the solution of which can be obtained as
x Y _ Pe

(2nA—G) (A2 —=n2+2E) (nX2—GX—2nE+nd)

_ Dy
T (A3 4+ n2X 4 2EX —nG)’ (12)

Substituting A = tiw; and +iw,, we obtain the solution sets as
z; = K;(2niw; — G),
Prj = Kj(—nwjz» —iGw; —2En + n3),
y; = Kj(~wj —n’ + 2E),
Py = Kj[—iw] +iwj(n® + 2E) — Gnl,

) 13
Tjy2 = Kj+2(—2mwj e G), ( )

Dz,j+2 = Kj+2(——nw2» + ’iij —2FEn + n3),
Yj+2 = KJ+2(_‘*)] —-n’+ 2E),

Dy j+2 = KJ+2[Z ]3 - zwj(n + 2E) - Gn],
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where 7 = 1,2 and K, K1, are constants of proportionality.
As in Whittaker (1965: § 192), we effect the transformation

Q1
X<J Q2 |
Py
P
where
| _i_“ilzﬁl —I2 -—7,!2234-
y1 — 242 —yp — i
/= Pz,1 —iiézé _pz,2_'égl%£'i
Py,1 — i%ﬁ —Py2— Z-‘*ﬂéu

under the normality conditions:

.4 I3
ZUJI + 2
4B
Zwl + 2

Pz Pz 3
’Lw] + 2

T1Pz3 — T3Pz,1 + Y1Dy3 — Y3Py,1 = 1,
ToPg4 — TaPz2 + Y2Dyd — Yapy2 = 1.

Equivalently,

—4iw K Ko[w}(F — E + 2n?) + G2 + 2E° + 3n’E

+n?F —2EF —2n% =1,

—4iwn Ky K4[w}(F — E + 2n?) + G? + 2E* + 3n’E

+n?F — 2EF - 2n%] =1,

7

(14)

(15)

K’s being arbitrary, we follow the approach of Breakwell and Pringle (1966) and

choose J; | = Ji,2 = 0, implying that

K (2inw) — G) = 5 (2nw — 1G),
K
K (G — 2inw,) = w22 4 (—iG + 2nw,),
ie.,
K K;
= =h R
o (2ner —iG)  2(2niwr — G) M (say)
K K
2 4 = hy (say).

w2 (2nwn, —1G)  2(G = 2niwn)

(16)

a7n
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Substituting (16) and (17) in (15), we observe that

1
h; = = :
T 2w MM (M} )?

where
M; = (w]2~—2F+n2)1/2, My = (w§—2E+n2)1/2,
M; =V2w}-E-F-n)'2, (j=1,2).

It is now verified that H, takes the form:
Hy = 3(Pf = P +wiQ] - w3Q3).

We observe that

0 0 M My
wi My wyM>
—2nw) 2inw, G__ G
M1M| MzMz wlMlMl szzMz
J = —wi(MP=2n?) (M} -2n?) —nG —niC
A41M| M2M2 w1M1M| szzMz
—w G WG —n(2w]2_—_MQ ni(Mzz——2_w§)
MM, MyM, wyM M waMyM,

In particular, we have

[ 33 3l
Ji3= + Ay — Ay,
13 2w1k1 8w111]€1 : 8(4)1]&‘% 1

L 33 3l
Jia= + A Ay,
L4 2wk 8uwrla ks 1+ 8&)2]6;’ 1

4w| 6w1k1 3w1
Jh=——n - —— A+ —A7,
205 Tk T T E et

4wy 6uwrky 3uwn
Joy = - A A,
250 T T e

3v3 V3(—16w} + 88w? — 63)
23 = 0 3 A

2wiliky 24wl Ky

V3(104w? + 135)

3 A177
8wk

3v3 V3(16w5 — 88w3 + 63)
24 = Y 3 Ay

2&)2[2/62 24w212k2

V3(104w3 + 135) ,
8wl3ky

17,

297

(18)

(19)

(20)

20

(22)
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where
12 = 4w? +9, ki = £(2w5 — 1), (23)

and it is understood that the upper sign corresponds to the case 7 = 1 while the
lower sign corresponds to the case j = 2.

The Hamiltonian H3 is transformed further by applying a contact transformation
from Q1, Q2, Py, P, to Q}, @4, P{, P, defined by Whittaker (1965: § 193)

ow ow

and
W = z Qisin! | == | + 7L \/2w;Q’ — P?| .
= [ ’ V2wiQ) 2 T
ie.,
2Q; , - .
Q; = Zj—cost, Pj = /2w;Q; sin P;, (7=1,2)
to the form

Hy = w1Q} — w2 Q).

Denoting the angular variables P| and P; by ¢; and ¢, and the actions Q) and Q%
by Iy, I, we note that

H2 = (4)1[] - waz. (24)
The general solution of the corresponding equations of motion is
I; = const., ¢; = fw;t +const., (j=1,2) (25)

If the oscillations about L4 are exactly linear, the equations (25) represent the
integrals of motion and the corresponding orbits will be given by

z = py cos 1T + pacos oI,
y = (g1 sin ¢y + g3 cos 1)V + (g2 sindy + gacos ¢) VI,

where p1, p2, 01, 92, 93, g4 are as in Appendix L

(26)

4. Stability of Higher-Order

It is known that if H is positive definite, then the equilibrium point Ly is stable, by
virtue of the Liapunov’s (1956) theorem, for all orders. However, if H, is indefinite,
then the stability can be investigated by means of Arnold’s theorem (1961), and
subsequent extensions by Leontovic (1962) and Moser (1953) which state that if
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(1) the basic frequencies w; and w, for the linear dynamical system satisfy the
inequalities
aw +Bwr #0, ol +(6] <4, 27

for all rational integer pairs o, 3
(2) D = det(d; ;) # 0, where

0*H
di’j—_alile’ ; =0, I]—Oa (2,3—1,2)
— (28)
oH
di,3:d3,i=5fi‘, (i=12), d3=0
and
H= wi i —wyh + (AII +2BL + CIZ) (29)

the normalized Hamiltonian with I; and I, as the action momenta coordi-
nates, then the equilibrium Ly is stable for all orders. We refer the above two
conditions as Moser’s first and second conditions.

5. Moser’s (1953) First Condition

We note that the inequalities (27) are violated when w; = 2w, and w = 3w;.
If w; = 2w», then it follows from (8) and (9) that

(675 +2925A1)u® — (675 + 2829A;)p + 16(1 — 34;) = 0,

implying that

16
= = 4(45- /1833 (65 + V1833)A;,
B = Uel 90( ) — 275 /_183 3)A; (30)
= 0.0242938971 --- — 0.1790727798 - - - A;.
It is further observed that when w; = 3w,, we get

253 + 13A)u? — (75 + 3194 )u + 1 — 34, =0,

which gives

1
U=l = 335 —v213) 65+3V21 )Aj,
O 75\/ (31)

= 0.0135160160 - - - — 0.0993830215-- - A;.

Thus, 1t is inferred that in the interval 0 < u < g, the mass ratio ¢ should not
assume the values p.1 and u¢ for higher-order stability.
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Equations (30) and (31) are in conflict with the expressions presented in Bhatna-
gar et al. (1994: 362). This may be attributed to the error in defining the term p; in
its Appendix. The correct expression for p, should be p; = 3u1a] + 4(p1 — p2)a
instead of p; = 3u1a] + (11 — p2)a; and consequently the correct expression for
q2 should be ¢ = 3puza) + 4(2u; — p1)az. Equations (4) and (5) in Bhatnagar,
Gupta and Bhardwaj (1994: 360) stand corrected as

 _1(,_ V8% L 64
=3 45 135,/1833

[(2080 + 32v/1833)a; + 16(60 + V1833)al e

(36e — 19¢')

1
 675+/1833

1 froas v

;1 V213 4
2 45213

[36e — 19¢']

1
—————[(130 4+ 6v213)a; + 3(20 + v213)d}
225\/51—3[( + )al ( )al]sl

555 \/2_1_[ (130 — 6v213)a, + 3(20 — v213)d}ea. (33)

(30) and (31) above can be derived easily from these by setting ¢; = A,e2 = 0,
e=341,0 = ——%,a'l =6,a; = 0,a, = 0.

It may further be noted that the co-ordinate systems adopted by Bhatnagar and
Hallan (1983) and Bhatnagar ez al. (1994) are not the same and we notice that the
procedure outlined therein for converting some of the intermediary expressions of
Bhatnagar and Hallan (1983) to those of Bhatnagar et al. (1994) does not provide
the appropriate changes. For example, the sign between the last two terms of p;
(and also of ¢;3) should be positive instead of being given as negative. These
changes bring in error in the subsequent expressions too and also in L4, and hence
the expression for 4 in Bhatnagar ef al. (1994: 361) also needs correction. This
will be addressed in detail, in a separate communication.

6. Second-Order Normalization of Hamiltonian

For reducing the Hamiltonian H to the normalized form (29), we utilise Henrard’s
method (Deprit and Deprit-Bartholme, 1967) in which the coordinates z, y are to
be expanded in double D’ Alembert’s series:

r=T B y=Y B a4

Jj=1 izl
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where the homogeneous components B;’O and B;)’l of degree j are of the form

Z Ifn—m)/ZIén/Z Z

0<n<m P.q

X [Cn—m,m,p,q cos(pg; + qpa) + Sn—m,m,;u,q sin(pg; + ‘Z¢2)]a (35)

with the condition that p runs over those integers in the interval 0 < p < n —m
that have the same parity as n — m; and ¢ runs in the interval —m < g < m having
the same parity as m.

As indicated in Deprit and Deprit-Bartholme (1967), in the development of (34)
the quantities I; and I, are to be taken as constants of integration, while ¢; and ¢»
are to be determined as linear functions of time in such a way that

dr=wi+ Y fl,h), dr=-wr+Y gm(l1,h) (36)

n>1 n>l

where fy, and g», are homogeneous polynomials of degree n in I} and I,. To
ensure the canonical character of the transformation, we need to insist that the
D’ Alembert’s series satisfy the following relations:

[m,y] =0, [$’$] =1, [y,x] =0,
[‘T:y] =0, [yay] =1, [m,y] =0,

where the Poisson bracket

08 On  0¢ On o¢ on  0¢ On

[ﬁn]"iﬂﬁﬁﬂ“'ﬁﬁéaf d¢r 0L, 8L, 8¢y’
and
oz

. .9
b= dige+ g

. By
+ ¢2%. 37

9y

y:d)l(%]

We note, however, that the first-order components B,1 0 and B?’l are z and y
of (26) and we easily verify that

(Bll’o)z = a1 + a3 c082¢ + a3z cos 2¢s + agcos(¢) — ¢2) + as cos(¢) + ¢a),

(BY')? = by + by c0s 2¢; + b3 cos 2¢hy + by cos(¢y — da) + bs cos(dy + )
+ be sin2¢p1 + by sin2¢h + bg sin(¢; — ¢2) + bg sin(¢; + ¢,),

BII’OB?’l = ¢1 + €2 €082¢| + c3 €08 2 + c4cos(y — ¢2) + ¢5cos(P; + o)

+ ce sin2¢ + c7sin2¢ + cgsin(¢) — ¢2) + cosin(gpy + ¢2), (38)
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where a;, b; and c; are as in Appendix II.

Proceeding as in Deprit and Deprit-Bartholme (1967), we note that the second-
order components 321,0 and Bg ! can be obtained as solutions of the partial differ-
ential equations

AABY =®,  AABY = -y, (39)
where
o 9 \?
A= (wl% —wzafm) +w? =D? + Wi,
Ay = D? + w3,

D, = (D* + S1) X2 + (52D + S3)Y5,
Uy = (5D — 83) Xy — (D* — S4)Ys,

—(18+ 334 4+34
S = —L‘—F—l), S = H—”’
g 2
3 8 ! 4 8 ’
X, = %, evaluated for z = Bll’o, y= B?’la

Y; = %, evaluated for z = Bl’o, y= B>
By 1 1

We, obviously, see that

X, = (BI)21 + BBV, + (B2,
Yy = (BY')Ty + 5(BY")*Tz + 2B} °BY' T,

with
7 _ 2920+ (18- 757)4)] T, — —V/3[6 + (43 + 607)A]
1 — 32 3 2= 16 ) (40)
(667 + (66 + 1957)A] —V3(18 + 694))
= 32 o Ta= 32 '

Noting that

D cos(mey + ng) = (nw;y — mwy ) sin(mey + negy),
D sin(mae; + nga) = (mwy — nws) cos(mey + nega),
D2 cos(mepy + ngn) = —(mw; — nwy)? cos(mepy + ney),

D2 sin(mey + nez) = —(mw; — nw,)? sin(me; + nen),
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and

1

1,0 0,1

Bs — q) B) —
2 0122 2, 2

-1

AIAZ ‘IJZa

we see that
le,o = 7l + oy +1r3c082¢1 1) + racos2¢yl; + rscos(¢p) — ¢2)m
+16c08(¢1 + ¢2) VI I + 7 5in 2 11 + rgsin 2,1,
+rosin(¢y — ¢2)VI1 L + riosin(¢y + ¢2)V T I, (41)

BY' = s1I) 4 salr + s3¢082¢1 Iy + s4.c08 2¢0 Iy + s5cos(dy — ¢o) VI 12
+56cos(dy + ¢2) /I Io + s75in2¢1 I} + sgsin2¢als
+sgsin(¢1 — ¢2)VI1 I + siosin(¢1 + ¢2) VI Io. (42)
Non-vanishing of A3 o; Ag2; A1, —1;Ay,; where A, stands for

Apg = [‘U% - (pw1 — qw2)2][w% — (pwy — qwz)z],

is assumed inherently in the above while solving for 321’0 and Bg’l. This is assured
by excluding u = pe1 and pez in 0 < p < peo. The coefficients r; and s;, as

functions of the angular frequencies wy, and w, are provided in Appendix III.

7. Reduction of Third-Order Terms in H

For formally checking the correctness of the expressions presented in Appendices I
and III for B 11 0 B?’l , le’o, B:(,_) !, we need to verify that the third-order coefficients,

1.e., coefficients of 113 / 2,I23/ 2,I 1V I and I>+/I; in the transformed Hamiltonian
under the transformation

T = B]l,O + le,o, y — B?;l + Bgyl,

vanish identically. This can be done by individually considering the coefficients

of 113/2 cos ¢>1,Il3/2 sin ¢y, . ... For example, the coefficient of 113/2 cos ¢ in the
transformed Hamiltonian can be seen to be

wi(p173 + @157 + q383) — $Sap1(2r1 +73) + 1S1[g3(2s1 + s3) + q157]
T
—3S3[p1(2s1 + 53) + @ir7 + 3 (2ry +13)] — = — 3Tl

— 3@ + AN @sTs + piTy). (43)
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Utilising the involved expressions from the AppendicesIand III, it has been verified
that (43) vanishes independently with respect to Ay, Ay and independent terms.

Similarly, the other coefficients of 113/2 such as I?/z[sin $1,¢0s ¢y, sin 3¢] are also

found to be zero independently. Vanishing of the coefficients of I23/ 2 follows from
the symmetry of the expressions involved. Again, noting that the coefficient of
I1+/I; sin ¢y in the transformed Hamiltonian as

slwi{pi(rio — 7o) + qi(ss — s6) = q3(so — s10)} — wiwa{p1(re + 710)
—q1(ss + s6) + @3(so + s10)}] + $Sap1(re — r10) + $S1[2q281 + qi(s5 — s6)
+q3(s10 = $9)] — $S3[2r102 + p1(s10 — 89) + q1(rs — r6) + g3(r10 — 79)]
T (g + &) - %sz%fh — T3p1q243,

it has also been verified to be zero. So also the other coefficients involving I1+/I;.
Symmetry establishes that the coefficient of I1/T; too vanishes independently.

8. Moser’s (1953) Second Condition

Following the iterative procedure of Henrard, we note that the third-order homo-
geneous components B31’0 and Bg ! in (34) can be obtained by solving the partial
differential equations

A]AzB;’O = @3, A]Ang’l = U3, (44)

where

O3 = X - 2f,P —20:Q, U3 =Y —-2f,U —2gV,

1,0
[D* + 1] [i (‘*"83‘ - 15233’())}

P
0y
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Ol
sl ()]
o ( 0Bl 1 ol
e el

8 ( 8B 1
— 2_ — —_— 1’0
D 54][ . ( —+ 358, )}

X = (D*+ 81) X3 + (S5:D + S3)Y3,
Y = (=D*+ S)Y3 + (52D — 53) X,

0
X3 = 8_m(£3 + £4)

= 3Mz% + 2Mozy + Msy? + AN z* + 3Npzly + 2N3zy® + Na?,

V = [SzD + 53]

0
Y3 = —a—(ﬁa + L4)
Y

= Myz* + 2Mazy + 3M4y2 + Nz + 2N3a:2y + 3N4my2 + 4N5y3,

(45)
where
My =-Fv+(F -84, M=-V3F+(EH+ N4l
My =3[Hy+ (1 327)A1] M= —V3[& + %AlL
Ni = [ + (38 + B4, =V3[Hy+ (=% + B4,

Ny = [B+ B +Tnal Na=-V3[Fr+ (3 + Fnal

The partial derivatives in the last two equations have been obtained (see Deprlt and
Deprit-Bartholme, 1967) by substituting z = Bl1 04 B1 % and y= BO 4 B2
L4 and L4. Choosing

2= faoli + foola, 92 = @001 + 90212, (46)
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we find that

1 (coefficient of cos ¢; in ®3)

fr0 = 2 (coefficient of cos ¢; in P) =4

1 (coefficient of cos ¢ in ®3)

Joz = 0= 2 (coefficient of cos ¢, in Q) =B “7)

_ 1 (coefficient of cos ¢y in ¥3) o
92 = 3 (coefficient of cos ¢, in Q) ~

and that

H = (wili —w b)) + YAR + 2BL L+ CI3) + - -- (48)
resulting in

D = —(Aw? + 2Bwiw; + Cu?). (49)
Using MACSYMA software, it is derived that

(w? — 1)(124w} — 696w? + 81)
72k} (5w? — 1)

A=

1696w — 20320w} + 14547w? — 1107
+ 1 1 1

A
432k4(502 — 1) 1

8 6 4 2 45
(1208w + 2914wé + 7225w1 624w +45) , 50)
48KS(5w? — 1)2

B u(64u? + 43)
6k3k3(1 — 5w?)(1 — 5w?)

u(6719u? — 2319)

A+
36k2k2(1 — 5w?) (5w? — 1) '

. (1116800u® + 15048088u° — 10165353u* + 1972620u” — 93312)
32ul2i2K2K2 (5w? — 1)2(5w2 — 1)2

(51
c (w3 — 1)(124w] — 696w3 + 81)
72k4(5w3 — 1)
. (169608 — 20320w5 + 14547w3 — 1107) 4
432k3(5wf — 1)
_ (1208w + 2914w§ + 725w; — 624 + 45) A, 52)

48k§(5wi — 1)2
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and hence

(644u* — 541u? + 36)
8(4u? — 1)(25u2 — 4)

D =

+3(1593600u'° 4+ 21222096u® — 13052000u°

+5408175u* — 840076u? + 23616)
16(4u? — 1)2(25u? — 4)2(16u? + 117)

(39176u* — 14359u? + 492)
48(4u? — 1)(25u? — 4)
Moser’s second condition is satisfied if, in the interval 0 < p < peo, the mass

parameter does not take the value z.3 which makes D = 0.
For finding p.3, we first notice that if A} = 0, then

Ay (53)

644u* — 5414 + 36 = 0,

implying that
541 — v/199945
2ot 1288999 ) 0.0728632 -+ = uo (say).

Accordingly, it is seen that Moser’s second condition is violated for the unperturbed
problem when

= po = 5(1— /(1 — Eug) = 0.010936677 - - -.

When A # 0 we set 4 = pp + aA| and attempt to determine « from D = 0. To
this extent we observe that

y=1-=-2pu=1-=2pup—2aA; =y — 204,

u? = ug + (u) + cup)Ay,
with

Uy = %(] —7(%)3 Uz = 241'70'
It readily follows that

[(1288ug — 541)uy + 8(DY + Do) (4up — 1)(25up — 4))
UZ(1288’U0 — 541) ’

where DY and DY are D, and Ds as evaluated for the unperturbed problem.
Numerical computation yields

a=-00294...
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and we then have
te3 = po + Ay = 0.010936677 - - - — 0.0294 - - - A;.

As already indicated earlier in Section 5 this is in conflict with Bhatnagar et
al. (1994) and is explainable. All necessary details of the derivations herein are
recorded in Subba Rao and Sharma (1994).

Appendix I

The coefficients occuring in the first-order canonical transformation are:

P = pig +pipAL +pizdry,
¢ = g1+ g2A +q3Ay, (1=1,2),
g = g1y +gi2A +¢i3Ay, (G=1+2),

where
I 33 3l
Pi = kim, Pi2 = 4—likim, pi3 = :F4—ki3\/75;’
4/2w; 6k v/2w; 3v2w;
gi1=F Ik gip = —T, qi3 = W,
3v3 V3(—16w} + 88w? — 63)
U e T e

~ V3(104w7 4 135)
L TEP W

Appendix 11

The coefficients occuring in Eq. (38) are:

a1 = axlh + a3y,

12 33 3
= A F—A
Qi41 4wzk3 1+ 212 1+ 2k2 17] ’
VI, 363
ag = 211\2 [16 + 117+ —Al]

2 2
(4w? + 3) 3(4wi -7
— Ayl I
b Z: [ 4w,k2 * 3w kZAl gwikd |
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I; 3 4 2
bir1 = Sl [ (16w} — 80w? + 27) + 2 = (—432w; + 616w + 405) A,
3 4 2
iﬁ(mwi + 136w; — 63)A 7],
1
VI
bisy = Al {2(27:4:64u—16u)
— _(F1024u> + 3184u* + 256u + 5859)A; + 274 }
T A(T6uz 1 117) T 1024w+ 3184u ut 5859) A1 + 2741y
I 2 140w? + 117
biys = :F{ 12v+ — ( 16w +52w —45)A (#———)Ayy]
2k? 3k2 I
V3(wi £ wy) (560u? + 1917)
biy7 = —]\~———v1112 12’Y+12A1+—(1*m 17|
c1 = ¢+ cs,
V3 (—16w} + 52w? — 45)
Ciyl = 8w1k2[ 6y £ L 3k% L Ay + 1341y},
V3 16(2u* +9) (3872u? + 16335)
= ¢5s = ~—/I1 I, |66y + ——— 2 4
€= 6= gy Vi 007+ Y e 1) )

Ciys = 2k2

6

Z

—2(wy =
Ciy7 — —(Uﬂ‘/—\ﬂ\/ I]Iz [(:*:411 + 9) +

3

TR

(644> + 496u” F 500u + 1449)A1} ,

where A = [jlk ky+/u, and it is understood that ¢ = 1,2 and the upper sign
(£ or F in some of the terms above) corresponds to ¢ = 1 while the lower sign
corresponds to ¢ = 2.

Appendix II1

The coefficients occuring in the second-order canonical transformation are:

ri =151 + ripAr + 13417,
rj =i+ A+ i3 Ay,
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s; = si,1 + sipA1 + 53417,
S = 8517+ Sj,zAl + Sj’gAl’)’, (Z =1,...,6 and j5=17,..., 10).

Where fori = 1,2;

33 (—416w# + 152w? — 225)
R , o=+ ¢ 1
T Rk 2 48uwik? ’
195
nd = 16(‘01’/{)3’
o - V3(8w? +9) o V3(136w? + 315)
ol 2dwik? V2T lddwk?

i\/§(4w3 —15)

o3 16wikr
(76w} — 321w? — 27)

Ty =

2l 8uwil2k2(1 — 5w?)
. N (30592w0 — 52032w8 + 40940wf — 87027w? + 28674w? — 1215)

i+2,2 =

‘ 144w;12k3(1 — 5w?)?
e (2320w8 — 6600w} — 11655w? — 2025)

T 16wilk2(1 — 5w?) ’
) V3(736w§ — 1444w} + 2733w? — 729)

i+2,1 = )

" T2w;l2k2(1 — 5w?)

V/3(15488wf — 88976w8 + 312816w! + 292491w? — 101331)

8i422 =

’ 432w;l3K2 (1 — 5w?)

V/3(2352wf — 1700008 + 20155w] — 6582w? + 783)

Si423 = + 21.4 N2 3
N 3(72u? £ 229u + 36)

AT T 450 £ 2) ok ki

(12808 £42624u + 5317247 F 19806u’ — 39771u F 12150)
itz = 48u(5u £ 2)2L Lok kav/u :

C 3(£5760ut + 3011207 4 20976u” + 137067u £ 23436)
Titd3 = 8(5u £ 2)(1662 + 117)l1l2k ko v/t ’

. —/3(144u3 £ 160u? + 261u + 180)
Sl = 12(5u + )12k ko /it ’
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—V/3(4608u’ + 34304u® + 49104u3 £ 19872002 + 975159 + 696924)

Sita2 = 72(5u £ 2)(16u? + 117)l 11k kyy/u
 V/3(x64u’ — 800403 F 4842u? + 1815u % 1134)
Sita3 = 16u(5u £ 2)2l1 ki ka/u ’

V3(—44w} + 53w? — 18)
32k3(1 — S5w?)

N V3(—3248w8 + 8072w + 3573w? + 1458)

Tive,l —

T2 = 3617k (1 — S5w?) ’
C VBu(—468w] + 211w? +4)
res = 22K3(1 = 5u2)? ’
o (=59wf +24)
T TR S
_ (—8528w! + 21468wf — 17005w] + 5226w? — 702)
Sit62 = 182KX(1 — 5w?)?

(—3628w? — 2685w? + 1980)

Sites = AKX (1 — 5w?) ’
V3(F44u? — 3u+ 15) /(1 £ 2u)
sl = (5u = 2)1, bk kav/u ’
V3(F12992u* — 4560u° + 12u? — 26811u F 38637) /(1 % 2u)
82 = 12(5u + 2)(16u2 + 117112k k2o /ui :
3v3(F1064u* — 3034u3 F 1720u? — 121u £ 54)
T8 = 8u(5u + 2)211 Lk  kan/un/(1 £ 24) ’

A 3(=7u £ 9)/(1 £ 2u)
TS TSu £ 2) ok kaJu
(10272u° + 51664u* + 29586u> F 16368u? — 16281u F 3402)
S, = ’
82 24u(5u + 2)21 Lk kav/u/(1 £ 24)
3(—1136u> + 1488u? — 3225u + 4347) /(1 £ 2u)
4(5u:!:2)(16u2+ 117)11[2]61]62\/6 -

5i+8,3
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