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Abstract. With the aid of a normal form of a family of measure-preserving mappings in dimension 3, which is 
deduced in this paper, we prove that there are periodically invariant curves which survive the nonlinear 
perturbations in the generic case. 

1. Introduction 

In recent years, extensive numerical studies of 3-dimensional measure-preserving 
mappings have revealed a lot of interesting phenomena [2, 5, 6]. However, little 
qualitative information seems to be available. The aim of this paper is to prove the 
existence of periodically invariant curves of some family of maps. In Hamilton's 
systems, the canonical structure makes it convenient to study the persistence of 
invariant manifolds under nonlinear perturbations. In this paper, simulating the case of 
Hamilton's systems, we will at first work with the normal form of the maps near 
a normally elliptic invariant curve. For such normal form, we prove the persistence of 
periodically invariant curves under nonlinear perturbations. 

2. Normal Form 

We assume that there is an invariant curve l for the 3-dimensional analytical 
measure-preserving mapping M. We consider a family of mappings near the curve 
l which is of the form 

X1 = A(s)X + Fo(s, X), 

sl s + B(s) + Go(s, X), (s mod 2~, X e ~2) (1) 

where A, B, Fo, Go are all of them 2n-periodic functions in s. 

Fo(s, X) = O(11X II 2), 

Go(s, X)  = O(11S II), 

where I1" 11 denotes the Euclid norm. 
Because of the absence of a Floquet theory for difference equations as there is for 

ordinary differential equations with periodic coefficients, we cannot confirm that it is 
always possible to reduce the mapping (1) to the mapping with A, being independent of 
the angular variable s. In fact, such reduction is certainly impossible if the rotation 
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number of the map confined to I is a rational number. However, because of the fact 
introduced in the Appendix of this paper, we know that there exist a kind of mappings 
which can be reduced to the form as follows: 

zt = 2oZ + F(tp, z, ~), 

~0~ = tp + flo + G((p, z, ~), (tp mod 27r) (2) 

where z is a complex variable; 2o = ei'°;~o, fl, are real numbers and (~o, Bo) satisfies the 
inequalities 

Ikx~o+k2flo+nl>Co(Ik~l+lk21)-~V(kx,  k2, n)e2z3\{(O,O,O)} (3) 

for some positive Co and #. Furthermore we assume F = O(Izl2), G = O(Iz[). We look 
for a change of variables 

=u(l+ m~>12Zra(~/'U'U)) = u ~ - z ~  

tp = ~ + ~ bkt(~k)ukf~ ' 
k+/=l 

= ~k + ~ @m(~k, u, ti) = ~, + @, (4) 
m~>l 

where akl(~b) and bu(¢) are 2n-periodic functions in ~k, Zm,@m are homogeneous 
polynomials in u and t~ of degree m, such that (2) will be transformed into the following 

normal form 

u, = u 2~(ua) k + U(u, a, ¢), 
k 

~1 = ~ + ~ fl~(ua) ~ + ~(u, a, ¢), 
k=O 

(5) 

U(u, a, ~) -- O(lulZ"+z), 
V(u, a, ~,) = O(Jul 2"+ 1). 

Inserting (4), (5) into (2), we obtain 

u 2k(u~) k + U(u, ~, ~,) + 
k 

=2o(U+ 
k+l>~l 

5". a~,(¢Ou]+~a ', 
k+l>~l 

au (~)u k+ l~t) + F(~/ + 4, u + Z, a + Z-), 
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k 

k=O k + l ~ > l  

= ~ + flo + ~ bu (~O)uka t + G(~ + fb, u + Z,  • + Z). (6) 
k+l>~l 

It is easy to see that the terms of degree 0 or 1 in u, ti on both  sides of(6) agree if b10 
and bol are taken equal to zero. Suppose now that  for some m > 1, the condit ion that  
coefficients of all terms of degree less than m in (6) agree uniquely determines the 
polynomials  Z~, ~t (l = 2, 3 . . . .  m). For  m = 2, this is true, and we will prove the assertion 
for m + 1 in place of m. Compar ing  the terms of degree m in (6), we are led to the 
condit ions 

2~- ' au (q /+  flo) - ak,(~) = -6tkAk + Pk,(~O), 

2 k-'bkt(~k + f lO)-  bu(~) = -6~kflk + akl(l~l), (7) 

where 6~, is the Kronecker  function, Fu,  Gk~ only depend on those apqbpq (p + q < m) and 
those 2 ,  fl~(2r < m). 

Equat ion  (7) can be solved by means of a Four ier  expansion. Setting 

flu = ~_, P~ae"*, au = ~ a~,te ''q', 
n~Z" ?IEZ" 

8k l  = 2 ~ ' e i n q ' ,  bu = Z b~a ei'~', 
nEz" n•Z" 

we obtain from (7) the relations 

a~z(~b) = e i ( . a _ ( k _ l ) , o )  1' 

G~,z 
b'~l(~) - e..t~_(k_t)~o)_ 1" 

If k = 1, because of 

( k #  1) 

the inequality (3), the following series are convergent  

au(~O) = ~ a~t(~k), bu(d/) = 
ncZ l 

If k = 1, let 2k = pO,, flk = (~Ol, and 

p~te in* 
a~,(~,) = 2 

n~Z 1 
n#O 

Y', b~a(~b). 
n~Z 1 

~ l  eino 

bk'(O) = Y~ e '"~° - 1  
n~Z 1 
n~O 

which preserves the convergence. 
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From the fact G((p, z, z-) = G(q), ~, z), F(¢,  ~, z) = F(¢, z, z3, it is clear that all of  the flk 
are real number.  

Int roduce polar coordinates  u = re i°. By setting 

,~k r2k + lu (u ,  a, q~) = e~ 
k= 0 U 

in view of 12ol = lei~°l ~ 0, we determine a unique power series: 

with ® and R being 2~-periodic in both 0 and q), for r < r k, a certain positive number.  
Therefore (5) is t ransformed into the following form 

rl = r exp 7k r2k + R(r, O, ~o), 
k 

01 = 0 -I- ~ Gtk r2k -k O ( r ,  0,  (p), (8)  
k=O 

~1 = ~ + ~ / ~ k r  2k + q'(r, 0, ~o). 
k = 0  

We assert that all of  the yk(k = 1, 2 . . . . .  n) must  be of order  zero. In fact, if there is 
a Yk < 0 for some k, then for sufficiently small positive ro, the image torus rl(ro, O, ~) 
under  (8) would be in the preimage torus r = ro, which contradicts  to the fact that  the 
map is measure-preserving. The same argument  holds for some Yk > 0. Therefore the 
normal  form of the map (2) is of the form 

rl = r + R(r, O, d/), 

01 = 0 + ~ Ctk r2k + O(r, 0, ~,), (9) 
k = 0  

where 

~1 = ~ + ~ / ~ k r  2k + ~I'(r, 0, ~), 
k=O 

R(r , . , . )  = 0(r 2n+ 3) 

O ( r , . , . ) = 0 ( r  2"+2) 

V(r , ' , ' )  = 0(r 2" + 5) 

By inserting er in the place of r, we can make IRq + IOI + I~l be sufficiently small. 

Remark. The map defined by (9) would not  certainly be measure-preserving. But each 
torus r = r(O, d/) intersects its image under  the map (9). 
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3. Existence of  Periodically Invariant Curves 

By the discussion of the last section, we assume that the map takes the form 

f ~kl = ~ + f(r) + W(r, 0, if), 

M: ~01 = 0 + g(r) + O(r, O, q/), (10) 
/ 
L ~1 = 7 + R(r, O, ~k), 

where ]q'] + 1®1 + [R[ ~< d 

~P, ®, R are analytical functions on the domain 

IIm¢l~<p, IIm01~<p, Ir-rol<~s Vroe[a,b] 

and f ,  g are differentiable functions on the interval [a, b] and there is an ro ~ [a, b] so 
that g(ro) = 27t(m/n) is a rational number and f(ro) satisfies inequalities 

Ik ' f(ro)+2nTtl>Colkl  -~ ( C o > 0 , / ~ > l )  V(k,n)~Z2\(O,O) (11) 

and f'(ro) ~ O, g'(ro) ~ O. 
If we neglect the terms R, ®, q', (i 0) would have infinite periodically invariant curves 

which together form an invariant torus 

f q/1 = ¢ + f(r), 01 = 0 + 2mTt/n, 

J'l  : 1"0" 

We now intend to prove that there are at least two groups of such curves which survive 
the nonlinear perturbations in the generic case. 

By introducing the coordinate transformation 

if/ = ~ + U I ( ~ ,  ~, ?]) 

T:~O = ( + U2(¢, ~, n) (12) 
! 

L ~  = n + v(~, ¢, ,7) 

we wish to find the map N = T -  1MT of the form 

t ~1 = ( + f(t/) + Wl(~, ¢, n) 

N: ~, = ( + g(r/) + G(~, r/) + W2(¢, ~, r/) (13) 

L t h  = ~/+ H(~, t/) + W3(¢, ~, ~/) 

If t/is close to ro. Where G and H are 2rc/n periodic functions in ~ and W1, W2, W3 are 
much smaller than G, H. The linearized transformation equation is 

U~(~ + f(ro), ~ + g(ro), ~) - U~(~, ~, rt) = f'(tt)V(~, L rt) + ~(~, ¢, n) 

U2(~ + f(ro), ~ + g(ro), tl) - U2(¢, ~, 11) = g'(tl)V(~, (, t/) + O(~, ~, t/) - 04) 
- ~(~,  n) 

v(~ + f(ro), ( + g ( r o ) ,  n )  - v(~, ¢, n) = R(L ~, n) - H(L rt) - R*(n) 
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The terms W~, W2 and W3 of (12) satisfy the following equation 

W1 = UI(~ + f (ro) ,  ~ + 9(ro), q) - U1(~1, (1, ql) 
+ q/(~ + Ux, ~ + U2, rl + V) - q/(~, ~, rl) + f " ( r 2 ) V  2, 

W2 = U2(~ + f (ro) ,  ~ + 9(ro), q) - U2(~1, (1, ql) (15) 
+ ~ " t  r ~ V  2 + O ( ~ + U ~ , ~ + U 2 , r l + V ) - O ( ~ , ~ , ~ t )  ~ 3 ,  , 

W3 = V(~ + f(ro) ,  ~ + 9(ro), tl) -- V(~I, ~1, t/l) 
+ R(~ + U, ~ + U, tl + 1I) - R(~, (, q) + R*(tl), 

with ~1, ~1, ql being shown in (12); r2 and r3 are some numbers in [a, b], R*(q) is the 
mean value of R(~, ~, t/). 

1 fo: fo:" R*(t/) = ~ n  2 R(~, (, q) d~ d(. 

Expressing R(~, (, t/) by means of its Fourier series 

R = ~. Rk(q)e i(k'~) 
keZ ~ 

((k. ~) = k ~  + k20, 

doing the same for ~P, ®, U~, U 2 , V  and setting 

H((,  t?) = ~ R t-Xei"t~ (16) (O,nl)Lq! , 
leZ 1 
I ~ 0  

g'(q) q/ , , ,ei.Z~, G(~, rl) = ~ (H(o..o(rl) - f ~  (o,.0[~/)) (17) 
leZ * 

we can obtain the periodic solutions U1, U2 and V. Indeed, a periodic solution of the 
third equation in (14) exist only if the resonant terms in the right hand side vanish, 
which is guaranteed by the choice of G as above. Solving the third equation in (14), we 
get 

R ( k t , k 2 )  
V(k lk2)  : e i(klf(y°)+k2(2m~/n))- 1' (kx ~ O, or kx = O, k 2 :~/I/) (18) 

while we let 

W(o,.o (19) 
V(o,.0 = f ' ( ro)  

so that a periodic solution of the first equation in (14) exists. The other two equations in 
(14) give 

~P(k~ k2) 
U l(k t, k2) - -  ei(k i f ( t o )  + k2(2mnln)) __ 1' 

(20) 

O(k,,kz) (kl :~ O, or kl = O, k 2 ~: nl) 
U 2(k t 'k2)  - -  e i (kxf(r°)  + k2(2rmt/n)) - 1" 
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By setting Utto,.~) = 0, U2to,n,j = 0, we obtain the periodical solutions U~ U 2 and V. 
The estimate of 1411, W2 and W3 can be obtained by following the footsteps of I-4]. 

First, we have to find the bound of U1, U2 and V. Since the resonant terms in the right 
hand side in (14) vanish in view of(16) and (17), while the denominators of non-resonant 
terms can be estimated by 

+k2t2r,~/.))__ 11 = 2 sin kl f(ro) +k2(2mrr/n) le,kly~,o~ 
2 

we find 

>4colkl-",  

[Ul[+ IU2l + IVI < cld, (21) 

by trivially imitating the proof in I-4] if U1 U2 V are defined in narrower strips 
IIm ¢1 < Pl < P, IIm ~1 < pl < p. Consequently, we can also imitate the proof to obtain 
the estimate 

I Wll + I W21 + I W3l < c2 d4/3, (22) 

in the domain 

IIm (I ~< p/2, IIm (I ~< p/2, 1'7 - rol ~< d 8/9, 

if we observe the facts that the terms f ' ( r 2 ) V  2 and O"(ra)V 2 are much smaller than d 4Is 
provided d is chosen sufficiently small, in view of (21), and any torus intersects its image. 
Here we do not show explicitly the parameters c2 depends on since we do not need 
a sequence of coordinate transformations but only one step. 

Since the mean value of H((, r/) equals to zero and H((, q), G((, r/) are 21r/n-periodic in 

(, there are at least 2n solutions 

f ~'l(r/) +J~ 
n 

~j(t/) = ~2(r/) +fir  
n 

j = 0 , 2 , 4  . . . . .  2 n - 2 ,  

j =  1 , 3 , 5 , . . . , 2 n -  1, 

which satisfy the equation H((, r/) = 0 
Also, since f ( r b ) ~ 0 ,  we have IG((,r/)l <cd, for sufficiently small d, and since 

o'(r) ~ O, there must be 2n values 

r/1 
r/J= ~z 

j =  0 , 2 , 4 , . . . , 2 n -  2, 

j =  1 , 3 , 5 , . . . , 2 n -  1, 

so that (r/j, (j) (j = 0, 1, 2 . . . . .  2n - 1) are the solutions of the equation 

f g(r/) + G(~, r/) = 2mrc/n, 

H((, ~l) = O. 
(23) 
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Clearly, (~ + 2kn/n, q~) (1 = 1, 2; k = 1, 2 . . . . .  n) are the periodic points of the map 

{ G = ~ + g(,1) + o(~ ,  ,), 
(24) 

t/1 = r/+ H(~, r/). 

In the generic case, there is a positive number C3 so that 

In¢(~, r/)l >/cad > 0 (25) 

THEOREM.  Assume that the respective terms of the map (12) satisfy the conditions (22) 
and (25). Then, for sufficiently small d, there are at least two groups of periodically 
invariant curves which persist under the nonlinear perturbations, each group of which is 
composed of n closed curves. 

Proof. We introduce the functional space 

~ -=  {~/(0, ((01 ~/, ~ are 2n-periodic in ~; ~/, ~e C 1} 

where the norm is defined by 

II (~h, G )  - (r/2, ~2)11 = max(l l  ~/x - ~/2 lie,, II C1 - ~2 lie,), 

(here I1" II~, denotes the usual norm on the function space cl). ~- is a Banach space. 

< 1 ~1={ (~'Oe~l II~llc' ~ }  
is an open set of 

Inserting the functions r/= r/(0, ~ = ~(~) into (12) 

{ ~1 = ~ + f (r / (O)  + Wl(~ ,  ~ (0 ,  t/(O), 

~1 = ((¢) + g(t/(0) + G(~(O, ~/(0) + W2(~, ((0, r/(0), (26) 

r/1 = t/(0 + H(~(~), r/(0 ) + W3(~, ((0, t/(0), 

we obtain a map M from ~-1 into ~ determined by the point map. In fact, for a certain 
function if/(0, ((0)  ~ ~-1, ~1, ¢'1, the images of (, ~', respectively, satisfy the following 
inequality 

I~l - ~'11 >/I~ - ~ l  - [I f II,, Ir/(O - t/(¢')l 

- II w 1  I1~,(1~ - ~'1 + I~ (0  - n(~')l + I((~') - ~(OI). 

In view of (24) and the definition of ~1,  this leads to the estimate 

If d < dl, a small positive number. This implies that there is an inverse function 
determined by the first equation of (21) 



INVARIANT CURVES IN 3D MEASURE-PRESERVING MAPPINGS 301 

with the property: 

E -  1({1 + 2rr) = E -  l({x) + 2re. 

By inserting it into the other two equations of (26), we obtain a map from ~-1 into 

(~(0, '7(0) --' (~1(~1), ~1(~)) 

with ~, q being 2zc-periodic in 4. 
Clearly, if there is a group of n-periodic points (~/(0, ~(0) for # in ~ ,  it must be the 

periodically invariant curves we seek for. The rotation number of the map N confined 
to the curve is determined by the first equation of (26). 

We examine the map Mo on ~-~, determined by the point map 

( ~ 1 = ~  4 - f ( t / ) 4 - W I ( ~ ,  r/, ~), 

= ~ + g(t/) + G(~, r/), 

= r/ + H(¢, r/). 

By a discussion as above, Mo is well defined. Naturally, it admits two groups of 
periodically invariant curves 

\[ ~-'2krr ) 
(¢o(0, r/o(O) = [¢j  + r/j (j = 1, 2), 

the derivative map of #~ - I at its fixed point ((o, qo) being of the form 

O " - I) = 1--I + = A " -  D = O-~(#o  H¢ I + H.J - \ 0  
(j = 1, 2), 

where I denotes the identity map and we have made use of the fact that GH are 2g/n 
periodic in (. As the derivatives of G and H with respect to (, r/are O(d), it is enough to 
see that 1 is not an eigenvalue of A to ensure that D is regular. But 

Idet(A - I)l = Ig'H¢(1 + O(d)l > c3g'd 

by condition (25). The nonsingularity of the matrix D is, by the implicit function 
theorem, sufficient to imply that M also admits two groups of the curves: 

= (j -k- - ~ -  (1 -t- 0(dl/3)), I~(O ( !3 (j=1,2), 
~r/(~) = qj(1 + O(d / )) 

if d is sufficiently small, since/~ can be treated as the perturbed #o with the perturbation 
terms of order d 4/3. 

The existence of such curves can also be proved in the case that f(ro) satisfies the 
inequalities (i 1) and g(ro)= (m/n)f(ro). 
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4. Aplmmlix 

3-dimensional perturbed extension of area-preserving In the literature [5, 6], a 
mappings has been studied 

M l X1 = Fo(X) + eF(X, y), (X  • R 2, y mod 27r) (27) 
(Y l  = Y + Ro + eG(X, y), 

O(XI ,Yl )  
- - = 1  y) 

For e = 0 we assume that X = 0 is an elliptic fixed point. Similar to the proof of the 
theorem in this paper, (27) admits an invariant curve if e is sufficiently small. It is 
assumed that the map near the curve has the form 

{ X l  = (Ao +  A(y))X + O( II X II 2), 
(28) 

Yx = Y + Ro + R(y)  + O(11/11). 

By the work of Arnold [1] and Herman [3], there is a set S, with positive Lebesgue 
measure so that if Ro • St, the map 

Yl = Y + Ro + eR(y) 

is conjugate to a rigid rotation 

~ol = ~o + R*,  

where R* satisfies the inequality (11). Trying to find a change of variables 

X =  ~o)U,  

T(q0 = T(q~ + 27r), 

leads to a search for a periodical solution of the equation 

T(~o + R*)- X(Ao + tA(q~))T(q~) = A* (29) 

where A* is a matrix not depending on q~ (but it depends on 0. We put A* = Ao + ~-4", 
then if we set 

T(cp) = I + eTo(q0, 

its linearized form with respect to e is 

T(qo + R*)Ao - Ao To(~O) = A(~o) -- 71" 

By requiring that the matrix Ao be of the form 

(: 
and following the footsteps of Arnold and Herman, we assert that there is a set 
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S~ c [0, 2n] with positive Lebesgue measure, such that if ~ e S~, for sufficiently small 

e > 0, there is a periodic solution of  (29). The Lebesgue measure of  S~ and S, ~ 2re as 
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