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Abstract. We consider a restricted charged four body problem which reduces to a two degrees of freedom 
Hamiltonian system, and prove the existence of infinite symmetric periodic orbits with arbitrarily large 
extremal period. Also, it is s h o w n  that an appropriate restriction ofa Poincar6 map of the system is conjugate 
to the shift homeomorphism on a certain symbolic alphabet. 

1. Introduction and Equations of Motion 

Consider two pairs of identical particles of masses ml = m2 = m, m 3 = m4 = M, and 
charges el = e2 = E, e3 = e4 = e, in the following physical setting. The four particles lie 
in the plane and their relative positions are such that each particle forms an isosceles 
triangle with the pair of particles which differ from it (see Figure 1). The initial velocities 
are also symmetric: particles 1 and 2 (resp. 3 and 4) are given initial velocities along the 
straight line through them and symmetrical with respect to the straight line through 
particles 3 and 4 (resp. 1 and 2). 

Denote by q~ the position vector of the ith particle. From Newton's law, the 
equations of motion are, taking into account electrical as well as gravitational 
interactions and choosing appropriate charge units. 

Gm2 -- E2 q2 -- q l  G M m  - eE  q3 - q l  G M m -  e E  q4 - q l  
~i- + + 

m Iq2 - q l l  a m Iq3 - q l l  3 m Iq4 - q l  I 3' 

G m 2 - E 2  q l - q 2  G M m - e E  q 3 - q 2  G M m -  eE q4 - q2 

q 2 -  m [q2 q l l  3 ~ m i q 3 _ q 2 1 3  d - m [q4 - q21 a'  

G M 2  - e2 q4 - -  q3 G M m  - eE  q l  - -  q3 G M m  - eE q2 - -  q3 

/13 -- M Iq4 --q3[ 3-t M Iql  --q3[ 3d" M [q2 - - q a l  3' 

(1) 

G M 2  - e2 q3 - q4 _~ G M m  - eE ql  - q4 G M m  - eE q2 - q4 

/ 1 4 -  M [q4 --  q313 M Iql  - - q 4 1 3 t -  M Iq2 - q 4 1 3 "  
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Fig. 1. 

It is easy to check that Equations (1) preserve the symmetry of the initial conditions. 
Therefore, this physical problem has two degrees of freedom, and we may take as 
independent coordinates, for instance, the oriented half distances between the particles, 

q2  - -  q l  

2 ' 

qa - -  q ,  

Y =  2 

In these coordinates, Equations (1) become, 

Gm 2 - E 2 x 2 ( G M m  - eE) x 

4m Ixl 3 m (X 2 + y2)3/2' 

G M  2 - e 2 y 2 ( G M m  - eE) y 

J~ = 4M [y[3 M (X2 jr y2)3/2" 

(2) 

We shall now introduce two assumptions on the relative values of the masses and 
charges of the particles. First, we shall suppose that G M  2 - e 2 = 0, that is, that the 
gravitational and electrostatic interactions between particles 3 and 4 cancel each other. 
Second, we shall assume that the charges e and E have opposite signs, so that the 
coefficients of the second terms in Equations (2) are always positive. 

With these assumptions and after rescaling time, Equations (2) become: 

- x  A x  

(X2 + y2)3/2 ixl a, 

B y  

(3) 

J~ = (X2 + y2)3/2'  
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Fig. 2. 

where 

G m  2 - E 2 m 

A - 8 ( G M m  - eE) '  B = ~ .  

When B > 1 Equations (3) coincide with the equations of well-known restricted three 
body problems: the isosceles three body problem (I3BP) corresponds to A > 0 (see 
Sim6-Martinez 1988), and the charged isosceles three body problem (CI3BP) 
corresponds to A < 0 (see Atela). When A = 0, B ~ 1, Equations (3) are those of the 
anisotropic Kepler problem (AKP) (see Casasayas-Llibre, 1984 Devaney, 1978). 
Finally, for A = 0, B = 1, (3) reduces to the Kepler problem (KP). The parameter space 
is shown in Figure 2. 

Thus, the four body symmetrical setting proposed here gives a new physical 
interpretation of the I3BP, CI3BP and the AKP, as well as a model system for the strip 
in parameter space corresponding to 0 < B < 1. 

In this paper, we study system (3) for B ~ (0, 1), A ~ ( -  1, - 1/4). In terms of the 
parameters m, M, e and E, the conditions imposed until now are equivalent to: 

m < M, e = x/GM, - E ~ (x/~(2M + m), x//G(8M + m)), 

o r  

m < M, e = - x /~M,  E E (x/~(2M + m), x/G(8M + m)). 

Rescaling time again and writing (3) as a first order system, we obtain: 

= Px, 

X ax  
#x =lxl3 (x2+y2)312'  

= bpy, 

ay  

PY --  (X 2 -I- y2)3 /2 '  

(4) 
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with a e (1, 4) and b ~ (0, 1). Equations (4) have Hamiltonian form, with Hamiltonian 
function H(x, y, px, py): R + x Ra--,R, 

2 2 p:, . bpy 1 a 
n ( x , y , p ~ , p r ) = ~ . ~ - - +  U(x,y), U(x ,y)= Ixl (x2 +y2)X/2" (5) 

Note that we consider only positive values of the x coordinate, since the system is 
symmetric with respect to x = 0. 

Note also that the only singularity of the system corresponds to the total collision 
configuration x = y = 0. In fact, triple collisions are forbidden by the symmetry of the 
particle configurations we are studying. As to double collisions, these symmetry 
restrictions allow only the ones corresponding to x = 0, y ~ 0, and x ~ 0, y = 0. That is, 
a collision between particles 1 and 2, or a collision between particles 3 and 4. The first 
possibility is inaccessible for finite energies, because particles 1 and 2 repel each other. 
The second possibility does not correspond to a singularity of the system, because the 
gravitational and electrical field created by particles 3 and 4 cancel each other and so 
these particles pass through each other naturally. 

It is easy to check that for negative energy, H(x, y, Px, Py) = h < 0, Hill's region is as 
shown in Figure 3. 

We shall study the flow of system (4) and (5) on the negative energy levels, using 
McGehee's transformation to magnify the singularity and to introduce the total 
collision manifold. 

The main results obtained are stated precisely in Sections 4 (Theorem 11) and 
5 (Theorem 22). Theorem 11 concerns the existence of an infinite number of symmetric 
periodic orbits of the system, and says that its extremal period, that is, the number of 
extrema of the r coordinate along the orbit, may be arbitrarily large. Theorem 22 says 
that an appropriate restriction of a Poincar6 map is conjugate to the shift homeomor- 
phism on a certain symbolic alphabet. Furthermore, it gives an interpretation of the 
symbolic sequences in terms of the qualitative behaviour of the orbits. 

~y 

~i c ,J 

X 

Fig. 3. 
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2. The Flow on the Total Collision Manifold A 

Consider McGehee's transformation (see McGehee, 1974): 

r = (x 2 + b- l y2 )  1/2, 

• fb-il2y'~ 
0 = a r c t a n t ~  ) ,  

/3 = r -  l / 2 ( X p x  + ypr), 
U = r -  l / 2 ( b l / 2 x p y  - b -  1 / 2 y p x ) ,  

dt 
- -  ~ r3/2 .  
dr 

The geometrical meaning of the new variables is essentially the following: r and 0 are 
polar type coordinates on the x, y plane, and/3, u and ~ are, respectively, the rescaled 
radial velocity, angular velocity and time. Clearly, total quadruple collision corresponds 
to r = 0 .  

In the new variables, Equations (4) become, 

= r/3, 

0 - =  u ,  

v2 (7) 
= 5- + u~ + v(o), 

UV 
. . . .  v ' ( o ) ,  

2 

where the overbar denotes the derivative with respect to z, 

--a 1 
V(O)  = ( c o s  2 0 -~- b sin 2 8)  1/2 ~- COS-------O' 

and 

dV 
V'(O) = dO" 

The energy relation (5) now reads: 

U 2 .-[- /3 2 
rh = 2 + V(O). (8) 

By (8), the total collision manifold A on the boundary of every energy level is 

A =  {(0, v,u) ~ S 1 x R2:u2 + v2= -2V(0)}.  (9) 

From (7), the flow is analytical and invariant on A. The description of the flow on A and, 
by analyticity, on its neighbourhood (r small), is the purpose of this section. 

Let us start with a lemma: 
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L E M M A  1. Consider the function 

f~,b(O) = - 2V(O), V(O) = 
- a  1 

(cos20 + b sin20) 1/2 + c--~s0' a e (1, 4), b ~ (0, 1). 

The following assertions hold: 
(a) f.,b(O)= fa,b(--O), 0~[--rc/2,~/23. 
(b) f.,~(O) >t 0 / f f  0 e [ -  arccos c, arccos c], c = bile(a2 + b - 1)- 1/2. 

(c) I f  a(1 - b) < 1, then f'.,~(O) = 0 iff 0 = 0 and f~,b(O = O) < O. 
(d) I f  a(1 - b) > 1, then f'.,dO) = 0 / f f  0 e {0, arccos d, - a r c c o s  d}, where 

d = b l / 2 ( b -  1 +(a(1 -b)2/3)) -1/2. 

Moreover, 

f"b(O = O) > 0 and f~.b(O = arccos d) = f~,~(O = - arccos d) < 0. 

It is easy to check the assertions of Lemma 1 by direct computat ion.  F rom Lemma 1, 
the collision manifold A is as shown in Figure 4. Note  the change in A that  occurs when 
a(1 - b )  passes through the critical value a ( 1 -  b ) =  1. 

F rom equat ions (7) and (9), the flow on A is given by, 

0------ U, 

U 2 

2 '  (10) 

u v  
a . . . .  v ' ( o ) .  

2 

The following proposi t ion determines the equilibrium points of (10) on A, as well as 
their nature. 

V 

/ 
0 ----O 

o 

Fig. 4. 
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P R O P O S I T I O N  2. (a) Suppose a(1 - b) < 1. Then the only equilibrium points on A are 

p±(O) = (0 = O, u = O, v = +_ ~ ) .  

Moreover, p * (0) is a hyperbolic sink, and p-(0) is a hyperbolic source, each being spiral if 
a(9 - 8b) < 9, non-spiral otherwise. 

(b) Suppose a(1 - b) > 1. Then the only equilibrium points on A are 

p±(Oo) = (0 = 0o, u = O, v = + ~ ) ,  Oo • {0, arccos d, - a r c c o s  d}, 

where 

d = bl/2(b - 1 + (a(1 - b)) 2/3)- 1/2. 

The points p±(O) are hyperbolic saddles. For 

24 } > (1 - b) (resp. 24 / 

and 

Oo • { + arccos d }, 

p÷(Oo) is a spiral (resp. non-spiral) sink and p-(Oo) a spiral (resp. non-spiral) source. 

A flow is called gradient-like when there exists a smooth  function that  increases along 
all non  stat ionary solutions. F r o m  Lemma 1, Proposi t ion  2 and Equat ions  (10), it is 
easy to obtain the following. 

P R O P O S I T I O N  3. The flow on A is gradient-like with respect to v. 

Proposi t ion 2(a), together  with Proposi t ion 3, fully determines the qualitative 
behaviour  of the global flow on A for a(1 - b) < l, which must  be as stated in the next 
proposit ion.  

P R O P O S I T I O N  4. Suppose a ( 1 - b ) <  1 and let pC(O) be the points given by 
Proposition 2(a). Then, the solutions on A tend to p-  (0) (resp. p + (0)) when z ~ - oo (resp. 
r ~ + oo), encircling A infinitely many times if a(9 - 8b) < 9. 

Before studying the global flow on A for a(1 - b) > 1, let us see that we may derive 
from Proposi t ions 2 and 3 the version of the classical Euler -Lagrange  theorem that  
applies to this case. 

T H E O R E M  5. (a) I f  a ( 1 -  b ) <  1, then any collision orbit tends to a collinear 
configuration. 

(b) I f  a(1 - b) > 1, then any collision orbit tends either to a collinear configuration or to 
a certain rhomboidal configuration that depends only on the value of a(1 - b). 
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Proof. From Proposition 3, there are no periodic orbits on A, and so any collision 
orbit must tend to one of the equilibrium points on A given by Proposition 2. On the 

other hand, from (6), y/x = x/~ tan 0. Therefore, if a(1 - b) < 1, the limit of y/x along 
a collision orbit must be zero. Similarly, if a(1 - b) > 1, y2/x2 always tends either to zero 
or to (a(1 - b)) 2/3 - 1. • 

We shall now describe the qualitative behaviour of the flow on A when a(1 - b) > 1. 
Let p e { p ÷ (0), p-  (0) } be one of the saddle points on A given by Proposition 2(b), and 
denote by W~ (p) (resp. W ~ _ (p)) the branch of W"(p) whose intersection with 
A n {u > 0} (resp. A n {u < 0}) contains points arbitrarily close to p. In a similar way 
we define W~ (p) and W*_ (p), p e {p+(0), p-(0)}. Note that, according to the study of the 

u,s linear approximation of (10) at p, W+,_ are well defined. 
We shall say that the qualitative behaviour of the flow on A is determined if, for every 

orbit p(z), we know lim,_. _ ,  p(z), lim,_. + co p(z) and how many complete turns around 
A p(z) performs when z ~ ( -  oo, + ~).  

LEMMA 6. The behaviour of W~+ (p-(O)) fully determines the qualitative behaviour of 
the flow on A. 

Proof. Since the manifolds W~.' ~_ (p), p ~ {p+(0), p-(0)}, define an invariant partition 
of A, and since the flow is gradient-like with respect to v (Proposition 3), the qualitative 
behaviour of every orbit p(z) becomes determined once we know that of the invariant 
manifolds. 

Now by Propositions 2 and 3, W~ (p-(0)) (resp. WL (p-(0))) must accumulate on the 
source p-(00), 00 = -a rccos  d (resp. 00 = arccos d). Moreover, Equations (10) are 
invariant under the symmetry transformations T2(O, v, u, ~) = ( - 0 ,  v, - u ,  ~) and 
TI(O, v, u, ~) = (0, - v ,  - u ,  -z) .  Then, using the symmetry T1, W~__ (p+(0)) may be 
obtained from W~._ (p-(0)). Also by using T1, W*_ (p+(0)) (resp. W$ (p+(0))) may be 
obtained from W~_ (p-(0)) (resp. W ~_ (p-(0))). Finally, W ~_ (p-(0)) is the image by T2 of 
w~ (p-(O)). • 

Note that, since particles 3 and 4 are indistinguishable (see Section 1), it is natural to 
identify the points (0, v, u) and ( -  0, v, - u). Modulus this identification, and disregarding 
also the number of times the orbits of (10) pass through 0 = 0, the essential information 
about the flow on A reduces to knowing whether W~_ (p-(0)) and W*+ (p+(0)) coincide 
or not. 

PROPOSITION 7. Suppose a(1 - b) > 1 and let p+(0) and p-(O) be the saddles given by 
Proposition 2. For every value of a there exists a countable set B such that,/ f  b e (0, 1)\B 
then the unstable manifold of p-(O) misses the stable manifold of  p+(O). 

Proof. Clearly, the symmetries of Equations (10) imply that if W"(p-(O)) and 
WS(p+(0)) coincide, then W~. (p-(0)) n {v = 0} must have zero u coordinate, i.e., it must 
be one of the points (0 -- arccos c, v = 0, u -- 0), (0 -- -a rccos  c, v -- 0, u = 0), where 
c = (b/(a 2 - 1 + b)) 1/2 (see Lemma 1). 
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Now, for a fixed, it is easy to check that arccos c decreases when b increases, while the 
coordinates of p-(0) do not depend on b (see Proposition 2(b)). On the other hand, 
when b increases, the field on A defined by (10) is rotated in the negative v direction• In 
fact, from Equations (10) we have: 

• dv 
slgn(-~(O, v, a, b) ) = sign u(O, v, a, b), (11) 

• c~ dv 

Then, if we denote by Oo(a, b) the 0-coordinate of W~_ (p-(0)) n {v = 0}, (11) and (12) 
imply that Oo(a, b) - arccos c is a strictly increasing function ofb for every fixed value of 
a, and the result follows. • 

3 .  S i n g u l a r  O r b i t s  

In this section, we shall study the set of orbits which start or end in total collision. We 
shall call ejection (resp. collosion) orbits those which start (resp. end) in collision. 

According to Proposition 5, ejections and collisions must take place either at 0 = 0 
(collinear configuration) or at 0 = + arccos d (rhomboidal configurations). We shall 
denote by E(0), E(+)  and E ( - )  (resp. C(0), C(+) and C( - ) )  the ejections (resp. 
collisions) at 0 = 0, 0 = arccos d, and 0 = -a rccos  d, respectively. 

PROPOSITION 8. Let H = h < 0 be a fixed energy level. (a) Suppose a(1 - b ) <  1, 
a • (1, 4), be(0,  1). Then E(+) = E ( - )  = C ( + ) =  C ( - ) =  ~, and both E(O) and C(O) are 
one dimensional manifolds. 

(b) Suppose a(1 - b) > 1, a • (1, 4), b e (0, 1). Then E(O) and C(O) are two dimensional 
manifolds, while E( + ), E ( - ) ,  C( + ) and C ( -  ) are one dimensional manifolds. 

Proof. Let Po = (ro = 0, 0o, Vo, Uo = 0) be one of the equilibrium points on A given by 
Proposition 2. Then, 2 = Vo is an eigenvalue of the linear approximation of (7) at Po, 
with associated eigenvector e~ = (Vo, 0, h, 0). It is easy to check that e~ is tangent to the 
energy level H = h. Therefore, using Proposition 2, Po is an hyperbolic equilibrium 
point of the restriction of (7) to the energy level H = h. Consequently, the stable and 
unstable sets ofpo, WU(po) and WS(po) are immersed submanifolds, and their dimension 
is determined by the linear approximation. • 

A solution (r(z), 0(z), v(z), u(z)) of (7) in H = h is called an homothetic orbit at 0o if 
0(z) = 0o for every z • ( - ~ ,  + oo). We shall now study the ejection-collision orbits 
which are homothetic. 

PROPOSITION 9. (a) Suppose a(1 - b) < 1, a e (1, 4), b • (0, 1). Then, there exists 
a homothetic orbit 7(0o) at Oo if  and only if  Oo = O. Moreover, 7(0) = E(0) = C(0). 

(b) Suppose a(1 - b) > 1, a • (1, 4), b • (0, 1). Then, there exists a homothetic orbit 
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7(00) at Oo if and only if Oo ~ {0, arccos d, - a r c c o s  d}, where d is as in Proposition 2. 
Moreover, 7(0) c E(0) :~ C(0), 7(arccos d) = E(+)  = C(+), 7 ( -a rccos  d) = E ( - )  = 

c(-). 
Proof. The statements are direct consequences of Equations (7) and Propositions 

2 and 8. • 

So, to each of the collision configurations of Theorem 5 corresponds a unique 
homothetic ejection-collision orbit. 

4. Periodic Orbits 

For a fixed energy value H = h < 0, we now look at the flow away from the quadruple 
collision manifold A. We may picture the energy manifold rh = ½(u 2 + v 2) + V(O), which 

contains the flow for H = h, as the interior of the topological sphere A in the (0, v, u) 
coordinates, see Figure 4. The equations of motion are the last three in (7); the 
coordinate r may always be read from the energy relation (8). 

Given a 2n-dimensional manifold M, a diffeomorphism R of M such that R 2 = Id 
and dim(Fix(R)) = n = ½dim(M), where Id denotes the identity in M and Fix(R) the set 
of the fixed points of R, is called a reversing involution. A smooth vector field X on M is 
said to be R-reversible if TR(X)=  - X  o R, where TR denotes the derivative of R. 

Now, recall that the equations of motion (7) possess the symmetries St (r, 0, v, u, z) = 
(r, 0, - v, - u, - z), S2(r, 0, v, u, z) = (r, - 0, - v, u, - z). In other words, the field given by 
(7) is Si-reversible, i =  1, 2. Here, we have loosely denoted also by Si the reversing 
involution given by the restriction of the symmetry Si to the phase space, i = 1, 2. 
Moreover, Fix(S1)= {(r, 0, v, u): v = u = 0} is the zero velocity curve, and Fix(S2)= 
{(r, 0, v, u): 0 = v = 0} corresponds to orthogonal crossings of the 0 = 0 axis. 

An orbit ),(T) of the field given by (7) is called Si symmetric if and only if Si(7(z)) = 7(z), 
i = 1, 2. Throughout the rest of this section we shall study the existence of symmetric 

periodic orbits of (7). Let us start by stating a preliminary result. 

PROP OS I TI ON 10. Let ~p~ be the flow generated by (7). Then the following statements 
hold: (a) An orbit 7 is an Sl-symmetric periodic orbit if and only if it meets the zero velocity 
curve at two different points tpo(x) = x and tpr(x). Moreover, if T is the smallest positive 
number with the above property, the period of 7 is 2T. 

(b) An orbit 7 is an S2-symmetric periodic orbit if and only if it crosses the 0 = 0 axis 
orthogonally at two points tpo(x) = x and tpr(x). Moreover, if T is the smallest positive 
number with the above property, the period of 7 is 2T. 

(c) An orbit 7 is an $1 and S2-symmetric periodic orbit if and only if it meets the zero 
velocity curve and crosses orthogonally the 0 = 0 axis at the points tpo(x) = x and tpr(x), 
respectively. Moreover, if T is the smallest positive number with this property, the period 
of y is 4 T. 

Proof. We have seen that the field defined by (7) is St and $2 reversible, and that 
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Fix(S 1 ) coincides with the zero velocity curve, while Fix(S2) is the set of points in phase 
space whose orbits projected in configuration space cross orthogonally the 0 = 0 axis. 
Then, the result follows from the general characterization of the symmetric periodic 
orbits of vector fields which are reversible with respect to two reversing involutions 
(see Devaney, 1976). • 

Let V(z) = (r(T), O(z), v(z), u(z)), ~ E ( -  ~ ,  + oo), be a solution of (7). If r(z), z E ( -  ~ ,  
+ ~),  has exactly n extremal points (maxima or minima) we shall say that ? has 
extremal period (e.p.)n. Note that a non periodic orbit may have a finite extremal period, 
as it happens for instance with the homothetic orbit ?(0), whose extremal period is n = 1. 

The main result of this section is the following. 

THEOREM 11. Suppose a E(1, 4), be(0,  1), and a ( 9 -  8b)< 9, and let no E t~ u {0}. 
Then the following properties hold (see Figure 5): (a) There exist an infinite number of $1 
and S2-symmetric periodic orbits with extremal period 8no + 4. 

(b) There exist an infinite number of S2-symmetric periodic orbits with extremal period 
4no + 2. 

(c), no= 1 (c), no=2 

1 

Fig. 5. 

L 

(b), no = 0 

(b ) ,no= 1 (a), no=O (d) ,no= 1 



256 J. CASASAYAS AND A. NUNES 

(c) There exist an infinite number of Sl-symmetric periodic orbits with extremal period 
4no. 

(d) There exist an infinite number of $1 and S2-symmetric periodic orbits with 
extremal period 8no. 

Before proving the theorem, we shall need a few preliminary results. 
Let S={(r,O,v,u):n(r,O,v,u)=h, v=0} ,  S+={(r,O,v,u)•S:v'>O) and S - =  

{(r, 0, v, u) • S: v' < 0}. From Equations (7), we have r" = r'v + rv'. Therefore, the points 
of S ÷ correspond to minima of r, while the points of S-  correspond to maxima. Also 
from Equations (7), we see that the set S ° = {(r, 0, v, u) • S: u 2 = - V(0)} divides S into 
three regions, S 1, S 2 and S a with S 1 = S-  and S 2 u S 3 = S ÷. 

From now on, we shall identify points in S by their coordinates (0, u). Therefore (0, 0) 
will denote the point ?(0) n S. 

Let f :  A-  c S-  ~ S ÷ be the function that maps a point p e S-  onto the point where 
the time forward orbit through p intersects S ÷ for the first time. Similarly, 
#: B -  c S -  --* S ÷ is the function that maps a point p • S-  onto the point where the time 
backward orbit through p intersects S ÷ for the first time. Here, A-  and B-  denote the 
domains of definition of f and 0, respectively. The next lemma says that both A-  and 
B-  coincide with S-\{(0,  0)}. 

LEMMA 12. The functions f and g are both defined in S-\{(0,0)}. 
Proof. We shall prove it only for f (for g the proof is similar). Let p • S-  \{(0, 0)} and 

let the forward orbit through p be p(z) = (r(z), 0(~), v(z), u(z)), z • [0, + ~).  Since v(0) = 0, 
v'(O) < 0, the set T + = {z e (0, + ~) :  v(z) > 0}, if it is not empty, satisfies inf(T +) = 
Zo > 0. To show that f(p) is well defined, it is enough to prove that T ÷ # 0. If it is not so, 
then v(T) ~<0 for every z •  [0, + oo) and therefore r(+ oo) -- lim,_. + oor(Z) exists. Now, 
r( + ~ )  cannot be zero. In fact, by Proposition 9, W~(p-(O)) = ~(0) and, by hypothesis, 
p(0) # (0, 0). Suppose then that r (+ oo)~ 0. By Equations (7), p(z) must tend to an 

equilibrium point out of A, which is impossible. • 

Denote by E c S ÷ the intersection f ( S - \ { ( 0 , 0 ) } ) n  g(S-\{(0, 0)}). Clearly E is 
S + \A, and we may define on S- \{(0 ,  0)} a Poincar6 map h = g- l  of. 

Consider the following subsets of S: 

Z ÷ = { (O ,u)~S:u=O,O>O} ,  

Z -  = {(O,u)•S:u = 0 , 0  < 0}, 
W + = { ( O , u ) • S : O = O , u > O } ,  

W -  = {(O,u)~ S: O=O,u <O}.  

Note that Z ÷ u Z -  c S- ,  i.e., the only extremal points of r on the zero velocity 

curve are maxima. 
With this notation we have the following lemma. 

LEMMA 13. (a) An orbit through p • (Z + u Z - )  is $1 and S2-symmetric and periodic 
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with e.p. 8no +4,  n o e N  u {0}, /ff f ( h " ° ( p ) ) e W  + w W - ,  hJ(p)6-W + u W - ,  j =  

1 . . . . .  no - 1, and f (W(p))  6- W ÷ u W - ,  j = 0 . . . . .  no - 1. 

(b) An orbit through p e ( W  + u W - ) n  S -  is S2-symmetric and periodic with e.p. 

4no + 2, no e N u {0}, /ff f(h"°(p)) e W + u W - ,  h~(p) 6- W + u W - ,  j = 1 . . . . .  no - 1, 

and f(hJ(p)) 6- W ÷ u W - ,  j = 0 . . . . .  no - 1. 

(c) An orbit through p e (Z  + u Z -  ) is Si -symmetric and periodic iff there exists no e N 

such that h"°(p)e(Z + u Z - ) .  Furthermore, if hJ(p)6-(Z + u Z - ) , j =  1 . . . . .  no - 1, its e.p. 

is 4no. 
(d) An orbit through p e (Z  ÷ u Z - )  is $1 and S2-symmetric and periodic with e.p. 8no, 

no e N, iff h"°(p) e W + U W - ,  hJ(p) 6- W + U W - ,  j =  l . . . .  , n o - l ,  and f(h~(p))6- 

W + u W - , j = O  . . . . .  no--  I. 

Proof. This is a direct consequence of Proposition 10 and of the definitions of 
f , h , Z + , Z - , W  + and W-.  • 

Before proving the next auxiliary lemmas we require more notation. 
Denote by D~ a ball in S centered in (0, 0) and of radius e, and by E, the set of points of 

S ÷ whose distance to A is smaller than e. Let T denote a curve in E,\A accumulating to 
Ar~S. 

LEMMA 14. For e small enough, f -  *( T) n D~ is a counterclockwise spiral accumulating 

in (0, 0). Similarly, g -  *(T) n DE is a clockwise spiral in D~ accumulating in (0, 0). 

Proof. By the tubular flow theorem, and since there are no singular points of (7) 
other than p-(0) in {v ~< 0}, the flow will take the curve T, following the solutions on A, 
until it reaches a neighbourhood of p-(0). In order to study what happens to the points 
of Twhen they pass close to p-(0), we shall use the linear approximation of(7) at p-(0). 
By taking e small enough, this approximation can be made arbitrarily accurate. 

From Proposition 2(a), the flow in a neighbourhood of p-(0) may be written, in 
appropriate coordinates, in the form, 

= -- ~Z, 

I: = fir, 

0=~ 

where e, fl, y e R +, z = 0 is the unstable manifold of p-(0) contained in A, and r = 0 
corresponds to the stable manifold 7(0). 

Consider a cylinder C~1 defined by r = r*, and a segment r = r*, 0 = 0", z e (0, 6,). 
Consider also a disc D' of radius 62 transversal to the z-axis at the point z*. We want to 
know the image of the segment by the time backwards flow that maps Cn, onto D'. 
From, 

r = r*e p*, 

0 = O* + 7z, 

Z* = z e  -~t ,  
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we have - ~ z  = log(z*/z), and so, 

r = r*(z/z*)~l~, 

0 = O* - (V/ct)log(z*/z). 

Therefore, the image of a vertical segment in C~, accumulating on A is a spiral in D' 
accumulating on V(0)c~ D'. Clearly, the same result holds for any other curve provided 
that it accumulates on A and that the r and 0 coordinates of its points are contained in 
bounded intervals. This proves the result for f - i ;  for g-1 the proof is similar. • 

LEMMA 15. Let h be the Poincar~ map on the disc D~. I f  R1 and R 2 a r e  two radius in D~ 
such that R 2 - -  $2(R1) , then h(R1) and R 2 have an infinite number of intersections. 

Proof. We shall prove that, on the conditions of the lemma, f (R1) and g(R 2) have an 
infinite number of intersections. Using the hypothesis and the symmetry $2 of 
Equations (7) we have that f (R1)= S2(g(R2)). 

Now consider one of the two segments ofE~ n (W + u W-), T1. By Lemma 14, f (R l )  
intersects Tx an infinite number of times. On the other hand, T1 is invariant by $2. So 
these points are also points of g(R2) , and the claim is proved. • 

LEMMA 16. I f  e is small enough then D1 = h(Z + n D~) and D2 = h(Z- c~ D~) are 
clockwise spirals accumulating in (0, O) and such that D1 = $1 o $2(D2). 

Proof. Using the same arguments as in Lemma 14 the result follows. • 

COROLLARY 17. Suppose a ~ (1, 4), b e (0, 1) and a(9 - 8b) < 9. Then the following 
properties hold: (a) There exist an infinite number of $1 and S2-symmetric periodic orbits 
with extremal period 4. 

(b) There exist an infinite number of S2-symmetric periodic orbits with extremal 
period 2. 

(c) There exist an infinite number of Sl-symmetric periodic orbits with extremal 
period 4. 

(d) There exist an infinite number of Sx and S2-symmetric periodic orbits with extremal 
period 8. 

Proof. This is an immediate consequence of Lemmas 13, 15 and 16. • 
Proof of Theorem 11 Let us start with statement (a). From Corollary 17, we know 

that it holds for no -- 0. Using Lemma 13, to prove that (a) holds for no I> l, it is enough 
to check that the set P,o defined by 

__l I _ j = O  . . . . .  n o -  1 

has an infinite number of points. More precisely, we shall prove that, 

j = O , .  n o - 1  

has infinite points. 
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Consider the sets C1 = f - l ( W ÷ ) ,  C2 = f - l ( W - ) .  By Lemma 14, C1 and C2 are 
counterclockwise spirals accumulating in (0, 0). Moreover, the symmetries imply that 

C 2 ~-- S 2 o S  1 ( C 1 )  , since W -  = S 2 o S I ( V I z +  ). 

The points of (C1 u C2) n Z -  (resp. c~ Z ÷) define a partition of Z -  (resp. Z ÷) in 
infinite segments A k (resp. Bk) , k 6 t~. Let us see that each Ak contains at least one point 
of f -  l(P,o), for every no. 

Suppose first no = 1, and let A k = lag, a k + 11, BR = [bk + 1, bk], bi = - ai, i = k, k + 1. 

Since f (ak) and f (ak + l ) belong to W ÷ u W - ,  h(ak) = bk and h(ak ÷ l ) = bk + l (Lemma 
13). Then, by Lemma 16, h(Ak) must curl at least one around (0, 0), and therefore, it must 
intersect the spirals f -  I(W + u W-)  out o f Z  + u Z -  at least once. Hence, h(Ak) ~ f -  1 

( W  + u W-)  contains at least once point and, since k is arbitrary, we conclude that 
h(Z ÷ u Z - )  n f - l ( w +  u W-)  contains infinite points. 

Consider now an arbitrary value of no/> 2. By an argument similar to the one of the 
case no -- 1, there exists a point p 6 Int(Ak) which is the closest point to a k such that 
h"°(p)e f - l ( W  + u W - ) .  Let C =  Uj=o ...... o_lhJ(Z  + u Z - )  ~ f - l ( W +  u W-). If we 
prove that p ¢ C, then clearly the result follows as in the previous case, because k is 
arbitrary. 

We claim that if p ~ C and h"°(p) = hi(q) for some q ~ Z + u Z -  and some j 6 {0 ,  • • ' 
no - t }, then we must have no = Kj + (k - 1)/2, with k odd and greater than or equal to 

3. In fact, from Lemma 13, h"°(p) and hi(q) are periodic points ofh of period 4no + 2 and 
4j + 2, respectively. Furthermore, we have takenj  such that 4j + 2 is the minimal period 
of q with respect to h. Then, 4j + 2 must divide 4no + 2, which proves the claim. 

Let us now prove that p ¢ C. We shall suppose that p ~ C and show that this implies 
that hn°([ak, p)) must cross at least once the set f -  I(W+ u W-),  which contradicts the 
hypothesis that p is the closest point to ak such that h"°(p) e f -  I ( W ÷  w W - ) ,  and the 
result follows. 

I f p e C ,  we must have no = j + m ( 2 j +  1), m~> 1, and so, by Lemma 13, 

h,O(p) = hJhmt2j+ 1)(p) = h j ( (_  1)rap), 

h"°(ak) = h~hm<2j+ l)(ak) = h J((-- 1)mak). 

Therefore, h"°([ak, p]) = hi(D), where D is a curve that curls at least once around (0, 0), 
since it either starts at a k and ends at p or starts at - a k and ends at - p. Now the image 
of D by h j must cross at least once the spirals f -  ~(W + u W-). In fact, hJ(D) must curl at 
least once around (0, 0) and its intersections with Z ÷ or Z -  are ordered approaching 
(0, 0) (Lemma 16). On the other hand, its end point h"°(p) lies on f -  I(W+ u W-), and 
so the result follows. 

For  (b), (c), and (d), the proof is similar. • 

REMARK 1. In (Atela), the existence is proved of the orbits given by Theorem 1 l(b) 
and (c) for the cases no = 0 and no = 1, respectively. 

REMARK 2. From Proposition 2, we know that for a ~ (1, 4), b e (0, 1), a(1 - b) < 1 

and a(9 - 8b)/> 9, the point p÷(0) (resp. p-(0)) is a non spiral hyperbolic sink (resp. 
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source). Repeating the reasoning of Theorem 11 for this case we find only a finite 
number of symmetric periodic orbits. In this sense, we may say than an ov-furcation 
takes place at a ( 9 -  8b)= 9. 

5. Non-Integrability and Chaotic Behaviour 

In this Section we shall use McGehee's variables and the transformed equations of 
motion (7) to prove the non-integrability of the Hamiltonian system (5). More precisely, 
we show that imposing certain conditions on the parameters a, b, it is possible to 
construct a Poincar8 map F defined on a local surface of section S such that S contains 
an invariant set I on which F is conjugated to the shift homeomorphism a over the 
space of the doubly infinite sequences of symbols of a countably infinite alphabet ~.  In 
particular, this implies that system (5) is non-integrable in the sense that there exists no 
analytic integral of motion independent from the Hamiltonian (see for instance (Moser, 
1973). In fact, since the potential U(x, y) in (5) is homogeneous, it is easy to check the 
non-integrability of (5) as a consequence of Ziglin's theorem (Yoshida, Ziglin, 1983). 
However, the conjugacy of F and tr is a much stronger result. It implies also the 
existence of infinitely many hyperbolic periodic orbits, and that the system is chaotic, in 
the sense that there are orbits whose long time behaviour is quite unpredictable. 
Furthermore, the symbols of the alphabet ~¢ have a certain dynamical meaning and the 
conjugacy with the shift a over ~¢gives us information on the qualitative features of the 
chaotic orbits, as in (Moser) and (Devaney, 1978). 

Throughout this Section, we shall suppose a ( 1 -  b)> 1. As before, denote by 
p÷(Oo),p-(Oo), Oo ~ {0, arccosd, -a rccosd} ,  the equilibrium points on A given by 
Proposition 2(b), and by WU(p) (resp. WS(p)) the unstable (resp. stable) manifold 
associated with the equilibrium p. Recall that WU(p ÷ (0)) and WS(p-(0)) are two-dimen- 
sional, while W~(p+(0)) and W~(p-(O)) are one-dimensional and contained in A. Denote 
also by 7(0o), 0o e {0, arccos d, - arccos d}, the homothetic orbits given by Proposition 
9(b). We shall also suppose that WU(p-(O)) misses W'(p+(0)) which, by Proposition 7, 
happens for almost every value of the parameters a, b. 

LEMMA 18. The manifolds W~(p + (O) ) and WS(p- (O) ) intersect transversally along T(O). 
Proof. Denote by S x the surface in the energy level H = h defined by {v = x}, and let 

7(0) = (f'(T), 0 = 0, 13(z), u = 0). It may be easily seen from (7) that: 

2v~ e ~°~ Vo(1 - e ~°*) 
f(z) = h (1 + eV°~) 2' f(z) 1 + e v°~ 

where Vo = x / -2V(0)  is the v coordinate of p+(0). Since y(0)e W~(p+(0)) and 7(0) 
intersects transversally every S v, Ivl <Vo, the set W~(p+(0))n S~n q/, where q/ is 
a neighbourhood of 7(0), is non-empty and coincides with the graph of a certain 
differentiable function ~(0). Denote by (p(v) the function D~v(0), i.e., (p(v) is the slope of 
the straight line defined in S ~ by the tangent to ~v(0) at 0 = 0, and let W(z) = qT(f(z)). 
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The linear approximation at p÷(O) yields 
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Vo / v~ V"(O)) • (0, r:/2). ~P(- ~ )  = ~p(vo) = arctan ~- + N/ /- ~ - 

On the other hand, the variational equations along 7(0) determine the equation of 
motion of q~, 

d---r- = ( -  1 + a(1 - b))cos 2 q' - sin 2 W - cos ~' sin q~. (13) 

Using (13) and the techniques introduced in (Casasayas and Llibre, 1984) the 
transversality of the homothetic orbit 7(0) may be easily proved. Let ~,*(~) denote the 
unique value of ~b in (0, N2) such that (d~b/dz)(~k*z) = 0. It is easy to check that ~*(~) is 
monotonically increasing with T, T • ( -  ~ ,  0), and that (d~b/dz) (~b, T) > 0 (resp. < 0) for 
~,(z) < ~,*(z) (resp. ~b(r) > ~b*(T)). Now, we claim that the solution @(T) of (13) must be 
monotonically increasing. Clearly, for z small enough, we have ~k(z) < ~,*(~). Suppose 
then that there exist Zo and e such that ~'(Zo) = ~b*(Zo) and ~b'(z) < 0 for z • (to, ro + e). 
Then, @(~o + e) < ~b(Zo) = ~,*(Zo) < @*(Zo + e), which implies ¢'(~o + e) < 0, a contra- 
diction, and the claim is proved. Therefore, we must have ~b(z) • (~k(- ~),  ~k*(T)) and 
hence ~,(z) • (~k(- ~),  re/2) for T • ( -  ~ ,  0]. Since the symmetry $1 maps W"(p +(0)) onto 
WS(p-(O)) we have that the angle A¢(z) between the straight lines defined in S vt~) by the 
tangents to W~(p+(0)) c~ S vt') and to WS(p-(O)) n S ~ at 0 = 0 verifies 

A~k(~) = ~k(T) + ~k(--z) (14) 

and so A~k(0) • (0, n). Finally, from (13) and (14), if A~k(~*) = k~r, for some k • Z and some 
z* • ( -  ~ ,  + ~) ,  then A¢(z) = k~t for every z, and the result follows. • 

Let S be the surface in the energy level H = h defined by {v = 0}, and let Xo (resp. 
xl ,  x2) be given by 7(0)c~ S (resp. 7(-arccos d)c~ S, 7(arccos d)c~ S). Denote by Di 
a neighbourhood ofxi in S, i = 0, 1, 2. Denote also by B (resp. A) the set W~(p-(O)) c~ S 
(resp. W"(p+(0)) c~ S). Let f be the map that takes p • Do to p' • D~ w D2, where the 
forward time orbit through p crosses for the first time S with v' < 0. Fixing D~ and D2 
and taking Do small enough, it is easy to check, using the description of the flow on 
A given in Section 2, that f is defined in Do\B. Denote by A,,/~ • ( -  1, 1) a foliation of 
Do by curves parallel to A, Ao = A. For simplicity, we shall take local coordinates x, y in 
Do such that Do = { ( x , y ) • [ - 1 ,  1] x [ - 1 ,  1]}, A~ = { ( x ,y ) •D0 : x = # } ,  B = B o  = 
{(x,y)•Do: y = 0} (notice that, by Lemma 18, this is always possible). With this 
notation we have the following lemma. 

LEMMA 19. For every value of a, b such that (a(1 - 25b/24)) 3 > a(1 - b) > 1, the set 
f(A~) is formed by two spirals, one in D1 and the other in Dz, accumulating on Xl and Xz, 
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respectively. Moreover, 

~---}f(A~(y)) ~ when ~ 0  (I3 Y 

Proof. As in the proof of Lemma 14, we shall follow the segment A~(y), y e [ -  1, 1], 
by the flow and, by the tubular flow theorem, restrict our study to a neighbourhood of 
the singular points. 

Consider first the point p-(0) (all the orbits starting in Do will follow close to the 
homothetic orbit y(0) and pass close to p-(0)). In a neighbourhood of p-(0), the linear 
approximation may be written using appropriate coordinates 

= - 2 1 x  (15) 

P = 22y, 

where 2~ > 0, i = 1, 2, 3, x = y = 0 is the direction of the homothetic orbit ~(0) and z = 0 
the tangent plane to A at p-(0). Consider two surfaces of section, Zz, at z = z* and Z f  at 
y = y*, and let us follow the points of A,(y) c~ E:,, y > 0, until they cross Ey,. From (15), 
we have that the orbits through these points cross E f  along the curve 

x = #(y/y,)~3/~2 
z = z*(y/y*) ~1/x2 (16) 

Since Ey, is transversal to WU(p-(O)), which dies in p+(arccos d), the other singular 
point in whose neighbourhood the orbits through At(y), y > 0, will pass is the point 
p+(arccos d). The linear approximation in a neighbourhood of p+(arccos d) is of the 

form 

f = -c t r  

0 = fl (17) 

= ~,z, 

~, fl, 2 > 0. Consider two surfaces of section E,, at r = r* and Zz* at z = z*. The image by 
the flow of the points of A~(y),y > 0, will cross E,, in a curve (r*, O(y),z(y)) 
diffeomorphic to (16) and such that z ~ 0 and 0--* 0o when y ~ 0. Using (17) to follow the 
orbits through this curve until they reach E~,, we obtain 

r = r*(z(y)/z*) ~/~ 
(18) 

0 = O(y) + fllog(z*/z(y)), 

which is a spiral in E~, with r ~ 0  when y ~ 0 .  Moreover, (18) implies that 
I(d/dy)f(A~(y))lis of the order of z-X(dz/dy), and, since z ~ 0 when y ~ 0 as a power of 
y (see (16)), the result follows. • 

Let # denote the map that takes p e Do to p' ~ Dx u D2, where the backward time 
orbit through p crosses for the first time S with v' < 0. Using the symmetry of the system 



A RESTRICTED CHARGED FOUR-BODY PROBLEM 263 

Sl : (r, 0, v, u, z) ~ (r, 0, - v, - u, - z), and considering a foliation B.,/~ e ( -  1, 1) with 
Bu = S I ( A , ) =  { ( x , y ) eDo:y=g} ,  Bo =B, the following lemma may be directly 
obtained from Lemma 19. 

LEMMA 20. For every value of a and b such that (a(1 - 25b/24)) 3 > a(1 - b) > 1, the set 
g(B~(x)), x e [ -  1, 1], is formed by two spirals, one contained in D1 and the other in D2, 
accumulating on xl  and x2, respectively. Moreover, 

dg(B~.(x)) ~ oo x when ----k O, 

In order to prove the main theorem of this section, we shall need two other auxiliary 
lemmas. 

Denote by al(#) and a2(p) (resp. bl(#) and b2(/~)) the spirals given by Lemma 19 (resp. 
Lemma 20). Clearly, b~(/~)= Sl(ai(p)), i =  1, 2. Therefore, for i e {1, 2}, ai(#) and bi(/~) 
intersect each other whenever they cross the segment Z in S given by {u = 0}. 

LEMMA 21. Let a and b be as in Lemmas 19 and 20. Then the intersections of ai(/~) and 
bi(#), i = 1, 2, on the segment Z are transversal for almost every value of the parameters a, 
b. 

Proof. Consider one of the spirals given by Lemmas 19 and 20 and let ~b.(a, b) 
denote the angle between Z and the tangent to the spiral in its nth intersection with Z. 

Since ~b.(a, b) is, up to diffeomorphisms, a logarithmic spiral, l i m . ~  ~b.(a, b) exists. 
By analyticity, it is enough to prove that l i m . ~  ~b.(a, b) is not equal to n/2 for every 
value of a, b in the conditions of the lemma. If it were so, then for a, b such that 
a(1 - b) > l, (a(1 - 25b/24)) 3 - (a(1 - b)) s ( - e ,  0], i.e. when the singular points 
p-+(+ arccos d) are non-spiral hyperbolic sinks and sources in A, the curve f (A,(y))  
would still have to cross Z infinitely many times in a neighbourhood of Xl and x2. But, 
repeating the reasoning of the proof of Lemma 19, it is easy to check that for these 
values of the parameters the curve f (A,(y))  intersects Z transversally at x l and x2. • 

LEMMA 22. Let R denote a radius in Di, i~ {1, 2}. (a) g(Do\A)c~ R is formed by an 

infinite family of intervals R j , j e  N, accumulating on xi when j--, + oo. 
(b) Let Tj denote the unit vector tangent to R in a point of Rj. Then Idg- l(Ti)l- '  

when j - ,  oo. 
(c) g-l(Rj),  j e  N, is an infinite family of arcs which tend C 1 to A when j ~  oo. 

Proof. Statement (a) is an immediate consequence of Lemma 20. To prove (b) and (c) 
we shall repeat the procedure of the proof of Lemma 19 and follow Rj by the flow as it 
passes close to the singular points p-((-1)iarccos d) and p+(0). Consider the linear 
approximation in a neighbourhood of p-((-1)iarcos d), 

f = ~ r  

0 = fl (19) 

= -- ~.z, 

~, fl, 2 > 0, and the surfaces of section E~. at z = z* and E.. at r = r*. 
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Let f l  : Y~=* ~ E , ,  be the map defined by the flow of (19). The image by f l o f a  radius 
R in Z=. is the curve 

, ~ r* { r \  al= 
0 = 0  + - l o g - - ,  z =  r z * \ ~ j  / /  (20) ) 

i.e., it is a curve in ~,. spiraling as it tends to z = 0. 
From (20), we have that (~l, rh )=  df l (Tj)  verifies 

[ql] ,~ ri/~ ,~ z (21) 
I~11 

In a neighbourhood of p+(O), the linear approximation is 

= - 2 1 x  

)5 = 22 y (22) 

= 23z, 

21, 22, 23 > 0, and we shall consider the map defined by the flow of (22), f2:  Zx. --, Z=., 
with Z,:. and ~=. surfaces of section transversal to the x-axis and the z-axis, respectively. 
Using (22) we have 

(x, y) = T2(Y, z) = (x*(z/z*) ~1/~3, y(z*/z)2~112~3). (23) 

Let ~'~ and q'l be vectors tangent to E~, along the y-axis and the z-axis, respectively. 
Suppose that [q'l[ ~< z l~]l and let (¢2, q2)= df2(~'l, q]). Then, (23) implies 

[~21~ z<~, + a2)/i~ (24) 

Now, (20), (23) and (24) prove (c), while (b) follows from differentiating (20) and (23). • 

We can now state the main theorem of this section. Denote by h = 9 - l o  f the 
Poincar6 map associated to system (5) defined in Q = Do, where Q may possibly be 
empty. Denote also by Ak the space of the doubly infinite sequences of integers greater 
than or equal to k, and by a the shift homeomorphism defined in Ak. 

T H E O R E M  23. For almost every value of  a and b, such that a ( 1 - b ) > l  and 

(a(1 - 25b/24)) 3 > a(1 - b), the followin9 statements holds. 

(a) Q is non-empty and contains an invariant set I. 

(b) There exists k e N such that h on I is conjuoated to a o n  A k. 

(c) The inteoers of  a sequence s e Ak correspond to the number of  consecutive crossinos 
of  the axis 0 = arccos d, 0 = - a r c c o s d  performed by the orbit associated to 

s throuoh the conjuoacy 9iven by (b) when z e ( -  o% + oo). 

Proof To prove this result it is enough to show that the Horseshoe Theorem (see 
Moser, 1973) applies to the system we are studying. We shall check that our system 
verifies the conditions of this theorem in the form stated in (Devaney, 1978), following 
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the procedure used in this paper to prove a similar result for the Anisotropic Kepler 
Problem. 

Denote by Ci a sector around Z in Di, i = 1, 2, and let E c Q be the set of points p such 
that f (p)  ~ g(D\A) n (Cx u C2). 

If h(A~ hE)  is an infinite family of curves which tend to B in the C 1 topology and 
I(d/dy)h(A~(y))l ~ oo when y ~ 0, then the Horseshoe theorem holds and the result 
follows. 

Now, by Lemmas 19, 20 and 21, the sets f ( D o \ B ) n C i ,  g(Do\A)nCi ,  i = 1,2, are as 
shown in Figure 6, and the images of the foliation of Do by the curves A~ and B~ 
intersect transversally in C~. Hence, the image by f of a curve A~ intersects transversally 
infinitely many times - once on each set Sj - all the leaves of the image by g of Do\A 
foliated by B~ (see Figure 6). Then, 9-  l ( f ( A , ) n  Si) is a vertical curve in Do, and it must 
tend to A when j--, ~ ,  because, when x --, O, ~(B~(x)) tends to xi. 

Denote now by ~(p), ~/(p) the unit vectors tangent at p to the foliations B~ and A~, 
respectively, and by p and p' two points in E such that h(p)= p'. Let 0)1 be the unit 
tangent vector to Z. Since the spiral g(B~(x)) intersects Z transversally, taking C~, 
i =  1,2, small enough, 0)1 and 0 )  2 = dg(~(p')) form a basis of TIt~jCi. Now df(rl(p) ) = 
a(p)0)l - 0)2, where la(p) l --, oo when y(p)---, 0, y(p) denoting the y coordinate of p, since 
Io921 ~ ~ when y(p) --. 0 (Lemma 20). 

Then, dg- X(df(q(p))) = a(p)dg- l(0)l) - -  ~(p'). By Lemma 22, Idg- x(0)l)l--* ~ when 
y(p)~0. Hence Idh(q(p))l ~ ~ when y(p)~0. • 

REMARK 3. We have proved the existence of symmetric periodic orbits only in the 
case a(1 - b) < 1, see Section 4. However, using the techniques introduced in (Casasayas 
and Llibre, 1984) it is also possible to prove the existence of infinitely many S~ or $2 
symmetric periodic orbits when a(1 -b)>~ 1. 
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