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Abstract. The simplified analytical approaches based on beam or plates theories are commonly used to solve the stress 
field in bonded laminates. However, to be correctly applied, these methods require an appropriate fracture criterion. In 
this paper, the use of J-integral as a fracture parameter in these simplified analytical approaches is discussed. After 
examining its path independence, the J-integral is calculated along two particular paths showing first that this integral 
is equal to the product of the strain energy at the end of the joint (i.e. at the debond tip) by its thickness. This 
relationship reveals the partitioning of the opening mode I and the shearing mode II. Secondly, the general expression 
of J as a function of the loading conditions is derived. It is shown that this parameter can be related to the strain energy 
release rate in the cases of small scale yielding conditions and for usual fracture mechanics specimens. 

Nomenclature 

J = Rice integral 
W = Strain energy density 
T = Tension vector 
s = Curvilinear abscissa 
u = Displacement vector 
U, V = x, y-components of the displacement 

= Stress tensor 
h0 = Adhesive thickness 
r, a~. = Shear and normal stresses in the adhesive 

7, ey = Shear and normal strains in the adhesive 
h~ = Adherend thickness 
Ni, Q/ = Normal and shear forces in the adherend i 
Mi = Bending moment in the adherend i 
u~, v/ = x, y displacements of the neutral line 
fl~ = Bending rotation 
a~,, zx~. = Components of stress tensor in the adherends 
e, xx, 7xy = Components of strain tensor in the adherends 

1. Introduction 

As the t e chno logy  of  adhesives  c o n t i n u e s  to deve lop  rapidly ,  des ign ing  m e t h o d s  are needed  in 

o rde r  to predic t  the u l t ima te  p roper t i es  of  b o n d e d  jo in ts .  To  do this, m a n y  ana ly t ica l  m e t h o d s  

have been  deve loped  to ca lcula te  the stress a n d  s t ra in  d i s t r i bu t ions  in the adhes ive  layer. The  

mos t  widely  k n o w n  of these mode ls  is Volkersen ' s  analys is  of the tensi le lap shear  j o in t  [1] ,  in 

which  it is a s sumed  that  the two a d h e ren d s  are subject  to a pure  t ens ion  a n d  the j o i n t  is in a 

s tate  of s imple  shear  stress. As this mo d e l  is n o t  very realistic, it has no t  f ound  its way  in to  m a n y  

prac t ica l  app l ica t ions .  Later ,  G o l a n d  a n d  Reissner  [2] cons ide red  the p r o b l e m  of the single lap  

j o i n t  a n d  also took  in to  c o n s i d e r a t i o n  the b e n d i n g  effects a n d  the o p e n i n g  stress in the jo in t .  

Dela le  a n d  E r d o g a n  [3] then  ex tended  this analys is  to the genera l  case of an  a rb i t r a ry  geometry .  

N u m e r o u s  ex tens ions  to cases where  the j o i n t  is subjec ted  to e las toplas t ic  [4] or  viscoelast ic  [5]  

l oad ings  are n o w  fo u n d  in the l i terature .  However ,  these mode l s  are usua l ly  assoc ia ted  with 

s implis t ic  m a x i m u m  stress or  s t ra in  f rac ture  criteria,  which  restricts their  interest .  

S imu l t aneous l y ,  several  a u t h o r s  suggested the use of L inea r  Elast ic F r a c t u r e  Mechan ic s  

( L E F M )  a p p r o a c h e s  to s tudy  the f rac ture  of b o n d i n g  l am ina t e s  [6 -8] .  P rev ious ly  used for 

classical  l a b o r a t o r y  specimens,  these m e t h o d s  were recent ly  appl ied  to more  complex  load ing  
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conditions with the modes I and II partitioning analysis [9, 10]. However, LEFM approaches 
are valid only for slender specimens and the effects of the adhesive thickness and rigidity on the 
G~/G. ratio are ignored. 

Some authors have proposed the J-integral as a failure criterion for specific geometries (DCB 
specimens [11], Volkersen joint [12]), and recently for more general configurations [13]. This 
offers two advantages. Firstly, it can be calculated on a path located far from the crack front, 
and therefore far from the singular zone. Secondly, its use is not restricted to the case of linear 
elastic materials. However, the use of this parameter as a fracture criterion requires certain 
assumptions, in particular its path independence, which are not necessarily verified by the 
simplified fields used in the analytical methods. But it is proved correct that this integral is path 
independent, if it passes through an interface parallel to the crack plane. 

In the present article, we propose to examine the conditions under which the use of J-integral 
is valid, and we attempt to establish its general expression in the framework of these analytical 
approaches. To do this, after a brief review, we calculate the J-integral for closed paths in the 
adherends and in the adhesive, using Goland and Reissner's stress analysis generalized to the 
case where the mechanical behavior of the adhesive is nonlinear. We then determine the general 
expressions of J for two particular paths, in order to relate this parameter to the local stress 
field and to the loading conditions. Finally, we apply the results obtained to classical fracture 
mechanics specimens. 

2. Review: the Rice integral 

The path integral J has been first introduced by Rice [14] in order to describe the fracture of 
nonlinear materials. This integral is defined by 

J =  ('| W dv T~?Uds, T = ~ ' n ,  (1) 

in which F is a path surrounding the crack, s is the curvilinear abscissa, T is the traction vector 
defined according to the outward normal along F, u is the displacement vector and W is the 

deformation energy density, expressed by 

W = a i j  dt:ij (2) 

o is the stress tensor and n the vector normal to the path. Rice has shown that this parameter 
is path independent if the stress field derives from a potential (W) and if the equilibrium 
equations are verified in ~ (see Fig. l). In that case, the J-integral could be related to the stress 
field near a crack tip, allowing its direct evaluation. Furthermore, a proof was presented 
showing that, in many cases, this parameter was a promising fracture criterion, being consistent 
with the Griffith energy balance approach. We note that the first hypothesis (i.e. the stress field 
derives from a potential) underlies the existence of an explicit relation between the components 
of the stress and strain tensors. As Rice demonstrated, this makes J applicable for the nonlinear 
elastic bodies and for structures subjected to particular histories of plastic loading. In the case 
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Fig. 1. A path surrounding a crack tip - Notations. 

O 

Fig. 2. A zero thickness path passing through an inter- 
face parallel to the crack plane. 

of bonded structures, these hypotheses must be reviewed in detail: firstly, any path crossing the 

interfaces must be considered; secondly, the models commonly used for the stress analysis in 
these structures do not satisfy a priori the equilibrium equations; at last, the specific geometry 

of the bonded joints imposes some restrictive conditions on the stress field. 

X 

3. Multilayer geometry 

We have seen that J is path independent for an elastic domain. The bonded structures consist 
of several materials, and it is necessary to verify that the above assumptions remain valid when 
the domain contains one or more interfaces. Of course, in the case of bonded structures, if the 
crack propagates parallel to the interface plane, it is sufficient to consider a path of zero 
thickness passing through an interface parallel to the crack plane (Fig. 2). The energy density 
term does not appear in this case, due to the fact that the integration is taken along the x-axis, 

and the J-integral is written 

J = J+ + J -  = - T ~ x a X -  Tz ( -d x ) .  
1 

(3) 

We then see that, if the forces and displacements are continuous through the interface, this 
integral is zero. So we can say that, for a crack parallel to the interfaces of a multilayer structure, 

the J-integral is path independent. 

4. Calculation of J-integral in the framework of Goland and Reissner approximations 

4.1. Review: Goland and Reissner analysis 

Let us briefly recall the basis of Goland and Reissner's analysis. Let us consider a bonded 
structure of unit width, subjected to in-plane loading. In this analysis, the adherends, 
indexed 1 and 2, are assumed to be elastic and to verify the Saint-Venant assumptions. 
The adhesive layer, of thickness ho, is subjected to normal and shear stresses (ay, 0, thickness- 
wise [3]. The equilibrium conditions applied to an elementary cross section of each adherend 
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yield 

dNt  dQ1 dM1 hi 
r: or,,; - Q~ - ~ r ,  

dx dx dx z 

dN 2 dQ2 dM2 h2 
dx - r; dx - a~,; dx - Q2 - ~-z ,  

t4) 

in which N~(x) and Qi(x) are the normal  and the shear forces. The M~(x) are the bending 

moment s  (Fig, 3). The displacements and the rotat ions are related to the forces and the 
moment s  by the elastic constitutive equat ions 

du i dei Qi d [ ] i  _ 
d x  - C ~ N i ;  ~ + [Ji = ~ ;  dx  DiMi, i =  1,2, (5) 

with 

2 
1 - -  v i .  

C i -  
hiEi ' 

Bi = ~hiG~; D i _  12(1 - v~) in planar  strains, 
h3E  

1 12 
=_ = 6hiGi, Di h2 Ei C~ h~Ei; B~ 5 " • - in planar  stresses, 

where (ui, vi) is the displacement of the neutral  line and fl~ is the rota t ion of the ith adherend. 
Ei, vi and G~ are the elastic constants  of the ith adherend. F rom the adhesive layer, due to the 

fact that  it is very thin and according to the assumpt ion  of small rotations,  the deformat ion 

dx  
> < 

Qjx) 

- - "  M (x) 
2 

I 
O'y (x) 

t 

N~x+dx) 

M (x+dx) 
2 

"c (x) 

Ql(X ) ~ql ,, IL. AQl(X+dX) 

M (x) M (x+dx) 
1 2 

Fi~t. 3. Forces, moment and adhesive stresses in the adherend element and in the adhesive layer. 
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field is written 

hoe r = (v2 - Va), 

hot = u2 - (½h2)f12 - ul - -  ( l h l ) f l l .  (6) 

From the latter, it follows 

dV 
d-~ ~ 7, (7) 

where V is the displacement along the y-direction in the adhesive joint. Moreover, in the 
equilibrium problem, we find that the in-plane tensile stress (crx) and shear stress are negligible 
through the entire vertical section of the joint. In other words, the junction is modeled by a 
tension-shear foundation and not by a tridimensional material. Therefore, the adhesive 
behavior can be defined by two one-dimensional constitutive equations: 

{r = r ( e , ,  7), 
a ,  = a,(ey, y), (8) 

providing, in the elastic case 

z = #7, 
~ y = ( 2  +2~)e r, (9) 

2 and # being the Lam6 constants. For the elongation mode, we consider than e~ = ez.- = 0, 
because, in general, the adhesive rigidity is very small compared to the substrate. By differenti- 
ating these expressions several times, and substituting (4) and (5) in them, we get a system of 
two differential equations in cry and r, which can be solved in simple cases [3]. 

In accordance with the above, we observe that the approximations of Goland and Reissner's 
analysis may pose some problems for the computation of J. Namely, the equilibrium hypoth- 
esis is technically delicate because the field in the adhesive as it is proposed was not derived 
from the equilibrium equations and has no reasons to verify them. Therefore, it is useful to 
calculate J in these approximations. 

4.2. Case of  a closed path within an adherend 

Let us first consider a closed, rectangular path of length I and height h, surrounding a beam (or a 
plate) element on a two-dimensional foundation (Fig. 4); to simplify notations, we have omitted the 
subscripts relative to the substrate. In this element, the stresses and displacements are given by 

U(x,  y) = u(x) - y/~(x); V(x,  y) = v(x), 

N D M  t hI2 
= Zxy dy = Q, (10) 

¢xx -h + Y ~ - '  J-h~2 

where u(x) and v(x) are the x - y  displacements of the neutral line and fl, the rotation. 
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Fig. 4. Substrate element on a two-dimensional foundation. 

According to the Saint-Venant  hypotheses,  the normal  stress in the y-direction is assumed to 

be negligible compared  with the other stress tensor terms. For  this path,  the J- integral  can be 

written 

d = JnL  q- JEF -t- JFO q- JGH, 111 

with 

Jnw = L k cx + 2?,xJ + G ' ~  dx, 

J ~ f  = W -  a x x ~ [ U  - f ly] - Zxy ----- 
-h /2  (X ~X A 

JEt; = 0 

& .  = - w - ~ . ~ . ~  [u  - f l y ]  - ~ x , , ~  d y  (x  = ot. 
h;2 

Let us calculate JGn; considering (4) and (5), 

W dy = a ~  dt '~  + r.~y d?xy dy 
-h, '2 -h /2  

fh"2l ff° hff ] 
= h C  axx d a ~  + r~ydr~y d v  

h,'2 k ,J o " B ~ " 

h~[ N 2 j2M2h31 Q2 ~[ Q2 ] 
= h v + ~  ]~ + y b =  C N e + ~ - + D M  ~ , 

121 

13) 

(since C / M  = h3/12). 



J-integral as fracture parameter 

Moreover 

J-h /2L  r ~x[U -- fly] + Z~x d y =  ,d-h/2 - f f~[CN + y D M ]  2 + ~ -- fl dy 

Finally, Jan is written 

1[ Q2 ] 
J~n = ~ C N2 + - f f  + DM2 - Qfi. 

Similarly 

1[- ,2 1 J E F = - ~ [ C N  + ~ + D M  '2 - -  

Q'/~'. 

Moreover, using relations (4) and (6) 

Q2 
= CN 2 q - ~ - +  DM 2 -  Qfl. 

£rcN~ i ~] d~E~ ]1 Jne  = L dx  - D M  Q - ~ x  + d x  - fl dx  

1[ ,z ~ Q2 B ] = L C N  + + D M  ' 2 - C N  2 D M  2 + J '  

with 

The integration gives 

fo ~ rl~d~ fo ~ fl dx = [/~Q]~ - .]o d x d X=[ f lQ]~ -  D M Q  dx  

whence 

j '  = flQ - fl'Q'. 

65 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

Finally, from (15), (16), (18) and (20), we do find that the J-integral is zero. 

4.3. Case o f  a closed path within the joint 

Let us now consider a closed, rectangular path located in the joint, of length l, passing along the 
interfaces between the adhesive and the adherends (Fig. 5). For this path, the J-integral is 
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Fr<q.  5.  A closed path within the joint.

written

J = JAD  + Jm  + JH,  + J,,, (21)

with

JD, = ho  W(1) - $0
c

hrl:Z  (71/(/)
~ dy  = ho  W(1) - k,t(l)b”(l),

-hc,,‘Z  (?.Y

J HA = - 11,  W(0)  + r(0)
s

hr,Z i;  V(O)
.___ dq’  = - k,, W(O) + k,z(O)V’(O), (22)- hi,,‘2 ?x

in which V’(1) et V’(0) are the mean values of dV/d.u  through the thickness of the joint, at x = I
and .Y  = 0, respectively. Let us now group the integrals J,4D and JEH  together

Jnu + J,, = - [“(x,  h,/2)  - U(.Y, -12,,‘2)]

+ .,x(x); [I’(.\. h,/2)  - V(x.  - k,,,12)]
1

dx

or

(X, 7

J,, + J,, = - ho TV + q.(x)3
i;x 2.x1 dx.

t-23)

(24)

Equation (24) should be written as

rrto) l(ll
J/m + JEH  = ho

30
r d;,  + CT,  di:,, - ho

s
rd;)  + o,dc,  = how(O)  - koW(l). (25)

0
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This variable change is possible if the stress field in the joint derives from a potential (W). We 
note that in the Goland and Reissner analysis, this hypothesis is far less restrictive, since the 
usual plastic constitutive equations of the adhesive reduce to two simple laws (v(ey,~) and 
ay(ey, 7)), which are explicit in most cases, as when Tresca or modified Tresca-Coulomb criteria 
are used. We therefore deduce that 

J = h o ¢ ( 0 ) v ' ( 0 )  - hoT(1)V'(1) (26) 

The simplified stress analysis of Goland and Reissner gives a nonzero J-integral for the closed 
path in the adhesive joint. However, according to (7) (low-rotation assumption), we can expect 
OV/#x to be very small, so that the J-value for a closed path will be small. This point will be 
discussed further on. 

4.4. Computation of J for a debonded specimen 

Let us presently consider a bonded structure with a debond or a crack in the adhesive layer. We 
propose to compute the integral for two particular paths (Fig. 6). For the first, located within the 
joint, we have 

J = JO'A Jr- J.4D + JDE + JEH + Juo. (27) 

Since the section AH is unloaded ( J o ' A  = Juo = 0), and according to relations (22) and (25) 

J = ho W ( 0 )  - ho~V ' (1 ) .  (28) 

Moreover, the strain energy density W is of the same order of magnitude as a~.e~, + VT, so that (7) 
yields 

ho~V'(1) ,~ hoz7 "~ hoW(l) ~< W(0), (29) 

since the energy density in the joint is maximum in the vicinity of the debond tip. Hence (28) 
provides: 

J = ho W(0). (30) 

I N2 

Q2 
M z 

I Nl 
Ql 
M 1 

G F 

IP ¢ 
Fig. 6. Schematic representation of a debonded specimen. 

N o 

Qo 
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To conclude, this computation shows that in the Goland and Reisner analysis, the J-integral 
is nearly path independent, and is equal to the product of the joint thickness by the energy 
density at the bond termination. Relation (30) also reveals the mode I and mode I! components 

('~.vlO) 

J l = h o J  o a,,d,:,,; J l l=h°  (:'°'z'd:":o (31t 

J can also be computed as a function of the loading conditions. For that, let us now consider 
the path ABCDEFGH shown in Fig. 6. The portions BC and FG are located on the external 
faces of the adherends and are free of any force; we can write 

J = JAB + JCD + JDE 4- JEt: + JGIt" (32) 

The expressions for these components have already been determined, and are given by (15) 
and (16). Finally, we have 

1 ~ Q 21 - Q'I 2 
S = 2 L c ' ( x 2 1  - N'?) + B, + D~(M~ - M?) + C2(N~ - N~ 2) 

Q~ Qi2 7 
+ + D2(M 2 - M~2)/- Q1[3~ + Q'~[f~ - Q2~2 + Q'213~ + JDE, (33) 

B2 J 

with JoE = k~o W(1). We note that in general, the computation of J requires the knowledge of the 
loading conditions and the constitutive equations of the adhesive (ho W(1) term). However, for a 
slender bonded structure, since the stresses in the adhesive layer decrease exponentially from the 
ends of the bond [3], the cross section CDEF can be chosen far from the crack, so that the joint 
section DE is not loaded. Therefore 

JoE ~ O. (34) 

We find in that case the relationship obtained by Fernlund and Spelt [13], with additional terms 
(Q~/Bi and ,2 Qi ; Bi) due to the shear energy stored in the adherends, which is taken into account 
here. Thus, for a slender specimen, the only contributions come from the cross sections in the 
adherends. In that case, expression (33) can be improved upon. Due to the fact that the stress 
state is zero in the joint on section DE, the displacements of the upper and lower surfaces of the 
adhesive layer and their derivatives are equal. Hence, for the section DE, we can write [15] 

Qi Q~ DIM'I D2M~ U2 = Lll" ~'1 --  ~11 = [~t2 --  B ~  ; ~- 

u2 - (½h2)/~2 = u~ + (½h,)/~,; C~N'~ - (½h~)D~Mi = C2N'2 + (½h2)D2M'z, (35) 

N o = N ' I  + N~; Qo=Q'I  +Q~, 

C1 [hi  -t- h2] 
M o = M ' ~ + N ' I c I + C 2 [  2 + M 2 - N ~ - -  

C 1 - t - C  2 
(36) 
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in which No, Qo, Mo are the loads and the moment applied on the whole bonded structure. The 
J-integral can be written in the form 

1[ Q2 Q2 Q2 ° 
J = 2 L C ' N 2  + C2N2 - C°N'°2 + Bx + B2 Bo 

+ D~M 2 + DzM~ - DoMe]  - Q,fi l  - Q2f12 + Qoflo, (37) 

in which Co, Do and Bo are the tensile, bending and shear stiffnesses of the sandwich composed 
of two adherends perfectly bonded together 

1 1 1 1 (hi + h2) 2 1 1 

Co C1 + - - ;  - - -  = - -  C2 Do 4(C1 + C2) -1- Oil -1- D22; B0 = B1 + B2. (38) 

We therefore get a simple expression of the J-integral as a function of the geometry, elastic 
constants of the adherends and loading conditions. A few examples are given in Appendix I to 
show that this expression can be used to work back to the strain energy release rate for most 
classical fracture mechanics specimens. Of course, the use of J-integral becomes far more useful 
in the case of nonlinear adhesives or when the loaded part spreads on the whole overlap (i.e. 
when (37) is not valid). It is shown in Appendix II that relationship (33) allows finding in a 
simple way the result obtained by Hu et al. [12, 16] for a tensile lap shear specimen bonded with 
an elastic-perfectly plastic adhesive. 

5 .  C o n c l u s i o n  

In this article, we have computed J for a bonded structure verifying the following assumptions 

- the adherends are likened to elastic beams subjected to low levels of rotation; 
- the stresses in the joint are assumed to be uniform thicknesswise; 
- the two one-dimensional constitutive equations of the adhesive (ay(7 , ey) and ~(7, ey)) are 

explicit and do not depend on the loading history. 

Under such conditions, the J-integral is shown to be nearly path independent. By computing it 
along two particular paths, the following results were established. Firstly, this integral is equal to 
the product of the strain energy at the end of the joint (i.e. at the debond tip) by its thickness. 
This result clearly reveals the contributions of the opening mode I due to the tensile stress 
normal to the debond plane and the shearing mode II due to in-plane shear stresses. By 
calculating J around a path located far from the crack tip, we have shown here that, in the cases 
of small scale yielding conditions and for usual slender fracture mechanics specimens, the 
expression for J can be used to work back to the strain energy release rate expressions 
calculated from the beam theory. 

At last, we should note that the hypothesis on the adhesive constitutive laws is not very 
restrictive, since the behavior of the adhesive is defined by two independent one-dimensional 
constitutive equations. This makes J-integral applicable to nonlinear elastic materials and to 
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monotonic plastic loadings. Nevertheless the use of J-integral as a fracture parameter remains 
questionable in the case of nonmonotonic plastic loadings or when the crack propagates after 
plasticization, since unloading then occurs in the adhesive. 

In conclusion, we think the J-integral is a promising fracture parameter for designing bonded 
structures, because, with the simplified analytical approaches, the most important difficulty is to 
have a realistic fracture criterion. The use of the J-integral solves this problem because the 
critical values of the J-integral can be determined by simple fracture mechanics tests. The other 
interest is that the present analysis makes possible the use of more compact specimens for which 

the linear fracture mechanics is not valid. 

Appendix I: J-Integral computation for fracture mechanics specimens 

Here we use relation (37) to compute the energy release rate 
To simplify the expressions, we assume that the structures 
stresses. 

for particular geometries. 
are subjected to in-plane 

DCB specimen (Fig. A.1) 

The loading conditions here are 

N 1 = N 2 = 0 ;  M1 = M2 = 0; Q1 = - Q2 = P; 

N o = 0 ;  M o = O ;  Q o = 0 :  rio=O; 

[:11 = -- f12 = --½ DPa2, 

(A.I) 

or 

J : Q2 + Q~ _ Q1B1 - Q2132 
p2 p2 [12a 2 6E ] 

: B  + Dp2a2 = E L  ~ 5 - + ~ G  " 

CLS specimen under pure tensile stress (or DCLS specimen) (Fig. A.2 ) 

N1 = P; N 2 =0 ;  M1 = M 2 = 0 ;  Q~ =Q2 =0 ;  fil =[32 = 0 ,  

N o = P ;  M o = O ;  Qo=O;  rio=O; 

(A.2) 

(A.3) 

~p 
a 

P 

Fi¢l. A.I. Double Cantilever Beam Specimen (DCB). 
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E l, h I 
. . . .  " I I  

P I E¢ ~ p 
Fig. A.2. Crack lap shear specimen under pure tensile stress (or DCLS specimen). 

o r  

j = [ C a N 2  CoN,oZ]=½pzl 1 1 1 
E]hl Elhl + E2h2 " 

(A.4) 

MMF specimen (Fio. A.3) 

N1 = N2 = Ma = Mz = 0; Q1 = ½P; Q2 = 0; flo - fii -= -¼P[D1 az + Do( w2 - a2)], 

N o = 0 : M o = ½ P W ;  Qo = ½P. 

Here, we have h~ -- h2 and E~ = E2, or Bo = 2Bl a, dD1 = 8Do, whence 

J = ~ p 2 1 1  1 WZDg I + ½P(flo-/~1) 21 pea2 3 p2 
B~ Bo = 16 Eh 3~ + 40 EG--h" 

Symmetrical CLS specimen under pure tensile stress (Fig. A.4) 

N I = P ;  N 2 = 0 ;  M I = M 2 = 0 ;  Q I = Q 2 - - 0 ;  f l l = f l 2 = 0 ,  

No=P;  Mo =- P6; Q o = 0 ;  f l o = 0 ;  

{A.5) 

(A.6) 

-P[ 

w J P w 
... T 

I 
a 

Fig. A.3. Mixed mode flexure specimen (MMF). 

I' El' ~ I 

Fig. A.4. Symmetrical crack lap shear specimen under pure tensile stress. 
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M ~ El' hx ~ , / [  

Fig..,t.5. Symmetrical crack lap shear specimen under bendings stress. 

in which 6 is the distance between the neutral lines of beam 1 and the neutral line of the whole 
structure 

thus 

C 1 [ h  I -~- h2]  _ E2h2 (h l  + h2) (A.7) 

6 - C1 + C 2 L ~ J  E th l  + E2h2 ' 

j 1 2 [ Do~21 = ~ [ C 1 N l  __ CoNro 2 __ DoM2] = ~p2 1 1 
Elh l  E lh l  + E2h2 

Symmetrical CLS specimen under bending stress (Fig. A.5) 

N 1 = N 2 = 0; M1 = M: M 2 = 0; Q1 = Q2 = 0; 

N o = 0 ;  M o = M ;  

thus 

J = ½M2[D1 - Do] 

(A.8) 

/fi =/L~ = 0, 

Q o = 0 ;  [Jo=0:  (A.9} 

(A.IO) 

In these computations, the structures are assumed to be of unit width. We then confirm the 
results found in the literature, by dividing the expressions obtained by the square of the 
specimen width. 

Appendix II 

Let us consider a tensile lap shear specimen bonded with an elastic-perfectly plastic adhesive 
(Fig. A.6). The constitutive equation in shear of the adhesive can be written as: 

{ 7 < 7p :~ = G'/, (A.11) 
7 >1 ',,p:r zp. 

We consider a path surrounding the plastic zone and crossing both adherends. For this path, 
(33) is written 

J = {-[CI(N~ -- N ' 2 ) -  C2N2 2] -{- JDE, (A.12) 



J-integral  as f racture  parameter 73 

. , ,  N1 

Plastic Zone 

ii, 

I ,,._ 

1 I D  

Fig. A.6. Tensile lap shear specimen with partial yielding of the adhesive layer. 

wi th  

N'I = N l  - zplp; N'2 = zplt,; C1 = C 2  = ~ ;  Joe  = ho z(lp)dy, 

where  Ip is the  l eng th  o f  the  plas t ic  zone.  T h u s  

1 2 
J = ~ IN1 - [N1 - rvlp]  2 - r2123 + Joe  

2 2 2 N 1 Tplp Z v Ip hozp 
- -  + ( A . 1 3 )  

Eh Eh 2G 

There fo re ,  we o b t a i n  the express ion  de r ived  f r o m  H u  et al. [16].  W e  no te  tha t  (A.11) is on ly  

val id  w h e n  the  adhes ive  is pa r t i a l ly  plast ic ized.  
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