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Abstract. The almost constant-speed motion of a mass acted upon by a Newtonian attraction and a 
resisting force is treated. The equation of orbit is derived for a specific type of resistance which covers the 
familiar case of Danby's drag(= c~r- 2) whilst the vector invariants are obtained by direct operation on the 
vector form of the equation of motion. 
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1. Introduction 

The classical two-body problem, in which the moving, less massive body is further 
acted upon by a resisting force, has been an important topic for investigators, 
especially during the last decades, because it is applicable to the study of motion of 

artificial satellites in the upper regions of the Earth's atmosphere. The resulting 
motion has been extensively discussed by means of either closed or analytic solutions 

of the equations of motion (Mittleman and Jezewski, 1982, 1983; Leach, 1987; Danby, 

1962; Brouwer and Hori, 1961 etc.). In most studies the resistance is proportional to 

the velocity and inversely proportional to the square of the radial distance. 

Undoubtedly, in the totality of orbits there exist some which are described with a 
speed that varies so slowly that its rate of change with time is approximately equal to 

zero. These orbits may be found if, together with the equations of motion, one 
considers the additional condition d2s/dt  2 ~-O. In order to avoid this apparently 

difficult task, we reformulate the problem and seek the solution of the conditioned 
equations of motion. The study also deals with the vector invariants of this particular 

motion and is accomplished with the exposition of the general solution in a simple 
compact form which is derived by means of one of these constant vectors. 

2. Statement of the Problem and a Scalar Invariant Related to Moment of 

Momentum 

The force field consists of the mutual attraction of the two bodies C(r)r and a 
tangential resistance R(r, v)v, where C and R are scalar functions and r, v and a are, 

respectively, the radius vector, the velocity and the acceleration of the moving mass 
with respect to the attracting centre. Hence, the equation of motion in vector form is 
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given by 

a + R(r, v)v + C(r)r = 0 (1) 

As we demonstrate below, the orbit of( l)  is planar and we use plane polar coordinates 
(r, 0). 

If, according to the assumption about the rate of change of speed, we expand v in 
Taylor series of the polar angle 0, we have 

dv  d2v 
v = v o + ~ 0o (0 - 0o) + 2 dO E 0o (0 - -  0 0 )  2 + " ' "  (2) 

where 0 o is the initial value of 0 and v o = V(Oo). Neglecting the second and higher order 
terms and denoting by e the small quantity ( d v / d O ) o  o we may approximate the speed by 

v = Vo + e(0 - 0o). (3) 

As the motion is expected to be a spiral, we see that for small values of e ( < 10- 5) the 

moving mass must revolve many times about the origin before the quantity Iv-vol 
starts to increase perceptibly. 

From Equation (3) the tangential and normal components of acceleration are, 

respectively 

a r = b T = e 0 T  and aN= v 2 N =  v o + e ( 0 - 0 o )  N 
P 

where T, N are the unit vectors along the tangent and the normal to it and p is the 
radius of curvature. Introducing these expressions into Equation (1) and taking into 
account the relation 

r 
e, = - = - s i n  q~T - cos ~oN (4) 

r 

where ~o is the angle between the radial distance r and the distance P of the origin O 
from the tangent (Figure 1), we obtain the equations of motion in the form 

eO + R v  - C r  sin q~ = 0, (5a) 

V 2 

- -  - C r  cos q0 = 0. (5b) 
P 

The evaluation of ~a is found in the Appendix. 
Since we examine a particular case of the two-body problem with resistance, it is 

useful to derive the basic aspects of the motion. We shall show that at any time the 
moving mass lies in a plane. Taking the cross product of Equation (1) with the vector r 

r x a + R r x v +  C r x r = 0 .  (6) 

With H = r x v, the above equation takes the form 

I:I + R H = 0 (7) 
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Fig.  1. 
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from which we readily obtain 

H x I : I  = 0 

(the dot denotes differentiation with respect to time). This expression admits a first 
vector invariant which is the constant direction en = H / H  of the moment of 
momentum H. Therefore the motion is planar. This fact enables us to simplify 
Equation (7) by writing 

IgI + R H  = 0. (7a) 

We see that in the presence of a resisting force, the magnitude of the moment of 
momentum is not conserved, although its direction is. As the magnitude H depends on 
the function R, we suppose, in order to carry out the integration of Equation (7a), that 
the resistance is a continuous function of H, 0, and 0 which may be written as a 
product of separable functions 

R = RI(H)R2(O)O. (8) 

Then, on substituting in (7a) we obtain 

HRi(H~ - R2(O) dO. (9) 

Apart from the well known Danby drag model (1962) which, for R 1 = H  -1 and 
R 2 = a (constant), gives 

H = r 2 0  = h - a0 (10) 

(h being the constant of integration), Gorringe and Leach (1988) propose a new, more 
general, type of resistance, which has the advantage that it covers the case of the drag 
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function R = ctr-2. More  precisely they consider the resistance 

R = H -  1(~ + b cos 0)0, ~, b const. (11) 

which yields 

H = r20 = h - ~0 - b sin 0. (12) 

Not ice  that  neglecting bo th  constants  ~ and b we have the simple form H = h 

which, in associat ion with the unit vector  en, furnishes the known integral 
H = constant ,  which fits into any central  field. 

3. The Equation of the Orbit 

The derivat ion of the equat ion  of the orbit  is reflected in our  choice of  the functions R 

and C. Adopt ing  the form of the Newton ian  central  a t t ract ion 

c = -~ (13) 
r 3 

where p is the gravi ta t ional  constant ,  we have f rom Equat ion  (5a) that  

eO + Rv - ~ sin q~ = O. 

We now prove  that  

dr 
sin q~ - ds 

where s is arc-length. 
If  we differentiate the expression r 2 = r" r we have 

r dr ds 
- . - - - - =  1 
r ds dr 

or, since T = dr/ds 

ds 
e , . T ~ - -  1. 

But as 

(14) 

(15) 

(16) 

e," T = cos(½rc + ~0) = - sin ~o 

the desired relation (15) is obta ined immediate ly  f rom (16). Thus  Equa t ion  (14) 

becomes 

# dr 
~0 + Rv + ~-~ dss = 0 (17) 
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or, after changing the independent variable from s to 0 via the operator 

0 
ds() -- ( ) ;  

and using Equation (8) 

1 dr 1 
(ev + R1R2v2). (18) 

r 2 dO - /~ 

On using the substitution (3) and neglecting terms of order &, we finally obtain 

1 dr _ v° [e + R1R2v o + 2eR1R2(O - 0o)]. (19) 
r 2 dO # 

This is the differential equation of the problem in hand whose solution is obtained 
analytically provided that both products R1R 2 and R1R2(O-0o)  are integrable. For 
example, if we consider the resistance ( l l )  with b--0, we have 
R I(H ) = H-1  = (h-~0) -1 ,  RE(0 ) - - ~  (the Danby drag) and then, after carrying out the 
integration 

1 1 _ v° e ( 0 - 0 o ) +  v o +  In (20) 
r r o # ~ o] h -  O¢0o J 

where r o = r(Oo) and H o = H(Oo). 

The second equation of system (5), as may easily be proved, is an identity. 

4. The Vector Invariants of  Motion 

We attempt now to derive the Laplace-like vector invariant by taking the cross 
product of Equation (1) with 2H. The factor 2 is a scalar function of time which can 
establish the time-dependence of the invariant. Now 

2 a x H  + 2 R v x H  + 2 C r × H  = 0 (21) 

and if we take into account the expression I:I = - R H  and the relation 

d 
~-(2v × H) = 2 v x H  + 2 a x H  + 2v × I:I 
dr"  " 

we obtain 

d 
~ ( 2 v  x H )  + (22R--,~)v × H + 2 C r × H  =0 .  

In order to eliminate the second term, we require 

)~ = 2R2. 

(22) 
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This equation, in view of (7), becomes 

i/2 = - 2I-:IIH 
with solution 
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with 

dEg (26) H-2(0) = ~ + g 

where the function g = g(O) has the form 

g(0) -- A cos 0 + B sin 0 

fo fl cos q dq 
o sin q dq B = 

A = -  o H2(q) ' o H2(t/) 

Integrating by parts and using the well known relations de, = eo d0, deo = - er d0 we 
have 

.~-- i vt .q_ f ~2 dO ftg 9)eodO:feodg'+f oeo dO o'eo-f g'deo+f geo dO 

=g'eo+fe, dg+fgeodO=o'eo+oe,-fode,+fgeodO---o'eo+ge,. 

2 = 1/H 2. (23) 

We notice here the difference between this expression for 2 and the corresponding 
result v -- H -  1 given by Jezewski and Mittleman (1983), where v there represents our 
function 2. This difference is due to the fact that they have used the single term vR in 
expression (22), arriving at a differential equation for the function v differing by a 
factor 2 from the relevant equation for the function 2. 

If we introduce this expression for 2 into Equation (22) and put C -- #r-  3 we obtain 

d {vxH'~ # r x H  
d t \ ~ ]  + H  2 r ~ = 0 "  (24) 

Recognizing that 

r x H  
r 3  - -  - 0e0 

where e 0 is the unit vector pointing in the normal direction ~,, we may integrate 
Equation (24) to achieve 

VH 2× H /~ f ~H dO : J (25) 

where J is a constant vector which is the analogue of the Laplace-Runge-Lenz 
vector. In order to evaluate the second term of the integral, we put 
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This result, together with the relations 

v = [Vo + ~(0 - 0o)] T 

N = - c o s  ~oer - sin q~e0 

H = rv sin(½ + q~) = Pv 

after some rearrangement gives 

J = ( ~ -  #g )e ,  + ( tan~° I~g')eo. 
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(27) 

(28) 

Obviously this vector is normal to the first vector invariant en. As a consequence the 
cross product of these vectors is also an invariant 

K = J x e n = C  an~° # g ' ) e r - ( 1 - # g ) e o  . (29) 

The vector integral (28) enables us to take the relationship between r and 0 that 
expresses the equation of orbit, instead of Equation (20). Indeed, if we consider that 0 
is measured from the axis of the vector J, then 

1 
J ' e  r =  J c o s 0 = - - / ~ g  

r 

and 

1 
- (30) 

r J cos 0 +/~g'  

As is expected, since Equation (30) is a particular case of the two-body problem with 
resistance, this closed form is identical to that derived by Leach (1987). 

5. Illustrative Examples 

Figures 2-7 illustrate examples of motion (20) for several values of v o and the same 
constant/~ = 10. Parameter h was chosen equal to 10 for fiye. orbits and equal to 25 for 
the last orbit. Factor ~ in Danby's drag expression was represented by four different 
values, and e = 10 -6. 

Comparing Figures 2, 3, 4, 6 we see that the drag effect is more pronounced as 
factor ~ goes from 0.01 to 1. Also we remark that the spiral becomes more dense as Vo 
decreases (Figures 4, 5). The same happens when h increases (Figures 6, 7). 

Appendix: Computational Sequence for Angle ~p 

From (15) and (27) we have 

p2 (dr 20  
r ~ + \dO] v 2 = c ° s 2 q ~  "j- sin2~° = 1 
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Fig. 2. Orb i t  for h =  10, ct=0.01, Vo = 10. 
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Fig. 3. Orbitforh=lO, ct=O.25, Vo =10. 
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Fig. 4. O r b i t  for  h =  10, c~=0.10,  Vo = 10. 

4 -  

2- 

o- 

-2- 

14 i 2 J i i 
- -  - 0 2 4 

Fig.  5. O r b i t  for  h =  10, c~ = 0 . 1 0 ,  v o = 5. 
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o r  

r ~ + \ d O /  

Since H=r20 the above is equivalent to 

H2 m(dry=v  
r ~ -  + r 4 \ d O /  

o r  

1 ( d r ~  2 vZr 2 
1 + - ~ \ d O /  - H 2 " 

If we now make the substitution vr = H/cos tp 

l ( d r ~  2 l 
1 + r2 \dO] - cos2~o 

and finally, after solving in ~o and using Equation (19), 

{ v2r2 } 1  
+'~o' [e+R1R2vo+ 2eR1R2(O_Oo)]2 Cos2q) = 1 //2 

(A.1) 

(A.2) 
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