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Abstract.  We clarify some misunderstandings currently found in the literature that arise from im- 
proper application of Newton's second law to variable mass problems. In the particular case of 
isotropic mass loss, for example, several authors introduce a force that actually does not exist. 
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Although masses are regarded as constant for the great majority of problems in- 
vestigated by dynamical astronomy, there are some cases of interest where masses 
change with time. Several authors have studied the two-body problem with vari- 
able masses in connection with the evolution of binary systems (see, e.g., Had- 
jidemetriou, 1963; and also Hadjidemetriou, 1967, for an excellent review). Also, 
some interesting work has been devoted to the restricted three-body problem with 
variable mass primaries (see Horedt, 1984, for references on this subject). Besides, 
important efforts have been done in connection to the effects of galactic mass loss 
in galactic dynamics (see, for example, Richstone and Potter, 1982). 

Despite the fact that variable mass dynamics has been an active research field 
for many years, we still find in the literature wrong applications of Newton's second 
law in this context. For example, Shrivastava and Ishwar (1983), Singh and Ishwar 
(1984), and Das et al. (1989), who analyzed the restricted three-body problem 
when the mass of the infinitesimal body varies, and Saslaw (1985), who discussed 
the virial theorem for a collection of bodies of variable mass, incorrectly applied 
Newton's second law (or the equivalent Lagrange's equations) to deal with the 
variable masses and obtained erroneous results. 

The formulation of Newton's second law as the time derivative of the momen- 
tun l :  

dt (1) 

where/¢ is the force acting on a particle of mass m that moves with velocity ~, 
allows the possibility of a variable mass and it was popular in textbooks decades 
ago because it was then in the vogue to consider that, according to special relativity, 
mass depended on velocity (e.g., Sears, 1958). Since then, it has been recognized 
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that the concept of  mass dependence on velocity can be misleading, and it is no 
longer favored (see Adler, 1987, for an excellent discussion on this subject). 

If  we consider the simple case of a variable mass, and we write Newton's second 
law as: 

d~ dm 
/~ = ra ~ + ~ d--t- (2) 

we can easily see that it violates the relativity principle under Galilean transfor- 
mations. When/w is zero, in particular, Equation (2) implies that the particle will 
remain at rest in a system where it is originally at rest, but it will be accelerated by 
the "force" - ~  dm/dt in a system where the particle moves with velocity 4! 

To solve this apparent paradox, let us concentrate on the case of interest for 
problems of classical dynamical astronomy, that is, where the mass of a body 
does not actually 'change' but, rather, either part of  the original mass is ejected or, 
conversely, the body gains mass through the capture of debris from its environment. 

As it is well known (see Sommerfeld, 1952), the general equation of motion for 
a body whose mass m varies according to any of the above mechanisms is 

d~ dm (3) 
re(t) ~-  = F + ~ d---t- ' 

where ~ is the velocity of its center of  mass. /~ is the sum of all the external 
forces, and ~ is the relative velocity of escaping (or incident) mass with respect to 
the center of  mass of the body. Equation (3) is actually invariant under Galilean 
transformations. 

It is plain from Equation (3) that, in the case of isotropical mass loss (and it must 
be emphasized that we mean isotropical in a system that moves with the body), the 
total contribution from ~ dm/dt terms will be zero. So, in this case, the correct 
equation will be 

re(t) (4) 

This fact had been recognized long ago by Mescerskii (1897; according to 
Hadjidemetriou, 1963). However, there are still some authors: Shrivastava and 
Ishwar (1983), Singh and Ishwar (1984), Das et al. (1989) and Saslaw (1985), that 
will use Equation (1) in the case of isotropical mass loss. 

Shrivastava and Ishwar (1983) (to be shortened herefrom SI) consider a modified 
version of the circular restricted three-body problem. They assume that the main 
bodies have constant masses ml and m2, respectively, while the small body m 
loses mass isotropically. SI use Lagrange's formulation in deriving the equations 
of motion of the small body. So, before discussing the SI paper, let us consider 
Lagrange's version of Equation (3) following the approach of Lichtenegger ( 1984). 

Let ~ be a vector whose components X, Y, Z are the Cartesian coordinates of 
the particle in an inertial reference frame; ql, qz, q3 stand for any set of  generalized 
coordinates for the particle. We assume that the force ~' in Equation (3) is derivable 
from a potential ~b(~, t) 
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P = - 9  ¢ .  (5) 

Then, it is easy to see that Lagrange's equations (equivalent to (3)) are 

d OL OL 
- - - Q ~ ,  i = 1 , 2 , 3 ,  (6) 

dt  0(7~ Oqi 

where the Lagrangian L has the usual form: 

L = I m v  2 _ ¢ (7) 

and the generalized forces Qi are 

0~ 
Q i = d n ( ~ + ~ ) ' o q i ,  i = 1 , 2 , 3 .  (8) 

The forces Qi take into account the momentum that each layer of ejected mass 
takes with it. 

Now, following SI notation, let (x, y, z) stand for a reference frame rotating 
with angular velocity w, where the principal masses m l  and m2 have constant 
coordinates ( - a ,  0, 0) and (b, 0, 0), respectively. The Lagrangian corresponding to 
the small body m will be 

i ~--- lm(;~2 -}- y2 _}_ ~2) _]_ mw(x~] - yJc)+ 

am ( ml -+- mp22 ) -k- l mw2(x2 -{- Y2) (9) 

where 

p 2 :  ( x + a )  z + y 2 + z  2,  p2__ (x--5)  2 -4-y2+z 2 (10) 

and G is the gravitation constant. 
It follows from (6), (8), and (9) that the concomitant (Lagrange) equations of 

motion are 
d OL OL --Qx~ 
dt  O~ Ox 

d OL OL 

dt  0{] Oy - Qu , 

d OL OL 

dt  O~ Oz -- Qz , 

where 

Qx = vh(.+ - w y  + ux)  , 

(11) 

Q y  = + w x  + uy), 

Qz = rh(~ + uz) ,  (12) 
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where ux, uy, Uz denote the components of ~ along the instantaneous coordinate 
axes of the rotating frame. In the case of isotropical mass loss the total contribution 
from the terms fi~ux, fi~uv, fi~uz in the generalized forces vanish. 

The problem with SI is that, while using the correct Lagrangian (9), they do not 
include in their Lagrange's equations the generalized forces Qx, Qu, Qz. They 
just equate them to zero (Equations (5) of SI). It is easy to show, replacing (9) in 
(11), that the resulting equations of motion in the isotropical case, for the small 
body, are identical to the usual equations of motion of the restricted three-body 
problem (with constant mass). Instead, the SI equations of motion have a spurious 
term equivalent to the term ~ dm/dt  in (2) (see Equations (6) of SI paper). 

Singh and Ishwar (1984) consider the effect of small perturbations in the Coriolis 
and the centrifugal forces on the location of the equilibrium points in the circular 
restricted three-body problem with variable mass. They use the same (wrong) 
Lagrange's equations of SI (Equations (1)-(4) of Singh and Ishwar, 1984). 

Das et al. (1989) study the elliptical restricted three-body problem under the 
assumption that the principal masses are constant, while the small body loses mass 
isotropically. They also do not include the forces Q~, Qy, Qz in their Lagrange's 
equations (Equations (1)-(3) of Das et al., 1989). 

Altematively, Saslaw (1985) tries to derive the virial theorem for an N-body 
system where each body loses mass isotropically. In doing so, he begins by writing 
down the equations of motion in the form (Equation (9.20) of Saslaw, 1985): 

N m(/3)(x(,~) x(/3) i = 1  2,3 
d --d Z  /3T- ) ' ' (13) 

~#~ ~,/3 = 1 , . . . , N  /3=1 

where, following Saslaw's notation, G, m (~), and Vi (~) stand respectively for the 
gravitation constant and, for each particle c~, the i cartesian coordinate and velocity 
component. From Equation (13) Saslaw derives the following form of Jacobi's 
tensorial equation (Equation (9.28) of Saslaw) 

1 d2Iij 1 ddij 
2 d r2  - - 2  d t  +2Tij + W i j ,  (14) 

where the inertia tensor Iij is given by: 

N 

c~----1 

the kinetic energy tensor by: 

g 
= 1  Tij z ~ m(~)v~ '~) vJ '~) (16) 

c~=l 

the potential energy tensor by: 
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~ -  2 ~  
~,~=1 
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i.~(~).~(~)(x~ °) - x ? ) ) ( 4  °) - x~))l ro-~, 
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(17) 

r ~  = ( x ? ) -  x~))2 + ( x ~ ) -  x~)) 2 + (x~ ~) - x~)) 2 

and the mass variation tensor by: 

N 

J~, ~ ~(~)-(")-(") (18) 

Taking the time average of (14), and assuming that rh(t) does not increase as 
fast as t for t -~ cx~, Saslaw claims that if  xi and vi remain bound, then, the virial 
theorem adopts the usual form: 

2 < T i j > + < W i j > = O .  (19) 

However, if we start from the correct equations of motion for particles that lose 
mass isotropically: 

m (~) -- a m  (~) ~ 13 (20) dt 12(~) - 2(8) 
fl=l 

it is straightforward to show, by applying twice the time derivate to Equation (15), 
that Equation (14) should be replaced by: 

1 dZliJ 1 ddij 
2 dt 2 -- g ~-~ + 2Tij + Wij + Q i j ,  (21) 

where 
N 

Qij = 21- E m(~)[2~ ~) x~ ~) + °c5 ~) x!~)l " (22) 

If we take the time average of  (21), making the same assumptions as Saslaw we 
arrive to 

2 < T i j > + < W i j > + < O i j > = 0  (23) 

which has the extra term < Q~j > that does not appear in the virial theorem with 
constant masses. 

We may conclude emphasizing that Newton's second law is valid for constant 
mass only. When the mass varies due to accretion or ablation, Equation (3) (or the 
ones of  Lichtenegger, 1984) should be used. It is worthwhile recalling that when a 
body loses mass isotropically (in a system that moves with the body) no additional 
'force' should appear; in other words, if  we consider the restricted three-body 
problem, the motion of  the infinitesimal body will not be altered if it loses mass 
isotropicaUy. 
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