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Abstract. Plant morphogenesis  exhibits numerous  bifurcations with particular angle 

values such as 41 °, 53 °, which, in lower plants, can be measured in the thallus, and, in 

higher plants, in the ribs of  the leaves. An interpretation of these angles is attempted. 

Since they characterize the functioning of a morphogenetic field, a formalism was con- 

structed suitable for the study of living systems. The mathematical  tool devised here, nam- 

ed the Arithmetical Relator, combines Geometry and Arithmetic, and assumes that a 

general system results from the interaction between an internal cyclic structure and an en- 

vironment to which this structure is adapted. The formalism described therefore takes into 

account partial self-reference and changes in the level of  organization. Within this 

framework, the particular values of  the ramification angles are extreme for slight shifts 

in the internal structure. A pattern of  the relations between the genome, the cell and the 

organ is suggested. 

Resume. La morphogen~se vegetale est le siege de nombreuses bifurcations. Celles-ci don- 

nent naissance ~t des angles particuliers (41 °, 53 ° . . . )  qui peuvent etre mesures au niveau 

du thalle des vegetaux inf~rieurs et de la nervation foliaire des v~g~taux superieurs. Une 

interpretation est recherchee: ces angles caracterisant le fonct ionnement  d 'un  champ mor- 
phogenetique, il a fallu bgttir un formalisme bien adapt6 au domaine du vivant en vue de 

cette etude. L'outi l  mathemat ique conqu, le "Relateur  Ar i thmet ique" ,  alliant la geometrie 

et l 'ari thmetique,  interprete un systeme comme le r~sultat de l ' interaction entre une struc- 

ture interne cyclique et un environnement  auquel el[e est adaptee. On peut alors rendre 

compte d 'une  auto-reference partielle et d ' un  changement de niveau d 'organisat ion.  Les 

valeurs particulieres des angles de ramification sont extremales pour une petite variation 

de la structure interne du syst6me. Une proposition concernant les relations entre genome, 

cellule et organe est donnee en conclusion. 
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1. Introduction 

Morphogenesis is one of the most awkward problems raised by Theore- 
tical Biology, because it involves numerous difficulties, of  which one of  
the greatest is the resonance between different levels of  organization. Its 

solution is essential for the understanding of living systems. 

This article, in which the construction of a mathematical  tool referred 

to as the Arithmetical Relator provides a biological interpretation of  
certain privileged ramification angles observed in plants, is intended as 

an illustration of this proposit ion originally formulated by Delattre 

(1980) as follows: " in the natural sciences, the real problem is to find 
the adequation between the theoretical language used, the observation 
to be accounted for, and the questions to be answered" ("dans  les 

sciences de la nature, le veritable probl6me est de trouver l 'adequation 
entre le langage theorique utilise, les observations dont on veut rendre 
compte et les questions auxquelles on souhaite repondre") .  

In practice, Biologists use one of the two following approaches: 

1. the study of a particular subject which well illustrates the problem 
stated; this method proceeds from the particular to the general; or: 

2. the initial construction of a formal system well adapted to the field 
under study and its subsequent application to concrete cases; this 

method proceeds from the general to the particular. 

These seem to be two opposite approaches, but they are in fact com- 

plementary; consequently, we attempted to use both, by choosing the 
observations for which we wish to account (i.e. the ramification angles), 

the question we wish to answer (i.e. the significance of these angles in 
the morphogenetic process), and a suitable theoretical language. 

In order to assess the advantages and drawbacks of this kind of ap- 
proach, it seems of  interest to compare the formalism of the Arith- 
metical Relator to the already well-known structural approaches such as 
the Catastrophe Theory or the Theory of Self-Reproducing Automata.  

The Catastrophe Theory sets out to justify the existence of certain 
structures as resulting from a conflict between local dynamics interact- 
ing within a substrate. The main idea (Thorn, 1972) is the fact that the 
understanding of  a morphogenetic process does not require any knowl- 
edge of the spatial properties of  the substrate, or of  the acting forces in- 
volved in this process. In that case, the emergence of  a structure would 
be due to "genericness" i.e. Nature always adopts the most straightfor- 
ward local morphology compatible with local initial data. In this way, 
Thom uses the opposite approach to reductionism since, to describe a 
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given morphology,  he first constructs a pattern of  differential systems 

on a control space, and then attempts to make the morphology observed 

coincide with a set of  catastrophes provided by the pattern. The main 
criticism voiced against this kind of approach is that it allows quan- 
titative prediction in Physics but not in Biology. Thorn countered this 

criticism by stating that "what  is important  in a pattern is not its 
relevancy to experience but, on the contrary, its ontological signifi- 
cance, what it tells about how phenomena evolve and how it describes 

their underlying mechanisms" ("ce qui est important  darts un modble, 
ce n 'est  pas son accord avec l'exp6rience, mais au contraire, sa port6e 
ontologique, ce qu'il  aff irme sur la mani6re dont les ph6nombnes se pas- 

sent, ce qu'il  d6crit de leurs m6canismes sous-jacents").  In this respect, 
some of the basic principles of  the Arithmetical Relator seem to be close 

to the Catastrophe Theory; as will be seen further on, certain ramifica- 
tion angles in plants in fact emerge from the formalism of the Arith- 
metical Relator, as phenotypic markers of  a certain compatibility be- 

tween internal structures and rhythms. As regards the problem in- 

vestigated in this article (the numerical values of  ramification angles in 
plants) we cannot make direct use of the Catastrophe Theory since we 

attempt to account for quantitative data. The compatibility described 
above between internal spaces (which we assume to be connected to the 
ontological significance of the Arithmetical Relator) has a role in the 

morphogenetic process, mainly due to its own logic. At this point, a 

connection emerges between the Arithmetical Relator and the Self- 

Reproducing Automata  Theory. Von Neumann (1966) constructed this 
theory in answer to the following question: "what  kind of logical 
organization is sufficient for an automaton to be able to reproduce 
itself?".  On the basis of  certain results in Physiology, several abstract 

machines have been built (such as kinematic and cellular automata)  
showing that copying is necessary for self-reproduction or, more 
generally, for reproduction without loss of  complexity. However,  while 
only pointing out the logical aspects of  the process, von Neumann 
deliberately ignored the significance of  the basic elements he used (these 
elements represented neither molecules nor cells) and was consequently 

unable to take into account the laws of Physics in general and of field 
effects in particular. 

Is it essential for variables and parameters to have a precise signifi- 
cance for an approach to be valid? This question requires careful con- 
sideration. Whenever a mechanical pattern is chosen, an attempt is im- 
mediately made to provide it with adequation of the quantities used with 
known experimental entities such as molecules or cells. However,  
Biology is not only concerned with the description of structures but also 
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- and particularly - of  the dynamics which work within them, so that 
the coincidence between the functional and physical structures (which 
constitute the subject of  the description) is not obvious. That  is why a 
logical process can be described independently from either the physical 

structure (as in von Neumann 's  approach) or the acting forces (as in 
Thom' s  approach).  

In the formalism of the Arithmetical Relator, the concept of  stability 
induces a notion of compatibility between underlying structures and its 

functioning is therefore relevant to the description of a logical process. 

However,  the basis of  this formalism includes some of the main prin- 
ciples encountered in the functioning of living systems. Further, the 

Arithmetical Relator involves the intellectual processes of  Physics, by 

making use of mathematical  entities relevant to Diophantine Algebra 

and Geometry.  Thus, it allows calculus, and the numerical results can 
be experimentally confirmed. Nevertheless, the Arithmetical Relator 

cannot avoid the difficulties typical of  structural approaches. The jus- 
tification of the pattern is not easy (Ee Guyader, 1979) and, here again, 
the interpretation of the variables and parameters in terms of Bio- 
chemistry, for example, does not emerge at once. The biological mean- 

ing of the compatibility process becomes clear only through a strong 

analogy. Although much epistemological work remains to be done in 
this respect, it seems to us that the ontological significance of the for- 

malism of  the Arithmetical Relator is already sufficient to incite 
Biologists to study some of the angular values which up till now have 

been neglected. 
The correct statement of  the problem naturally reveals the bases of  

a mathematical  tool well-suited to it. What else but the cell is the raw 
material of  Biology? "Cells are microscopic, to be sure, but they are not 
infinitesimal" (Erickson, 1976). Nevertheless, this crucial feature great- 
ly restricts the research workers who would like to use the equations of  

fluid dynamics; Kuhn-Silk and Erickson (1979) had this problem in 

mind when they wrote: " i t  is more difficult to view a plant tissue as a 
continuum, since the fundamental  units, the cells, of  which it is com- 

posed, are larger in comparison to the usual units of  measurement . . .  
Because of this difference, we might anticipate that some of  the power 
of  fluid dynamical methods will be lost in application to plant tissues". 
Here again, the same difficulty arises both in space and time: in plants, 
time is measured by means of  the plastochronic index, which is essen- 
tially a discrete quantity (Erickson, 1976; Lfick et al., 1980). Given that 
discretization is evident from the starting point of  the process, it seems 
natural to assume that variables and parameters are integers and there- 
fore, relevant to Arithmetic. 
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The main measurements we want to take into account are angular 
values; to give them a biological interpretation in leaf morphogenesis, 

we need to construct a mathematical tool combining Geometry and 
Arithmetic. It should be pointed out that the existing topological pat- 
terns - in which Geometry is connected to Analysis - are based upon 
a space-time continuum from which the discrete emerges through singu- 
larities. It is not the aim of this article to privilege either of these ap- 
proaches. However, although the combination of Geometry and Analy- 
sis has already been well studied (it constitutes the basis of the Cata- 
strophe Theory), the combination of Geometry and Arithmetic is not so 
well understood at the present time (Moulin et al., 1971; Calvino et al., 
1972; Le Guyader et al., 1979). 

2. Logic  and dynamics  in bio logy 

Biochemistry and Physiology clearly point out that a cell is a structure 
whose stability is maintained by inner dynamics known as the meta- 
bolism. A mathematical tool fit for the description of living systems 
must therefore include this salient feature, in a simple but fundamental 
manner. 

2.1 Quadratic forms  and invariancy 

As regards external coherence, a formalism suitable for applications in 
Biology must take into account the knowledge acquired at the present 
time by Physics, which proposes a standard description of the real, i.e. 
the choice of measurable parameters, and the subsequent search for one 
or several quantities depending upon these parameters and keeping con- 
stant during the "na tu ra l "  evolution of the physical phenomenon con- 
cerned. This is a typically Lagrangian approach. Whenever possible, 
Physicists like to give this constant quantity a quadratic form. Thus, 
when considered in the space of the parameters chosen, this quadratic 
form represents either a spinor norm (i.e. a number of elements, for in- 
stance particles, remains constant) or a vector norm (a length is 
constant). 

In addition, a quadratic form, for instance X 2 + X Y  + yZ = (_)o  

in which the right-hand member is given by the coordinates (X0, Yo) of  
a particular point, may have two meanings: 

- when considered as a simple non-metric relation between the para- 
meters X and Y, it represents, in Cartesian axes, an ellipse whose ec- 
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Figure 1. The relation X 2 + X Y  + y2 = (_ )0  regarded as a non-metric relation between 
the parameters X and Y, is the equation of an ellipse in Cartesian axes. 

cen t r ic i ty  is ~ / 2 / ~  a n d  whose  m a j o r  axis s t ands  at 135 ° with the x-  

axis (F igure  1); 

- cons ide red  as a met r i c  r e l a t ion ,  it represen ts  the n o r m  o f  a vector ,  

(X,  Y) be ing  its c o m p o n e n t s  in a vec tor  space which  has ( e l ,  e2) as 

basic  vectors .  In  this space,  a scalar  p r o d u c t  - or  i nne r  p r o d u c t  - 

(el . e2) is de f ined ,  in a real space,  by:  

(el • e 2 )  = ][ e l  IIII e2  II cos (1) 

where  Hel II a n d  I[e2dl m e a s u r e  (with the same  uni t )  the  lengths  o f  the  

bas ic  vectors ,  a n d  4, the ang le  they fo rm.  

W i t h  the fo l lowing  n o t a t i o n :  

gi j  = ( e i .  e j )  = ( e j .  e i )  = gji  (2) 

the  example  chosen  shows tha t :  

(et  • e 2 )  = ( e 2  . e l )  = g12 = g21 

(el . e l ) =  HelH 2 = gl1 = 1 

( e 2 .  e 2 ) =  lie2[[ 2 = g22 = 1 

= 1/2  

(3) 

The  express ion  o f  the n o r m  o f  a vec tor  X = Xe l  + Ye2 c a n  be wr i t t en  

as fo l lows:  
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Figure 2. The re la t ion  X 2 + X Y  + y2 = ( _ )0 regarded  as a metr ic  re la t ion,  is the equa-  

t ion of  a circle. 

( X .  X) = ]lXl[ 2 = (Xe l  + Y e 2 ) .  (Xe l  + Ye2) 
= gll  X 2 + (gl2 + g 2 1 ) X Y  + g22 y 2  

Then: 

IIXII 2 = X z + X Y  + y 2  = ( - ) 0  (4) 

When the right-hand member  of  the quadratic form is constant, this 

quadratic form represents, inside the basis (el, e2) a circle (Figure 2) 
with a radius: 

tlXll = ~/IIXII ~ 

In leaf morphogenesis,  we at tempted to follow the geometry of the 
organ, and it clearly appeared that in no case was the same number of  
elements, e.g. cells, maintained; consequently, we followed Physicist 's 
example and adopted the second standpoint,  which naturally immerses 
the pattern in a vector space structure (Vallet et al., 1978a). 

2.2 Inner  dynamics:  Ref lec t ions ,  s y m m e t r y  and ar i thmet ic  

This vector space, which is already a metric space, has to be provided 
with inner dynamics, which means that metabolism must animate this 
structure. Physics requires that both the quadratic form and its right- 
hand member  keep constant. The simplest mathematical  way of pre- 
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Figure 3. Second root process sequence in relation to X(Mo ~ M~) and Y (M~ ~ Mz). 

serving this feature seems to be the second root calculus upon a qua- 

dratic equation. 
Thus, quadratic form 

P X  2 + R X Y  + Q y 2  = ( - ) 0  (5) 

may be regarded as a quadratic equation for either the X variable (Y 

keeping constant) or the Y variable (X keeping constant) (Verney et al., 

1973; Apter et al., 1974a). The initial point M o ( X o ,  Yo)  changes suc- 

cessively into the points M I ( X 1 ,  Yo)  and Mz(X1, Y1) with: 

I 
X 1  = - X o  R Yo 

P (6) 

Yl  = - Yo R X I  
Q 

When the quadratic form is regarded as a metric relation, the second 

root calculus acquires a precise geometrical meaning: it is a symmetry 
with respect to the line which is orthogonal to the variable axis concern- 
ed (Figure 3). 

More generally, when the space is more than two-dimensional, we 

consider, in a reflection with respect to the plane - or hyperplane - 

(FI), the vector e, which is perpendicular to the plane - or hyperplane 
(Figure 4). 

The vector M~, issued from vector Mo through a reflection denoted 
9C e, is symmetrical to Mo with respect to the plane (H), so that: 
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Figure 4. Reflection in relation to the vector e, expressed as: Mt = 9CeMo. 
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M1 = ~CeMo = M o  - 2 ( e .  M o )  e (7)  
lel 2 

This is a reflection as defined by Coxeter (1934) and, in the example 
above, we denote ~x (or more simply x) the reflection through which 
the point M0 becomes the point MI:  

f M1 = ~ M o  

Mz = ~ y M 1  = ~ y ~ x M o  

(8) 

The initial point M0 becomes the point Mz through a rotation with the 
angle: 

2 I ,  = 2 (e l - -~e2)  

Thus, in a simple mathematical way, an inner dynamics keeps a struc- 
ture constant. However, Biochemists know that every step of a process 
is not always possible. It is therefore important that formalism should 
make the possibility of locking the dynamical process emerge naturally: 
in writing the quadratic form, we can only use relative integers for both 
coefficients and components. Thus, the quadratic form is connected 
with such a basis like (el, e2) as its coefficients (i.e. g t l ,  2g12 and gzz) 

are integers: only the points with integer coordinates are taken into ac- 
count. These points belong to the lattice defined upon the basic vectors 
(el, e2). Thus, the second root calculus (6) is only possible when the 
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result is an integer. This is equivalent to saying that the reflection (7) is 
allowed when it t ransforms a point which belongs to the lattice into an- 

other point which belongs to the same lattice. 
It is important  to call the reader 's  attention to the fact that due to the 

use of  reflections, the working of  inner dynamics - and therefore, the 

set of  points generated - is strongly related to the set of  axes; thus " a  
vector space" is the equivalent of  " a  set of  axes" and, therefore, chang- 

ing the set of  axes amounts to changing the connected vector space. 

2.3 Latt ices  and underlying cycles: The Basic Cyclic Rela tor  

There exist particular lattices which remain unchanged through a reflec- 
tion with respect to either basic vectors. In a two-dimensional space, 

these lattices are defined by the following quadratic forms: 

I 
X z + y2 generalized into g X  2 + k Y  2 

X 2 +_ X Y  + y2 
elliptic forms X 2 + 2 X Y  + 2Y 2 

X z + 3 X Y  + 3Y 2 

(9) 

hyperbolic form X z _ y2 generalized into g X  2 - k Y  2 (10) 

The elliptic forms may be summarized by the following expression: 

g X  2 + egk X Y  + k Y  ~ (11) 

with: 

f e = 0  or 

E = _+ 1 and g = 1, k = 1 ; 2 o r 3  

These quadratic forms present the noticeable property according to which 
the result of  the second root calculus is always an integer whatever the ini- 
tial point with integer coordinates (Xo, Y0). The initial point is found 
again until a finite number of  products denoted (xy) of the respective re- 
flections 92x and 92y is reached (the arrow indicate-~the direction of  read- 
ing). The particular relators so defined are named Basic Cyclic Relators 
(BCR). In two-dimensional space, there are four elliptic BCR (9) and 
each of  them generates a group typified by the number G of reflections 
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BCR I X2+y2_-(-) BCR V X2+Xy+y2-(-) ° 

(xy)2--ll G_-4 (xy)3 = II G=6 

c> 

0 

BCR Z xg+2xY+2y2=(-) 
o 

(xy) 4 = ]I G = $ 

BCR M X2+3XY+3Y2-(-) 
o 

(xy) 6 =II G=12 

Figure 5. Cycles for the four two-dimensional Basic Cyclic Relators (BCR). 

the cycle contains, depending upon the equivalence between the product 
(xy) and the rotation with an angle twice the angle of the lattice concern- 
ed. Figure 5 shows how these four BCR work and why the symbols I, 
V, Z and M are used to denote them (Apter et al., 1974b; Vallet et al., 
1976; Ferr6, 1983). 

There are 10 families of BCR in three-dimensional space, and 36 
families in four-dimensional space (Vallet et al., 1978a). Thus, the 
definition of an inner dynamics (i.e. reflections) which keeps a structure 
(i.e. a lattice) invariable, naturally leads to the notion of a cyclic pro- 
cess, a basic notion in both Physics (thermodynamics, oscillators, etc.) 
and Biology (cyclic metabolisms, inner clocks, etc.) 

Generally, a lattice (a two-dimensional lattice, for instance) is not a 
BCR. A sequence of  reflections (xyxy...) necessarily leads to a point 
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outside the lattice, when a step is reached which depends upon both the 
lattice and the initial point,  and the process is then locked. 

Nevertheless, it may  start again when a third dimension ev, named 

" e n v i r o n m e n t " ,  is added to the two-dimensional  lattice (el °, e°). When 

the "call  to env i ronmen t "  actually unlocks the process, we say that the 

Relator  is "stabil ized upon  its B C R " ,  or that  it is " a d a p t e d "  to its 

environment .  

3. The adaptation system-environment: The Arithmetical Relator 

As long as the process o f  reflection o f  the internal variables (X, Y) con- 

tinues, the relator constitutes a "closed sys tem".  When its internal pro- 

cess locks, the system must  " o p e n " ;  to do so, it must  call on the en- 

vi ronment  to unlock this process. The possibility o f  opening seems to 

be necessary for  a system to take account  o f  changes in the level o f  

organizat ion,  and even o f  resonance linking different levels o f  organiza- 

tion. Therefore,  the unlocking process must  be controlled by the inter- 

nal process itself, and both processes must  be based on the same mathe- 
matical operat ion.  

3.1 S tab i l i za t ion  a n d  d e f i n i t i o n  o f  the  R e l a t o r  

In order  to unders tand both the geometrical  and algebraic working of  

the Ari thmetical  Relator,  it is necessary to construct  it step by step, as 

follows: an environment  is superimposed on a BCR; we shall take here 

the simple but not restrictive example in which the BCR is two-dimen-  

sional, in relation to the basic vectors (e °, e °) - and the environment  
is one-dimensional  in relation to the basic vector e~. The resulting three- 

dimensional  space (Figure 6) is termed the " p r i m a r y  space"  (e °, e °, ev) 

and has the following metric coefficients: 

Tii = (ei . ej)  = (ej . e l )  = yji  w h e r e  i and j = 1, 2 0 r  v 

This envi ronment  ev t ransforms the BCR by keeping unchanged one o f  
0 its basic vectors (for instance e °) and changing the other one e2 into the 

t ransformed vector e2 th rough  a reflection with respect to the vector ev, 
so that:  

o e ° - 2 y2~ e2 = ~v e2 = y--~ ev (12) 
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e V 

• 0 0 Figure 6. Construction of the Relator: the underlying BCR (e~, ez) and the environment ev. 

v % 

e2 
Figure 7. Construction of the Relator: the environment (e~) mirror effect on the underly- 
ing BCR (e°t, e °) preserves e ° and changes ez ° into ez = ~ .e  °, This relator works in the 
set of axes (e °, e2, ev) with the variables (X, Y, V). 

This  t r a n s f o r m a t i o n ,  cal led the " m i r r o r  e f f ec t "  descr ibes  the ac t ion  o f  

the env i ronmen t  upon  a pa r t i t i on  o f  the  in ternal  var iables  (Figure  7) 
0 

(Ferr6,  1981, 1983). Thus,  the  p r ima ry  space (e °, e2, ev) becomes  the 

" w o r k i n g  space"  (e °, e2, ev), whose metr ic  coeff ic ients  are  deduced  

f rom (12) 
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Figure 8. A three-variable homogeneous quadratic form like F(X,  Y, V) = m = const 
is represented as a sphere with radius ~m in a set of oblique axes. 

gll  -~ 711  g 1 2  = 7 1 2  - -  

g 2 2  "}/22 g l v  = ")/lv 

gvv 7 w, k_ g2v = -- "y2v 

2 "~lv ")/2v 

"~ w' 
(13) 

A n y  vector  X with the componen t s  (X, Y, V) in this space,  is such that :  

X = X e  ° + Ye2 + Ve~ 

and  its scalar  square  can be wri t ten  as fol lows:  

(X . X) = IlXl] 2 = ["yll X 2 + 2"},12 X Y  + ")'22 ]i2] 

71~ X + - 2 7v~ + "yw "Yvv 

(14) 

W h e n  IIXll 2 remains  cons tan t ,  equa t ion  (14) represents ,  in the work ing  

space (e °, e2, ev), the equa t ion  o f  a sphere with a rad ius  o f  IlXll (Figure  

8). In the first term of  the quadra t i c  fo rm (14), the metr ic  coeff ic ients  

are  connec ted  to a subspace  which is now a t ru ly  under ly ing  subspace;  

when it is a BCR (as in the example  chosen here),  and  if  P denotes  the 

fac tor  which is c o m m o n  to the coeff ic ients  711, 2")'12 and 722, this term 

may  be wri t ten,  in acco rdance  with the express ion (11): 

P ( g X  2 + e g k X Y  + k Y  2) (15) 

The second term o f  the quad ra t i c  fo rm (14) renders  the B C R / e n v i r o n -  
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ment coupling. We shall now assume that the environment possesses 

maximum stability, i.e. it is represented by a BCR to which no mirror 

effect is applied. In the example chosen here, the environment is one- 
dimensional and the second root process for the variable V - i.e. the 

reflection ~2~ - must never lock according to the integer criterion. 
Through this reflection, the variable V becomes V*, so that: 

V *  = - V - 2 "}/Iv 'y2v y %--7 X + 2 y,,v (16) 

When the coefficients of the quadratic form are integers and prime 
numbers,  division by integer 3'v~, = D in the equation (16) occurs 
whatever the values of  X and Y, if the following conditions are met: 

{ 7],' = D A '  

72 . . . .  D B '  

where A ' and B '  are integers. 

The quadratic form becomes: 

[ ] X l l  2 = P ( g Y  2 + e g k X Y +  kY 2) + D ( A  ' X +  V)(B '  Y +  V) (17) 

On completion of the reflections ~x and ~Cy, the variables X and Y take 
the following values: 

IX 
* = - X -  D A '  (B 'Y + V) 

gP 

y ,  = _ y _  D B '  ( A ' X  + V) 

k P  

08)  

To rid the process of  any divisibility condition due to the coefficients 

g and k, it is assumed that: 

f A '  = gA 
B '  =- k B  where A and B are integers 

Finally, the expression of the quadratic form (14) becomes: 

]lXl] 2 = P ( g X  2 + e g k X Y  + kY 2) + D ( g A X  + V) ( k B Y  + V) 

= ( - ) 0  (19) 

Note that the "env i ronment"  distorts the underlying structure of  the 
BCR, and its angle qs0 becomes the angle qs, so that, according to (19): 
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DAB N/gk 
cos ¢I, = cos ~0 + (20) 

2P 

The environment may be regarded as a modelization of the operation 
of  observing an inner structure (i.e. the BCR (e °, 0 e2)), since a distorted 

image (i.e. the internal space (e °, e2)) results from such observation. 
From this point of  view, the mirror effect process acts as a "s t imulus"  
(in the sense indicated by von Neumann) through which the environ- 

ment "ques t ions"  the underlying BCR which might represent some 
functional entity (cell metabolism, for example) and a distorted image 
(the response stimulus) emerges from this interrogation. This distorted 

observation is today well established in Physics. According to yon 
Neumann,  it is becoming evident in Biology through the problem of  

self-reproduction, which requires a copy of the system to be repro- 

duced, precisely because of the distorted image obtained through a form 

of  stimulation like direct questioning of this system. 
When the underlying BCR has more than two dimensions, the mirror 

effect may act on a chosen partition of  BCR variables so as to obtain 
the desired structure in quadratic form. The use of  a multidimensional 
environment subspace allows the dovetailing of several partitions, i.e. 
several structures. By this means, the mirror effect induces strong non- 

linearity in the structure of  the Arithmetical Relator. 

3.2 Structure of  the working space and elementary cells 

0 
With the mirror effect, the base vector e2 can obviously be kept un- 

changed and e ° be t ransformed into el ,  so that: 

0 Tlv  
e l  = 9 C ~ e ~  = e l  - 2 - - e v  ( 2 1 )  

~vv 

This leads to the same quadratic form, but reveals a second underlying 
BCR with basic vectors (el, e2) derived from the first BCR (e °, e °) 

through a reflection 9Cv (Figure 9). The equations of  these two 
subspaces inside the working space (e °, e2, ev) are precisely the two 

coupling terms present in the quadratic form (19), that is: 

gAX  + V = 0 and kBY  + V = 0 (22) 

These terms also appear in the expressions of  the variables X and Y 
after the respective reflections 9Cy and 9Cx, as follows: 
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End BCR plane 
e v 9 AX+V = 0 

1st BCR plane 

kBY+ V - 0 

Figure 9. Structure of the working space: the two BCR planes (e °, e °) and (e~, e2) and 
the set of principal axes (Lx, L2, e,.). 

f y ,  = _ y _ D B ( g A X  + V) 
P 

X* = - X - DA ( k B Y  + V) 
P 

(23) 

When the coefficients D,  P,  A and B are prime numbers, these two 
reflections are respectively possible under the following two conditions: 

f g A X  + V -= 0 (modulo P)  (24) 

k B Y  + V =-- 0 (modulo P)  (25) 

This means that the remainder after division by P is zero. 
These conditions give the working space (e °, e2, ev) a foliated struc- 

ture by means of two sets of  parallel planes whose lattices are BCR. 
It follows that the combination of the BCR cycle and mirror effect 

allows geometrical description of the functioning of the Arithmetical 
Relator. 

The mirror effect has the following very important  property,  which 
is valid whatever the configuration: 
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the product of three reflections respectively oriented by the vectors ev, 
ei and ev, is equivalent to one reflection oriented by the vector derived 
from the vector ei through a reflection oriented by the vector e,.. 

This property is expressed by the following relation: 

~Cev ~Cei {~Ce~, ~ 9C(~e el) 

For instance: 

(26) 

~ v  ~e2 ~]~v ~-- ~ ' v  e2 ~ ~e  ° 

or, more concisely: 

0 
VyV=-- y (27) 

When the BCR is of  the (I) type, the cycle (Figure 5) is equivalent to 
the sequence: 

0 0 0 0 
x y x y --= ~ (28) 

0 
Therefore, to obtain a cyclic sequence for the relator, the reflection y is 
replaced by (VyV).  Cycle (28) for BCR becomes, for the Relator: 

0 0 
x Vy V x Vy V = 11 (29) 

Since a reflection is involutive, a sequence equivalent to reflection V is 
inferred from (29), so that: 

0 0 
x VyV  x vy  =- v (30) 

In the environment subspace (here one-dimensional), the cycle is obtain- 
ed with the sequence: 

VV =- I1 

from which, in accordance to (30) the cycle for the relator is inferred 
(i.e. the cycle of  reflections in the working space (e °, e2, ev) with X, Y 
and V as variables): 

x g y V x  V y W x  W y g x  gy ~ ~ (31) 

0 
The upper index o indicates that the corresponding reflection x operates 
in the BCR; since the mirror effect preserves the x-axis e °, this index can 
be cancelled. Note that a cycle is obtained in the environment subspace 
and that it implies two cycles in the internal space (e °, e2) or BCR space 
(e o, o e2 ). 
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The first half-sequence cannot start unless 

k B Y  + V ~ 0 (modulo P)  

and the second half-sequence cannot start unless 

g A X  + V=- 0 ( m o d u l o P )  

According to Figure 5, the sequences equivalent to reflection V can be 
written, for each type of two-dimensional BCR: 

(I) V==- x VyV x Vy 

( v )  v -  x VyV x VyV x vy 

( z )  V -  x VyV x VyV x VyV x Vy 

(M) V=-- x V y V x  VyV x VyV x VyV x VyV x Vy 

(32) 

The functioning of  the Relator (or the natural system of which this 
Relator is a model) in the working space (et °, e2, ev) depends upon the 
regulated interaction between the reflections in the environment 
subspace and those in the BCR subspace: the latter emerges as a true 
underlying structure. It is then possible, in accordance with sequences 
(32) equivalent to reflection V, to built up the "elementary cells" from 
which are inferred the "natural  sequences" constructed by the Relator. 

3.3 Structure o f  working space and partial self-reference 

The two BCR planes, defined by (22), intersect along a line supporting 
a vector denoted L~, which remains unchanged throughout the reflec- 
tion 9Cv and is therefore perpendicular to the vector ev (Figure 9). On the 
basis of  a vector L2 perpendicular to vectors Ls and ev, we can build up 
a set of axes (L~, L2, ev) orthogonal to one another whatever the BCR. 
This set constitutes the "principal axes" whose corresponding unit vec- 
tors are in fact the eigenvectors of the subspace of the working space 
(e °, e2, ev) which is orthogonal to ev, in relation to a metric connected 
in this subspace to the BCR (Ferr6, 1983). To illustrate the fundamental 
part played by this frame in the construction of the working space, one 
has to consider, in Figure 10, the importance of  the vector e, which is 
orthogonal to the first BCR plane. This vector is the axis of the rotation 
equivalent to the product of  the reflections (~eo ~eO) and therefore 
determines the BCR cycle from which the elementary cell is inferred. As 
the Relator is designed for applications to biological systems, only 
transformations which take into account the stability of the structure 
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Figure 10. Definition of vector e, orthogonal to the underlying BCR. 

can be considered. The configuration of the working space immediately 
reveals one of these transformations; it consists of a rotation of the 
BCR plane (e °, e °) in relation to the axis e. If G0 denotes the angle of 
the BCR lattice, let 

f D c  = 4s in  2 ~0 = 4 ( 1 .  ~2 ~k_) (33) 

Po g A 2 + e g k A B  + ],(B 2 

The cosine of the angle 0 between the vectors e and ev is such that 

COS 2 0 = I D P o  (34) 
D c P  

Note that when 

P = LPo (35) 

(where L is an integer coefficient which is necessary for homogeneity) 
the orientation of the BCR plane in relation to the environment axis ev 
becomes independent of  the coupling coefficients A and B. 

The quadratic form (19) is then written 

L ( g A  2 + e g k A B  + k B Z ) ( g X  2 + e g k X Y  + k Y  2) 

+ D ( g A X  + V ) ( k B Y  + V) = ( - ) o  
(36) 
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This expression is perfectly symmetrical in relation to both sets (A, 

B) and (X, Y). Such a Relator may work with either (X, Y) variables 

(A and B are kept constant) or (A, B) variables (X and Y are kept cons- 

tant); in that case the Relator is said to be "b i -quadra t ic" .  this feature 

is of  great importance for applications in Physics and Biology, since it 
shows that the Relator 's  formalism can take account of multiplicative 

domains; moreover,  when (X, Y) are the main variables, a biquadratic 
Relator can transform itself into its own internal metric by means of a 
momentary  bifurcation to the variables (A, B). 

The configuration in Figure 9 is independent of  both the variables (X, 
Y) and the coefficients (A, B). The bifurcation from one type of func- 

tioning to the other conforms this geometry. The components  of  vectors 
0 LI and L2 in the primary set of  axes (e °, e2, e~,) are remarkably simple 

as follows: 

o 
L1 = kB  e ° + gA e 2  (37) 

) 2 - A  + , k  + + ~g~ .2 + ~P0ev 138) 

and their respective norms 

I 
HL1 II 2 = g k P o P  and (39) 

IILzll z P o P  (1 - z gk T)('  ,40, e D, .P  

are kept constant in relation to P0 and P. 

Thus, the frame (LI,  Lz, e~) acts as an "objec t ive"  frame in which 
all the relators based on the same type of BCR can be positioned. Each 
of  them has a different set of  coupling coefficients (A, B) such that: 

gA 2 + e g k A B  + kB  2 = Po 

remains constant. 
With respect to these vectors, 

- the parameter  P0 represents a quantity typical of  the underlying BCR 
- except for the parameter  D (D is the norm of the environment vec- 

tor), the coefficients A and B describe the coupling between the 
underlying BCR and the environment.  

Consequently, the metric connected to the underlying cycle provides 
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partial information concerning its own coupling with the environment. 
When both the objective frame and parameter  P are given, the only 
possibilities open to the underlying BCR for adaptation to a given en- 
vironment are provided by the solutions to the following Diophantine 

equation: 

gA 2 + egk A B  + kB 2 = P 

This equation reveals a partial self-reference. 
There is in fact only one free parameter:  the norm D of the environ- 

ment vector, whose value must be kept below the critical value Dc de- 

fined in (33), if an elliptic metric is desired. 

3.4 Elementary  cells and natural sequences: Internal  diversification 

The question of natural sequences has dealt with elsewhere from a 
general point of  view (Luminet, 1980). In this article, it is sufficient to 
illustrate the notion of  natural sequence with a simple example, for in- 
stance the case of  a Relator stabilized on a BCR(I): 

p ( x  2 + y2)  + D ( A X  + V) ( B Y  + V) = ( - ) o  (41) 

This Relator starts to work under the following initial conditions: 

Xo = x o P  K Yo = y o P  K Vo = voP K (42) 

where x0, y0, v0 and K are integers. 

- when K = 0, the reflection ~v  is the only possible operation and the 
cycle is simply written 

V V =  11 

- when K = 1, both the reflections ~2x and ~2y are allowed by the 
divisibility conditions emerging in (23); therefore the successive sec- 
ond root processes can generate the sequence (31) which is equivalent 
to a cycle in the working space. 

- when K = 2, the sequence (30) equivalent to reflection V, replaces 
each reflection V in the cycle (31). 

Thus, the parameter  K emerges as a complexity factor. When it in- 
creases, it generates dovetailing by replacing reflection V by its equi- 
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valent sequence. Nevertheless, this process seems too regular to be able 
to account for complex exchanges between a system and its environ- 

ment. It disregards the natural tendency of  any living system to diversify 
its inner states to a maximum,  i.e. in the case of  the relator, to execute 

the reflections 9Cx and ~Cv in relation to the internal variables as often 
as possible before executing the unlocking reflection ~Cv. This trend can 

be allowed for if the following rules are observed when working the 
Relator: 

- reflection ~Cx (or ~Cy) must be executed whenever possible, whatever 
the previous reflection; therefore reflection ~Cv will only occur when 

necessary, in accordance with the alternation of the internal reflec- 
tions ~C, and ~y ;  

- certain divisibilities, different f rom those allowed by the factor K in- 
tervening in the initial conditions, may be created by congruences. 

Such congruences are of  two types: 

1. congruences between initial conditions, named (¢x) congruences; 
for instance in (42), if we set 

K = 0 but Byo + Vo ~ 0 (modulo P)  

the first reflection ~Cx is allowed, and the first reflection ~Cv in 

cycle V V  ~ a is replaced by its equivalent sequence (30). The 
cycle is then written: 

x V y V x  V y V = -  11 

The second reflection in cycle V V  =-- 11 is allowed by the sym- 

metrical congruence 

A x o  + Vo =-- O ( m o d u l o  P )  

2. congruences between the coefficients of  the quadratic form (for 
example as in biquadratic assumption), named (y) congruences; 
such a congruence implies that, in the working space of the 
Relator there is an angle ~, commensurable with 2~r, so that: 

¢, = 2re p - 
q 

with p and q as integers 

When the rotation of angle ~ is equivalent to a sequence of reflec- 
tions related to the axes of  the working space, it can be naturally 
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performed by the Relator and a cycle is obtained by repeating this 

sequence q times. 
When one or several congruences are taken into account, the 

Relator performs more complex sequences (i.e. more complex ex- 
changes with its environment); nevertheless, the Relator remains 

able to execute the simple sequences derived from the mirror ef- 

fect and the elementary cells. 

In connection with this notion of natural sequences three important  

features must be stressed: 

- the construction presented in 3.1 shows that the definition of an 
arithmetical relator requires three elements: 

1. a quadratic form whose coefficients and variables are relative in- 

tegers; 
2. a process of  reflections modelizing the inner dynamics, and 
3. one point, given by its integer coordinates which determine the in- 

itial conditions for the sequence of reflections, as well as the value 
of  the right-hand member  of  the expression (19). 

However,  it is important  to notice that, since the natural sequences per- 
formed are related to congruences between the initial conditions or be- 

tween the metric coefficients, a relator remains undefined as long as the 
numerical values of  these parameters are not given. This feature makes 

the formalism of the arithmetical relator comparable to the theory of 

Undefined Finite Automata .  

when K increases, the number of  reflections in a natural sequence 
also increases quickly and this sequence may become too long to 
allow computat ion;  however, the process of  dovetailing can be re- 
versed in order to define the reduced sequences (built up from a few 
reflections) which allow quick computat ion of  the internal state of  
the Relator after completion of  the natural sequence concerned (Not- 
tale, 1981). 
for a given value of the parameter  K, the congruences provide the 
relator 's  functioning with additional divisibilities allowing internal 
diversification. In a wider sense, this point of  view makes it possible 
to assume that total self-reference might concern systems whose in- 
ner dynamics or metabolism continue to function whatever the en- 
vironment,  i.e. "closed systems";  this is why partial self-reference is 
preferred, since the formalism of  the Arithmetical Relator is de- 
signed to fit " o p e n "  systems. 
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Figure 11. A degenerated Relator: the environment axis ev belongs to the BCR (e °, 0 e2), 
When the sequence (xyV) functions in the direction of the arrow, 

- point M0 becomes M~ through (xy), and 

- the circle (Co) becomes the circle (CI) through V. 

3.5 Partial self-reference and propagation effect 

Although cyclic processes are of  great importance in both Physics and 
Biology, they nevertheless exhibit numerous propagat ion phenomena,  
and the formalism of the Arithmetical Relator must allow for this 
feature. On the biquadratic assumption P = LPo, with L = 1, when 
the norm D of the environment vector has the critical value D,., the 
quadratic form degenerates since the BCR subspace includes the en- 
vironment,  but the mirror effect remains valid for stabilization (Ferr6, 
1983). The square of  a vector X such as 

X = Xe ° + ge2 + Vev 

is a degenerated quadratic form whose right member,  which is kept con- 
stant during the functioning of the Relator represents the square radius 

of  a circle (Co). 
Figure 11 shows that the center of  this circle remains upon the line 

supporting vector ev, on which it is set by its coordinate V. During a se- 
quence of products (xy), the point with the coordinates (X, Y) remains 
on the circle (Co), whereas the reflection ~v  keeps this point fixed and 
transform the circle (Co) into the circle (C~). The latter circle is sym- 
metrical with respect to the line which is perpendicular to the axis ev and 
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Figure 12. E x a m p l e  o f  p r o p a g a t i o n  by  a d e g e n e r a t e d  R e l a t o r :  

p ( x  2 + y2)  + D ( A X  + V) (B Y  + V) = ( - ) o  

[ P , A , B , D )  = ( 1 3 , 2 , 3 , 4 }  { x 0 ,  Y0,  v0} = [ 1 ,  1 , 0 }  

~ M° I 

K ~ 4  

is drawn just before the above ~v  operation, starting from the point 
representing the internal state of the Relator at that ttme. 

Therefore, except in the case of  particular initial conditions, the 
behavior of the Relator becomes non-cyclic and, in the internal space 
(e °, e2), displays a propagation effect along the axis ev (Figure 12), with 
a rate of displacement which increases with the frequency of the calls 
to the environment (Vallet et al., 1978b). 
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The propagation effect is consistent with the significance of the en- 
vironment axis defined in 3.1 as the orientation of the observation of 

an inner structure assumed to be represented by a BCR. This consisten- 
cy is clear when the Arithmetical Relator is applied to the description 
to polarized light (Ferr6, 1983). In this application, the environment axis 
follows the direction of the illumination by polarized light of any aniso- 
tropic medium which distorts the initial polarized light. This distorsion 
is deduced from an energy measurement and typifies the anisotropic 
medium. 

3.6 Cons is tency  with biological reality 

Due to the simple construction of the Relator formalism, there is no 
doubt about its self-consistency. But how far is it relevant to Biology? 
There are striking analogies between the working of the Arithmetical 
Relator and the description of living systems proposed by experi- 
menters, for instance: 

- the Relator emerges as a model of the interaction between a cyclic 
underlying structure and the environment to which it is adapted; 

- the working space is structured by means of  lattices and sets of 
parallel planes defined in (24) and (25); 

- during operation, the point representing the state of the Relator 
migrates from a plane belonging to one set to a plane belonging to 
the other set, in accordance with (23). Thus, this structure exhibits 
inner dynamics which resemble a metabolism that may either be ex- 
tremely stable, due to the simple dovetailing of elementary cells, or 
more complex because of (~) and (3') congruences. 

- the metric of the underlying structure provides partial information 
concerning the possibilities of adaptation to a given environment; 

- the construction of the Relator may follow the procedure described 
below: 

let an environment (referred to above as ev) and a system (referred 
to above as the internal space (e °, e2)) be typified by the quantities 
D and P.  The system will find its own position in the objective frame 
by partial self-reference, according to a solution of the Diophantine 
equation (39) for the set of variables (A, B): 

gA 2 + e g k A B  + k B  2 = P 

The system will then fit the environment by means of  the mirror effect, 
which enables it to find the underlying structure - above referred to 
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as the BCR space (e °, e °) - capable of  driving its sequences, if the angle 
,I, of  the given initial lattice fulfils the relation (20). 

From this standpoint,  the minimum but not the trivial values for the 
quantity P are, according to the BCR quadratic forms (9): 

BCR (I) Po = 12 + 12 = 2 

BCR (V) Po = 12 + 1.1 + 12 = 3 

BCR (Z) Po = 12 + 2.1.1 + 2.12 = 5 
BCR (M) Po = 12 + 3.1.1 + 3 . 1 2  = 7 

(43) 

4. Application to plant morphogenesis: Collating the frameworks and 
ramifications 

The angles formed by plants during morphogenesis are not necessarily 
the conventional values of  tr igonometry (i.e. 30 °, 45 °, 60 ° etc.). For ex- 

ample, in Sphacelaria ¢irrhosa Agardh. seaweed, the angle between the 
principal axis and one of  its ramifications exhibits a constant average 

value of  (41 ° _+ 1.5 °) significantly different from 45 ° (Ducreux, 1977). 
This value is also encountered as a rib-stem angle in the leaves of  certain 

Dicotyledons. Recent studies have shown that the leaf morphogenesis 
and the venation are directly related; thus, Jeune (1972) stated that " the  
polar axis of  the first divisions in the lamina seems to be oriented in a 
direction parallel to the lateral r i b s . . .  We indeed observe a close rela- 
tionship between the orientation of the mitoses and that of  the second- 
ary order r ibs"  (Jeune, 1978) ( " l ' axe  polaire des premibres divisions du 

limbe est, semble-t-il, orient~ parallelement aux nervures lat~rales. . .  

On constate en effet une relation assez dtroite entre l 'orientation des 
mitoses et celle des nervures d 'ordre  2") .  Consequently the venation 

angles are directly related to the geometry of leaf embryogenesis in 
Dicotyledons. The same idea was subsequently formulated by Stewart 
and Dermen (1975). 

Any model from which a theoretical interpretation of such angles can 
be deduced must take account, even in an approximate way, of  the 
various processes controlling the growth of the plant organism. Ducreux 
(1977) showed that the ramification angle in Sphacelaria is due to the 
morphogenetic action of the apex cell of  the main stem axis. Thus, as 
Bri~re (1982) also showed in moss, the architecture of  a thallus depends 
upon the interaction of at least two levels of  organization: the cell level 
and the organism level. What  happens in higher plants? Cusset 's short 
historical account of  the theory of leaf morphogenesis in Dicotyledons 
(1983) is very instructive: in a primary type of pattern such as that 
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described by Lignier (1887) and Avery (1933), the cell is the basic unit, 
and the leaf is built up step by step; Cusset also refers to a second type 
of pattern in which, on the contrary, the leaf is considered as a whole 
(Tr6cul, 1853) and goes on to quote Hagemann (1970), who almost 
denies the notion of cell; according to this author, the lamina builds up 
the cells, and the organ determines their position. Again according to 
Cusset, the oscillation between these extreme standpoints has recently 
been tempered by taking into account, not only the morphological 
criteria, but also the functional criteria obtained by observing the orien- 
tations of the metaphase plates (Fuchs, 1968; Maksymowytch, 1973). 
This makes it possible to propose patterns connecting structure and 
function with each other. Jeune (1978, 1981) assumed that lobes or 
leaflets could arise through a rhythmical process from two generating 
centers located in the lower part or in the apex of the leaf. The function 
of these centers might be to provide the "positional information" de- 
fined by Wolpert (1971) as follows: " a  suggested solution to the pattern 
problem is that the cells are assignated positional information which ef- 
fectively gives them their position in a coordinate system, and this posi- 
tional information is used to determine the cell's molecular or cytodif- 
ferentiat ion".  

These generating centers, which have a fixed position, display a cons- 
tant rhythm of initiation, and generate continuous elements (lobes or 
leaflets). Jeune, therefore, writes (1975) that they play a "fundamental  
role in determining the form of  the leaf, the orientation of the mitoses 
which are distributed throughout the entire lamina and affect neigh- 
bouring rows of cells at certain precise points and in growth centers 
whose emergence and functioning conform to quantifiable laws" 
(Jeune, 1975) ( " . . .  r61e fondamental pour la d6termination de la forme 
de la feuille, des orientations de mitoses r6parties sur l 'ensemble du 
limbe et affectant, ~ des niveaux pr6cis, des files cellulaires voisines, en 
des foyers de croissance dont l 'apparition et le fonctionnement r6pon- 
dent ~t des lois quantifiables"). The form of the leaf is therefore a prod- 
uct of the connection and the equilibrium between the working of the 
generating centers, the intensity of the intercalary growth, and the deter- 
minism of the orientations of the mitoses. From the standpoint of 
Theoretical Biology, leaf morphogenesis seems to be a subject par- 
ticularly well suited to the study of the relations between structure and 
function, and between the cell and the organ. Furthermore, given the 
"undoubted  analogy between the emergence of the lateral lobes at the 
base of the young leaf and the emergence of the leaves at the top of the 
stem" (Jeune, 1975) ("l 'analogie certaine entre l 'apparition des lobes 
lat6raux h la base de l'6bauche et celle des feuilles vers le sommet de la 
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tige"),  a subject as precise as the study of  the venation angles certainly 
forms part of  the more general problem of  plant morphogenesis. 

The above considerations involve different types of theoretical prob- 
lems: for instance, we should not trust our primary intuition since " the  
simpler the form of the leaf, the more complex its growth" (Jeune, 
1978) ("le ddveloppement de la feuille est d 'autant plus complexe que 
la forme est plus enti6re"). This is strikingly exemplified in the Chestnut 
tree (Castanea sativa Miller). This feature is also illustrated by the dif- 
ficulties encountered in computer programming as regards the position- 
ing of  tile "operational  cells" generated by a particular programme 
(Simon et al., 1980) since such positioning necessarily involves tearing 
and overlapping. In addition, it is essential to be aware of what 
underlies the notion of "positional informat ion".  According to 
Wolpert (1971) " the  crucial feature is that the positional value provides 
the cell with its position within the system and that this value is used 
together with the cell's genome to specify its molecular differentiation. 
This implies that three levels interact with each other: the organ, the 
cell, and the genome. This corresponds to the problem formulated by 
Buis (1983): "as the elementary act of growth takes place at the cell 
level, it would be desirable to understand the link between this fun- 
damental level and the level of the organized cell population which con- 
stitutes the organ"  ("l 'acte  de croissance 616mentaire s 'effectuant /a 
l'6chelle de la cellule, il conviendrait que l 'on fasse le joint entre ce 
niveau fondamental et celui de la population cellulaire organis6e qui est 
l 'organe") .  Buis is in fact referring here to the interaction which occurs 
between the different levels of  organization. 

During leaf morphogenesis, the fundamental processes, particularly 
mitosis, are directly related to the structural evolution of  the leaf, as 
shown by the venation angles and form of the lamina. However primi- 
tive in form, the organism remains a living thing throughout all the 
stages of  its genesis - and this is the main difference between Biology 
and Technology - .  The compatibility between structure and function, 
which preserves the organism's stability despite numerous breaks in its 
symmetry such as those occurring in bifurcation, persists from the very 
beginning of embryogenesis. 

4.1 Compatibilities between structure and function: The conjugation of 
the Relators 

The transformation of  the Relator through rotation of the BCR plane 
on itself is only one particular aspect of the more general problem of  
the bifurcation of  a biquadratic Relator from a functioning with (X, Y) 
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Figure 13. Definition, in the set of principal axes, of the conjugation of the working space 
of a Relator as a transformation through a rotation of the BCR plane (e~ °, e °) about the 
orthogonal vector e. The figure is drawn in the front plane parallel to the plane (L2, ev). 

as variables to functioning with (A, B) as variables, given that during 

this rotation, the quantity 

Po = g A  2 + e g k A B  + k B  2 

remains constant. 

The value of the angle of the internal lattice (e °, e2 = ~v e °) is a func- 

tion of the position of the underlying BCR lattice during its rotation 

around the vector e. This construction is shown in Figure 13 where, for 

greater simplicity, we only represent a front plane parallel to vectors L2 

and e~,, together with its intercepts with the characteristic axes and 

planes. 

What are the bases of structural consistency? It certainly needs an ob- 
jective framework which makes it possible to position the two systems 

of variables (X, Y) and (A, B) in relation to each other; the framework 

(L~, L2, ev) seems naturally suitable as it is independent from both (X, 

Y) and (A, B) in the case of a biquadratic Relator. Moreover, the angle 

O, which stands between the vectors e and ev must obviously be kept 
constant, as was done in the above formulation. 

As to the question of functional consistency, two elements which 

belong to the same organism must have consistent metabolisms. In the 
case of the Relator, the "metabol ism" is connected with the cycles 

generated by the process of reflection, and tightly related to both the 

underlying BCR lattice (e °, e °) and the internal lattice (e °, e2) of the 
Relator. Functional stability emerges when transformations which 

preserve both lattices are found within the objective frame. 
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Figure 14. C o n j u g a t i o n  in . o a lat t ice (ul,  u °) wi th  (A, B) as var iables ,  ident ical  to the BCR 

lat t ice  (e °, o e2 ). 

The value investigated is the value of the angle of  rotation through 
which the internal lattice (e °, e2) returns to the initial value of  its angle 

~. Thus, both the initial and final internal lattices display maximal con- 
sistency with each other, because their axes are superimposable. Now, 
it follows from equation (20) that the quantity AB ",fgk retains the same 
value before and after the rotation of BCR. In the case of  a biquadratic 
Relator, the t ransformation thus defined is therefore connected with the 
solutions to the following Diophantine equations: 

f gA 2 + egkAB + kB 2 = const. 

AB x / ~  = const. 
(44) 

In the underlying BCR lattice (u °, u°), equations (44) represent the in- 
tersection between a circle and a hyperbola whose axes coincide with the 
bisectors of  axes u ° and u °2 (Figure 14). The intersection points are 
themselves symmetrical in relation to these bisectors. Therefore, the 
solutions to equations (44) are provided by the points common to both 
the given lattice and the lattice symmetrical to it in relation to the bisec- 
tor of  the axes of  the first lattice. When the lattice is isotropic (i.e. its 
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basic vectors have the same length) the symmetry of the geometrical 
figure is preserved and any point (14, B) which belongs to the lattice has 
a symmetrical point (B, A). When the lattice is anisotropic (i.e. its basic 
vectors have different lengths) it no more longer coincides with the lat- 
tice symmetrical to it in relation to the bisector of its axes; moreover, 
since the underlying lattice considered here is a BCR, there is no point 
common to both symmetrical lattices. When this symmetry is cancelled 
by the anisotropy of the underlying metric, it can be set up again 
through a permutation of the unities of the axes. In that case, in a BCR 
space with (A, B) as variables, the transformation sought will connect 
the point M with the coordinates (A, B) in the space (u °, u°), to the 
point M '  with the coordinates (B, A) in the space (U1 °, U °) issued from 
the previous space through permutation of the lengths of the basic vec- 
tors, according no 

M = I ; ]  i n ( u ° ' u ° ) ~  M '  = I ~ l  i n ( U ° ' U ° )  

(uO, u2O)=(uO, u o) x ~-°  ] 
o g 

(45) 

Thus, both the underlying BCR and internal lattices are preserved. 
When the Relator is non-biquadratic, the transformation through 

rotation of the BCR plane around the orthogonal vector e is such that 
the angle @ remains constant. Therefore cos O = const, and, according 
to equation (34): 

Po = g A  2 4- egk AB  + kB 2 = const. 

Thus, the transformation of a non-biquadratic Relator involves exactly 
the same problem as that of a biquadratic Relator. When the mathema- 
tically feasible transformations are considered, partial self-reference 
follows naturally. 

We would stress that the conjugation is defined with (A, B) as 
variables in an underlying BCR metric; a functional partial self- 
reference thus emerges in addition to the structural partial self-reference 
mentioned above. This constitutes a very close analogy with structural 
and metabolic compatibilities which exist between cells and tissues: in 
the present case, these compatibilities reside in an underlying structure. 
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Figure 15. Conjugation in the BCR plane: the axes (e °, e °) respectively become the axes 
(E °, E2 °) through the reflection ~E, where the vector Ev is orthogonal to the principal axis 
Li. 

4.2 Conjugation within the objective framework 

As the conjugation has now been defined with (A, B) as variables, we 
can proceed to study its representation with (X, Y) as variables in the 
objective frame (L1, L2, e,,). 

Let (e °, e2 °) be the basic vectors of the initial given BCR; the latter 
rotates around the vector e, which is orthogonal to the plane of the 
BCR, and the angle of this rotation, denoted 2c~, is such that the angle 
of  the internal lattice (e °, e2) is preserved. After both rotation and per- 
mutation of the lengths of the basic vectors, we obtain the framework 
(E °, E °) (Figure 15), and we can show that: 

- the angle of rotation 2~ is twice the angle between the principal axis 
L~, and the interior bisector (or the exterior bisector depending on 
the sign of the product AB) of axes (e °, e °) in the BCR plane; 

- the basic vectors (E °, E °) of  the conjugate BCR are derived from the 
respective basic vectors (e °, e °) of the initial BCR, through a sym- 
metry related to the support of the vector L1. 

This symmetry leads to an interesting geometrical interpretation: let Ev 
be a vector whose norm equals the critical value Dc - defined in (33) 
- and whose support is the projection onto the BCR plane of the sup- 
port of the environment vector ev; let (o ,  Eo) be two vectors respectively 
collinear with the vectors (e °, e°), and let the biquadratic assumption be, 
such that 
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Figure 16. Definition of the associated degenerated Relator based on BCR (o, go) and en- 
vironment Ev: the mirror effect preserves E ° and changes E ° into E2 = ~8v t2" 
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Figure 17. The Relator based on BCR (e °, e °) and environment e~ is connected, through 
the conjugation, to the Relator based on the same environment and the BCR (E°l, E °) ~- 
9CE~ (e °, e°). 

l 
[It°ll 2 = gPo ILE°[I 2 = kPo (g ° • t °) = ~ egkPo (46) 

W e  can  then  b u i l d  a d e g e n e r a t e d  r e l a t o r  - d e n o t e d  Ro - b a s e d  on  the  

B C R  (t°l, t °) a n d  the  e n v i r o n m e n t  tv.  A f t e r  a d a p t a t i o n  us ing  the  m i r r o r  

e f fec t ,  the  i n t e r n a l  space  is d e f i n e d  b y  the  vec to r s  ( t  °, tz = ~c~ t°) ;  as 

t h e y  a re  r e sp e c t i v e ly  co l l i nea r  wi th  e ° a n d  E°l, t hey  f o r m  the  ang le  2c~ at  

wh ich  the  B C R  ro t a t e s  on  i t se l f  (F igu res  16 an  17). 
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Given that the vector &, is perpendicular to the vector L1, the above 
symmetry can be regarded as a reflection ffTgv. This is why the conjuga- 
tion of  any relator R is induced by the process of  the call to environment 
of  a degenerated Relator R*, which may be taken to be connected with 
R, since it is built upon the same BCR axes (but with different basic 

vectors). 
When one of the basic vectors of  the BCR (for instance e °) is perpen- 

dicular to ev, and therefore coincides with L1 (as when A = 0), the 
symmetry-permutat ion product of  the conjugation becomes a 90 ° rota- 
tion on the axes of  BCR, i.e. a multiplication by the complex number 
i (i 2 = -1 ) .  This warrants the use of  the word "con juga t ion"  to define 

the t ransformation.  
For Biologists, this method of operation is of  great interest because, 

in relation to the vector &, the reflection resembles a process which 

modifies the working space of the Relator while preserving the 
quadratic form. This constitutes a coupling of structure and function, 

whose expression is one of the most difficult problems in Physiology 

and Biochemistry. 

4.3 Different ways of  collating the frameworks 

The initial and conjugate working spaces may be positioned in relation 
to each other in three different ways, according to the process to be 
treated preferentially; this operation is termed the "col la t ing" of  the 

frameworks.  

- The definition of the conjugation does the collating with respect to 

the principal axes; both Relators are in the same principal axes while 

their respective internal spaces (e °, e2 = ~v e °) and (E °, Ez = ~v 
E °) are different. This is shown in Figure 18, representing a frontal 
plane parallel to the vectors (L2, e~,). The representative points 
which, in the principal axes, belong to both Relators are such that 
we can assume this configuration to lead to applications in Quantum 

Mechanics. However,  comparison of  the two Relators with (X, Y) 
as variables requires the planes (el °, e2) and (E °, E2) to coincide. This 
coincidence may be obtained in two different ways: 

- if the directions of  the environment vectors are the same, the 
above planes will coincide but the axes (el °, e2) and (E °, E2) will 
be different (Figure 19). This configuration leads to the notion of 
dual Relator (Nottale, 1982) and to applications in Ther- 
modynamics and Macrophysics. 

- if the axes (e °, e2) and (E °, E2) are made to coincide (Figure 20), 
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Figure 18. The collation, in the set of principal axes, of both the initial working space (e °, 
e2, ev) and conjugate working space (E °, E2, ev). 
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Figure 19. The collation, in relation to the same environment axis, of the two internal con- 
jugate spaces (e °, e2) and (E °, E2). 

the environment axes, denoted ev and Ev, will be different; this 
configuration shows diversification of the environmental axis, 
and therefore, leads to the emergence of angular values typical of 
ramifications. 

This set of three configurations allows a new interpretation of the con- 
nection between the three main fields encountered in the study of 
Nature - Microphysics (m~), Macrophysics (Me)) and Biology (Bio). 
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Figure20. The axes of the two internal conjugate spaces brought into coincidence, leading 
to differentiation of the environment axis onto e~. and Ev. 

According to modern cosmology, the conventional scheme leads to the 

following sequence: 

m ¢  ~ M ~  ~ Bio 

While most Physicists seem to believe that Macrophysics is derived from 

Microphysics, the derivation of Biology from Macrophysics has not yet 

been proved. This idea is essentially based on the well-known fact that 

processes in living systems obey the laws of  Physics, which amounts to 
saying that an organism is consistent with its physical environment. 

The logic of  the Arithmetical Relator permits the following scheme: 

Bio 

The first arrow concerns collation to a common environment: the 
system tends towards homogeneity and unity. The second arrow repre- 

sents the collation corresponding to the coincidence between the sup- 
ports of the basic vectors of both internal spaces; this gives rise to a 
diversification of  the environment which tends towards heterogeneity, 
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multiplicity and the obvious possibility of  changing the level of  or- 

ganization.  

Thus,  it seems possible to unders tand why it is so difficult to extent 

to Biology the formalisms suitable for Physics. 

4.4 The ramification angles on the biquadratic assumption 

It was shown in a previous section (3.5) that an environmental  axis can 

be compared  to a direction o f  propagat ion .  Botanical  experiments show 

that the ribs o f  a leaf represent the prime directions in the growth of  

lamina. Therefore  it seems natural  to use the third o f  the above forms 

of  collation as a pattern for bifurcat ions in leaf venation.  When the in- 

ternal axes are made to coincide, both  lattices themselves coincide, if 

they are isotropic. In that case the structures and the internal rhythms 

of  both  conjugate  relators display maximal  consistency with each other. 

The conjugate  environmental  axes ev and Ev include an angle ~ which 

depends on the dimensionless coefficient 

B N/k (47) 
T =  A 

which is closely related to the rota t ion o f  BCR. As regards stability, it 

is impor tan t  to know the extreme values o f  the angle ~ as a funct ion o f  

the parameter  r responsible for the ramificat ion.  The cosine o f  this 

angle ~ is expressed as 

D (1 - r) 2 
cos e = 1 (48) 

4 (1 + e ~ x / ~  + r 2) (1 1 1 
- - - 

2 2 

Whatever  the BCR, this cosine is extreme for the values (Figure 21): 

r = +_ 1 and r ~ _+ oo 

When  7 = + 1, the angle ~ equals zero; the axes ev and Ev are in coin- 

cidence and there is no ramificat ion.  The other extreme values (7 = - 1 

and 7 ~ +_ oo) are o f  much greater interest to plant morphogenesis .  

Table 1 shows the numerical  results given by the isotropic BCR (/) 

and (V). A bifurcat ion - i.e. a break in symmetry  - is a harzardous  
step in plant ontogenesis.  Now the angular  values calculated above 

allow max imum stability o f  the compatibilities o f  the underlying struc- 
tures. Angular  values like 41 ° 25 '  or 53 ° 08 '  which might not,  at first 
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Figure 21. W h e n  the  cos ine  o f  the r a m i f i c a t i o n  ang le  var ies  as a f u n c t i o n  o f  the n o n -  

d i m e n s i o n a l  p a r a m e t e r  r = B " ~ / A  ~g-g the  th ree  fo l lowing  e x t r e m a  result :  

r = + 1 r = - 1 a n d  r ~ _+ oo 

Table 1. E x t r e m e  values  o f  the  r a m i f i c a t i o n  ang les  for  the  i so t rop ic  B C R  (I)  a n d  (V)  as 

a f u n c t i o n  o f  the  p a r a m e t e r  D ,  the  n o r m  llevll 2 o f  the e n v i r o n m e n t  vec tor .  

BCR (I) 
D "d : - I c°s3 o = 4 - D  

' r - - - . o o  cosJ~ - -~ 1 4 4 t D  

D=I 

D=2 

D=3 

D=4 

3/4 

1/2 

1 / 4  

0 

41o25 ' 

60 ° 

75°31 ' 

90 = 

3/5 

1/3 

1/7 

0 

53°08 ' 

70°32 ' 

81 ° 47' 

90 = 

BCR (V) 

D=I 

D=2 

L. D=3 

• '~ ---* oo 

co~ 

1/2 

0 

- 1/2 

cos'~ ~ 1 -  D 

6 0  ° 

90" 

120 ° 

"¢ = - I  

0 

- 1/3 

- 1 / 2  

COS '~ = 

-f 
90 ° 

109=28 ' 

120 = 

1 - D  

1-0 

BCR (V) 
"~" ---~ o o  

D 
COSJ~ ~ 1-- 

co, ~/ ~ ~o~ ~ 4 
D =1 5 / 6  3 3 "  33' 4/5 36 = 52' 

D=2 2/3 48" 11' 7/11 50 ° 29' 

D=3 1/2 60" 1/2 60 ° 

9 - D  
cos "~ -- '9 * I~ 
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Plate 1. Bramble leaf (venation angle near acs 3/4 = 41 ° 25'). 

sight, seem very impor tant  thus acquire considerable biological signifi- 

cance. Such values are found  either in leaf venat ion or in twig bifurca- 

tions, provided they are measured at the level o f  description, i.e. at 
organ and not  at cell level. 

As regards leaf venation,  examples o f  such angles are shown in Plates 
1, 2 and 3. An  angle value near acs 3 /4  (41 ° 25 ')  is found in the Bramble 

(Rubus  sp.) (Plate 1), and Lime-tree (Tilia sylvestris L.) (Plate 2). In the 
leaf o f  the latter, even order three ribs exhibit this angle ramificat ion 

value. A ramificat ion angle o f  60 ° is observed in the leaf o f  the Cherry-  
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Plate 2. Lime-tree leaf (venation angle near acs 3/4 = 41 ° 25'). 

tree (Prunus cerasus L.) (Plate 3). There seems to be no relation between 

geometry and plant classification, as shown by the two Rosaceae men- 
tioned above. 

As regards twig ramifications, some of the angle values calculated 

here have been observed between stems and twigs. The original feature 

of  these angles lies in the fact that just beyond the ramification point, 

the plant morphology acquires an asymmetrical Y structure, leading to 
the simultaneous appearance of both the angle values related to a par- 

ticular value of the norm D of the environment axis. For example, in 
an Umbellifera (Plate 4), the angles measured are close to the values ob- 
tained for BCR (/) when D = 1, i.e. both angle values acs 3/4 (41 ° 25 ') 

and acs 3/5 (53 ° 8 ') .  The twigs of  the Hazel-tree (Corylus avellana L.) 

have an angle value corresponding to D = 2, i.e. to acs 1/2 (60 °) and 
acs 1/3 (70 ° 32').  

Numerous other examples of  such values have been found, not only 
in plants, but also in wing venation of certain insects such as the Cicada 

and detailed descriptions of  these examples will be published later. 
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Plate 3. Cherry-tree leaf (venation angle near acs 1/2 = 60°). 

The angle values just defined seem of special interest to morphologists,  
although it should be pointed out that some plants do not conform to 
this pattern and it is important  to find out why. The present work 

should be helpful to Botanists studying plant architecture, particularly 
that of  trees such as Oldeman (1974) and Hall6 (1979). These authors 
in fact describe morphological  patterns which "a re  noticeably indepen- 
dent of  the size of  plants, their ecology and even their genetics, since the 
same architecture may appear in plant families as different, for exam- 



Plate 4. The ramification angles in an Umbellifera, close to acs 3/4 = 41" 25 '  and acs 

3/5 = 53" 08'. 
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pie, as a Pine-tree and an Oak, or a Nutmeg-tree and a Yew-tree" 
(Hall6, 1979) ( " . . .  manifestent une remarquable ind6pendance vis-a-vis 
de la dimension des plantes, vis-a-vis de leur 6cologie, et m~me vis-/a-vis 
de la gdn6tique, puisqu'une m~me architecture peut appara~tre dans des 
groupes v6gdtaux aussi peu apparent6s que peuvent l'~tre, par exemple, 
un Pin et un Chine, ou un Muscadier et un If") .  At different levels of 
organization, a few basic structures can be defined, allowing the 
"restoration of a conception of the plant as a whole".  

5 .  C o n c l u s i o n  

The discovery of a biological significance of  the ramification angles in 
Dicotyledons allows visualization of  both the structure and functioning 
of the Arithmetical Relator. This mathematical tool was constructed 
with a view to its application in Biology and is probably suitable for 
careful study of the logic of living systems (Le Guyader, 1981). Its most 
original features include the following: 

- the ability to drive a system adapted to its environment by means of 
an underlying cyclic structure; 

- the natural emergence of  both a structural and functional partial self- 
reference; 

- the emergence of a geometrical "metabol ism" related to the organi- 
zation of space, and 

- an approach to the complex problem of positioning the working 
spaces in relation to each other. 

It obviously follows that the interpretation of venation and bifurcation 
angles leads to the type of morphogenetic study inherent in the "pat tern  
problem" formulated by Wolpert. Given the fact that ribs correspond 
to the prime directions of  growth, the venation angle will be the result 
of the interaction between three different levels of organization: the 
genome G, the cell C and the leaf L. The structure of the relator enables 
the genome to be connected to the underlying BCR, the cell with the 
stabilized Relator with (X, Y) as variables, and the leaf with a relator 
whose internal axes coincide with the environment axes shown by the 
third collation. Therefore, the logic of the relator seems to provide a 
satisfactory answer to the question of the geometry of leaf mor- 
phogenesis for which, according to Cusset (1983), thirteen theories have 
been proposed. Except for the theories in which either the cell or the leaf 
is the only prime notion, most of  them fit one of the following frames: 
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Cusser (1983) and Jeune (1981) proposed a complete equilibrium be- 

tween the three poles: 

j ©  

The Arithmetical Relator may allow another interpretation of this ter- 
nary diagram; in fact, it seems that 3 must be parted into (2 + 1) rather 
than into (1 + 1 + 1). We should also consider the interaction between 
one of the poles and a combination of  the two others, according to the 

diagram below: 

It seems to us that this diagram can be applied to problems concerning 
living systems relating to changes in the level of  organization, such as 
cell differentiation of  organogenesis, in Plant or Animal life. 
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