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RATE OF CONVERGENCE OF HERMITE-FEJ ER
POLYNOMIALS FOR FUNCTIONS
WITH DERIVATIVES OF BOUNDED VARIATION

R. BOJANIC (Columbus, Ohio) and F. CHENG (Lexington, Kentucky)

1. Introduction

Let f be a function defined on [~1,1]. The Hermite—Fejér interpolation
polynomial H,(f,z) of f, based on the zeros

(1.1) Zn = COS <2k2;17r) , k=1,2,...,n
of the Chebysev polynomial T,(z) = cos(n cos™ ), is defined by
= Tn(z) )2
2 H.(f,z)= 2 (1 —Tkn —_—) .
(12) (17) =3 Jlam)(1=21n2) Com

It was proved by L. Fejér [1] that H,(f,z) converges uniformly to f(z) if
f(z) is a continuous function on [—1,1]. The rate of convergence of H.(f,z)
to f(z) when f(z) is a continuous function has been extensively studied
before ([2]--[9]). A survey of various quantitative estimates of the rate of
convergence can be found in [9], where it was proved that

n — g2)1/2
[Haf, )~ F@) € 2T20) 3 [Wf (“——(l o >+Wf (,})} -
k=1

sy (21,

Here Cy and C, are positive constants and Wy is the modulus of continuity
of f.

The behavior of H,(f,z) when f € BV[-1,1] (i.e., f is of bounded varia-
tion on [—1,1]) was studied by Bojanic and Cheng [10]. It was proved that if
f€BV[-1,1] and continuous at z € (—1,1) then H,(f,z) converges to f(z)
when n tends to +oo and the rate of convergence of Hn(f, z) to f(z) satisfies
the following inequality

64T2 z i 4T 47| Tn(x n
13) (o) f@) s EED S v v )
k=1
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where V8(f) is the total variation of f on [a,b]. (1.3) can not be improved
asymptotically.

However, if z is a point of discontinuity of f where f(z+)# f(z—), the
sequence (H,(f,z)) is no longer convergent. This follows from the following
observation

(1) lim "PH(f,2)= L (f(a+)+ f(z-)) £ 51f(e4) - F(z-)I6(2)

n—rod

where 8(z)=1if z = cos(ar) and o« is irrational, and

sin(7/29)\? > 8qk
ﬂ(x)z( /2q ) ( Z(4q2k2 1)2)

if z = cos(pn/q).

(1.4) shows that, unlike Fourier series of 27-periodic functions of bound-
ed variation or Bernstein polynomials of functions of bounded variation
which all converge to (f(z+)+ f(z—))/2 ([11], [12]), the Hermite-Fejér in-
terpolation polynomials of a function of bounded variation converge only if
f(+) = f(z-).

Although smoother functions find more applications in various fields such
as computer aided geometric design, computer vision, graphics and image
processing, the asymptotic behavior of Hermite-Fejér interpolation polyno-
mials for functions smoother than continuous functions has been studied only
for functions with continuous derivatives.

In this paper we shall investigate the asymptotic behavior of Hermite-
Fejér polynomials for functions defined the following way

(1.5) f@ =10+ [ o0, sel-1,1

where ¢ is a function of bounded variation on [—1, 1]. This class of functions
can be described as the class of differentiable functions whose derivatives are
of bounded variation and will be denoted by DBV[-1,1]. It is clear that
this class of functions is much more general than functions with continuous
derivatives. However, as it will be seen in the next section, the asymptotic
behavior of Hermite—Fejér interpolation polynomials for functions in this
category is also much better than the asymptotic behavior of Hermite-Fejér
interpolation polynomials for continuous functions. Results for Bernstein
polynomials for functions of this type can be found in [13].

2. Results

Let f be a function in DBV[-1,1] and ¢ € BV[-1,1] so that (1.5) is
satisfied. For any z € (—1,1) such that z # x4, for k=1,2,...,n we have,
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from (1.2) and (1.5),

ey ma-f@=3 ([ ) Bue)=
k=1 %
where

2
Hi.(z)=(1-2zkn) (#2—1’5) , k=1,2,...,n.

If we define ¢,(t) the following way

{ e(t)-p(z—), t<=z
Qol‘(t): 0, t=z

e(t)-p(z+), t>z

then (2.1) can be expressed as

(2.2) H.(f.z)- f(z)=
= L(£)dt ) Hpn(2) + " ou(t)dt ) Hy (2
2;(/99 )it ) Hy 2;(/ pe(t)t) Hin()
~p(@=) Y (2= 24n)Hrn(2) + @(3+) Y (2kn—2)Hin(2).
Trn<lr Tkn>T
Since
e(z+) Y (ztn—2)Hin(z) = p(e=) Y (2= 2kn)Hen(z) =
Tpn>T Tgn<T

- ¢z () k§=j ok — 2By () + 2L ) g(zkn ) Hin(2)

and the two summations on the right-hand side of the equation are the
Hermite—Fejér interpolation polynomials of f,(¢) = |t—z| and g,(¢)=t—=,
—1 <t <1, respectively, we can further convert (2.2) as follows

(23)  Halfi2)= F(=) = TBa(fer2)+ 5Halge, 2) 4 Palf,2)

where
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(2.4) o= p(e+) = p(a=); A=p(a+)+p(z-)
and
(2.5) Pa(f,7) =
- ,,—,,223 ( / ) <p,,(t)dt) H;m(a:)+zkz;$ ( /x ” %(t)dt) Hyn(2).

Therefore, evaluation of the rate of convergence of H,,(f, z) to f(z) is simply
a matter of evaluating H,(f;,z), Hn(gz, ) and P,(f, 2)

We shall give estimates for H,(fs,z) and H,(gs, ) first and then use
these estimates to get an estimate for the rate of convergence of H,(f,z)
to f(z). Since the estimates we get for H,(f;, ) and Hy(gs, ) are of some
interest, we shall state them as an independent theorem.

THEOREM 1. Ifz€(-1,1) and z # 2k, for any k=1,2,...,n then

(2.6) En: |2k — 2|Hpn(2) — 2(1- xzz:ﬂTz(z)loin |T (a;)l
k=1

(2.7) Z(xkn_x)Hkn(:E) < CITn(z)l

where C =74+ .

The rate of convergence of H,,(f,z) to f(z) can be estimated as follows.

THEOREM 2. Let f be a function in DBV[-1,1] and ¢ € BV[—-1,1] so
that (1. 5) is satisfied. Then for any z € (—1,1) such that z # Tkn for k=
=1,2,...,n we have

(2.8) Hn(f,z)_f(z)_a(l—z2)1/21;3(z) logni _ C(lo]+|A) ITn(:v)|+

T n |~ 2 n
z+1r/k
1r|Tn(:c)| s+7|Tn(z)|/n 1272 (z) z_,r/k(‘P:c)
n VooriTa(@)/n(P2) + Z

where V8(p,) is the total variation of ¢, on [a,b],* o and X are defined in
(2.4), and C is defined in Theorem 1.

*We assnme here and in the rest of the paper that f is extended to the entire real line
by f(z)=f(1) for z >1 and f(z)= f(—1) for z < —1.
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If f' is continuous at z, i.e., 0 =0 and A =2f'(z), then (2.8) can be
simplified as follows.

(29) [Ha(f,2)- f(z)| s LLOIEN | TS yenttr(lin gy

n Vz+1r/k

12T2(a:) Z ,;_,,/k(f').

The right-hand side of (2.8) converges to zero as n — 0o since continuity
of ¢, at z implies that

Viis(pz) =0 (a,8-0+).

Actually, the last term of the right-hand side of (2.8) is o(log n/n)-con-
vergent. Therefore (2.8) can also be expressed as

- /
B,(f,2) = f(a)+ LTS I@IET (loin) |

Note that all the estimates mentioned in Section 1 for continuous functions
or functions of bounded variation are o(1)-convergent only.

As far as the precision of (2.9) is concerned, consider the Hermite—Fejér
polynomials of the function f(z)=2z? at = =0 for even n. Since T,,(0) =1 if
n is an even integer, we have

H,(f,0)- £(0)= Em’)

On the other hand, since 0 = A =0 at z =0, it follows from (2.9) that

+n/n 12 & VI k(o)
[Ha(£,0) = £(O)| £ ZVHT/ (o) +— kE —
since ¢(t) =2t and o(t) = ¢(t), we have
x2
[Ha(,0) = £(0) 225+ 22 ‘,t’; <<

for some C > 0. Hence for the function f(z)=2z? when n is an even integer
we have

1 o
;;élHn(f,O)—f(ONé;

for some positive constant C > 0. Therefore (2.9) can not be improved
asymptotically.
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3. Proofs

3.1. Proor oF THEOREM 1. To prove (2.6), observe that

T(2) )2

. lalT2(z)
n(z = Tiy)

(3.1) Ho(fzr2) =Y |okn—2|(1-27) (
k=1

n

Therefore, it is sufficient to study the asymptotic behavior of the second
term on the left-hand side of (3.1) only.

Let £ =cos?, 0< 9 < 7, Tpy, = cO8 Vg, g = (2k—1)7/(2n), k=1, 2,.
n, and define

5a(c) = 1, if0<a<?
nE= -1, ifd<a<m.
Then

(3.2)
n ) .
Elxkn—zl(l_x2)< o ) 26,9(0 )-Sint 9 cost(nd)
k=1

(L —Zin) n2(cos I, —cos )’

Since cos Pk, —cos ¥ = (9 —Fgy,) sin Dk, for some Di, between ¥ and Vi, it
follows that

= sin? 9 cos?(nd) sin 9 cos?(n¥)
<
Zb‘d(mm)rﬂ(cos Fgn — cos F) Z So(n) 2 "9y n2(9 — Fgn)

sin 19 _ 1
cos Vgp —cos ¥ ¥ — gy
( sin 9 1 )
Sin;,?kn(ﬂ—’ﬁkn) "9_79kn

1 (sin ﬂ—sinﬁkn)
1 97— '0kn sin Ekn

1 99—
1 "9—19kn sin?f;m

< sin 9 cos? n?d Z

IA

k=1

sin 9 cos? ndd 2":

[[FaN
[[VAN

n2

k=1

. n
sin 9 cos? nd

n2

IA

A

1
sin 5};”

. T
sin ¥ cos? nd

sin ¥ cos? nd zn:

n2

A

<

n2
k=1

Furthermore, since |sin %I > |9|/x if |9 £ 7, we have
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— cos 1 — cos Vi, 2sin"4't2‘2*nsin’9f_—2'2““
sin I, = = >
"-9'—"9kn '19"‘19kn -
> 2 T _ & . k'n. >"M'l9
= P — I T sm( 2 ) = (%)

where M(¥) = min(sin 2, sin Z32). Therefore,

(3.3)

7 cos? nid

Pt n?(cos gy — cos ¥) n2(9 = kn) n

n . 2 2 n . 2
26,9(19,",) sin* ¥ cos?(nd) —E&s(ﬁkn)smﬂws (nd) <
k=1

by noticing that M(¥) 2sin¥/2.

Let j be the integer such that ¥, < ¥ < ;11 ». It is easy to see that

_[n?,1
J= r 2|

Since (¥ — Okn) = (22 + 1 — k), we have

sin 9 cos?(n, 9)
(3.4) Z&a(vkn) 00
Sin19c052m9 J 1 n 1
" <’§(%’ﬁ+%—k) k§1(¥+%—k))_
_ndend (B3 1 Y1 i
sin® cos? nd (12 1 n—j-1 .
=T ar T+t . =
nr (§%+%_]+k ; k+1—-(_ﬂ’_’l+%)+]
51n19cos ng (171 1 n—j-1 1
T ar AL+A
E;,P(W)Hc ,; 1—p(nd)+k 1182
where
z 1 Jz 1
(3.5) p(@)=~+35- [;+§] :

97

We shall prove that A; and A; are both asymptotically equal to

sin 9 cos? ndlog n/(nw).
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First, observe that

sin 9 cos? ndlog n

(3.6) Ay~ =61,1+61,2
nw
where
P sindcos?nd 1 PR 9 cos? nd ?—1 1 )
11= o p(nd)’ 125 T 2 p(n)+k ogn | .

Since cos n¥ = (—1)? sin(p(nd)7) where j = [nd/7 +1/2], if follows that

(3.7) 1614l < sin 9| cosm9|.

On the other hand, it is easy to see that

j=1

1
- <5,
k2=:1 (91 F logn| <5
Hence,
5sin 9 cos? nd
(3.8) |12 § ——.

nmw

Therefore, from (3.6), (3.7) and (3.8) we have

» 2 .
(3.9) Ay — sin 9 cos® nilogn < 3 sin J| cos nY| .

nw - n

The evaluation of the asymptotic behavior of A, can be carried out in a
similar way. First, observe that

sin 9 cos? nd log n

(3.10) Ag— =091+ 02,2

nw
where

sin 9 cos? ndd 1
nm 1-p(nd)’

sin 9 cos2 nd [ "ot 1
62’2=_nw ( ; _——1—p(n19)+k_logn .

da1=

Since cos nt = (—1) sin(1 — p(nd)7) where j = [nd/7 +1/2], it follows that
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sin 9| cos nY|

11 bpq| <
(3.11) |62,1] < -

On the other hand, it is also easy to see that

n—j—1 1
- - <
z T pnd) T F logn| £5.
k=1
Hence,
5 sin ¥ cos? nd
(.12 g 2T cos

nw

Therefore, from (3.10), (3.11) and (3.12) we have

3 sin Y| cos nY|

’

sin ¥ cos? ni¥log n

(3.13) -

Ay —

A

n

and the estimate (2.6) follows from (3.1), (3.2), (3.3), (3.4), (3.6), (3.9) and
(3.13).

To prove (2.7), observe that by using a similar technique we can show
that

 lelT3@)

(3.14) s

H,(95,2) - g(zkn —2)(1-2?) ( T.(z) )2

(T — Tin)

- z 2 &\ sin?9cos?(n
(3.15) 3 (zrn—2)(1-2?) (_T_n_(_)__) =y s cos’(nd)
k=1

(T — Tgn) P n2(cos Vgn —cos )’
"\ sin? 9 cos?(nd) " sin 9 cos?(nd)| _ 7 cos? nd
(3.16) kz—:l n2(cos Vgn, — cos 9) _kz-:l n2(d =) |~ n

where z =cos ¥, 0 <9 < T, Ty =08 Vpn, Vo = (2k—1)7/2n, k=1,2,...,n,
and

n

sin 9 cos?(nd)
(317) 2 by N
k=1

where A; and A; are defined in (3.4). It follows immediately from (3.9) and
(3.13) that

6 sin Y| cos nY|
3.1 A —Agl g ———MM .
(3.18) |A1— Al g n
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Therefore, (2.7) follows from (3.14), (3.15), (3.16), (3.17) and (3.18).

3.2. ProoF oF THEOREM 2. Since the evaluation of H,(f;,z) and
H,(gz,z) is already done in Theorem 1, the only thing we have to do now
is the evaluation of P,(f,z). The technique used here is similar to the one
used in [10].

For any z € (—1,1) such that z # z4, for k=1,2,...,n we have

/j pr(t)dt

n

Hpn(z) £

SRy

V:c+t;m (pz)dt

T—tkn

Hin(2) £ Z |2 — 2k | V525" (02 ) Hin (2)

k=1
where #;, = |z——a:;m| and V5(¢p,) is the total variation of ¢, on [a,b]. Let
z=cos?, 0< V< T, Tpn = c08 Vgn, Y = (2k—1)7/(2n), k=1,2,...,n, and
define

1
E,(n,a)z{k:;—Z<|ﬂ-0kn|g(l;n—)”}, r=0,1,...,2n—1.

Then we have

2n-1

Po(£2)S Y. D |z =akal VI (00)Hin(2).

r=0 keE,(n,d)

Since tpy = |2 — Zin| £ |9 — Vkn| £ 7|Tn(z)|/2n if k € Eo(n, ) (see [9], p.257)
and Ey(n, ) has at most two elements, it follows that

(3.19)
. Ll Tn z z+m|{Tn(x n

k EE(: . ERETM) asi () : EIE %)lij”:n @)

€Eqg(n,

On the other hand, since E,(n,?) has at most two elements,

o T:(z)
_ <(1- 9
|2 — Zkn|Hin(z) £ (1 — cos ¥ cos Fg,, +sin ¥ sin 19kn)n2| c08 9 — cos Dpn| =
T2
S (1—cos(Vgn+ 7)) = (2) s
2n?sin (0+19 )Sin 19_—212151l
2
§2sin2< +"’°") T, () s
2n2 sin (19+;9 )sin %‘m
T(z)m _ _ 2Ti(=z)
=29~ T mr

and tg, S(r+1)7/2n if k € E;(n,?), we have
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4T z (7 n/2n
20 EX(:ﬁ)lz—xkanii’it,':(%)Hkn(w)< La@)yirttnsin, )
€Lir(n,

for r=1,2,...,2n—1. Therefore, by (3.19) and (3.20),

7|T,.(z a; 7| Tn(z n
(3.21) [Po(f,2)| S ——= mTx(2)] ()I w;{%&%{fin( =)+

fz“2 2o e/
r=1

Let Q(t) = VZ*¥(¢,). Then

-t

2n—-1
(22 $ Lysttestrim,) -
r=1
B 2n 1 rT <9 2 1 T
—Z;r_lQ(z;)= 2.9 ()

By virtue of the fact that Q(t) is a non-decreasing function, we have

(r+1)7/2n () rry [T/ gy rT 1
> —2 — -
/M/h =itz Q (3) /M/% =2Q (5) log (1+ T)

or
L rmy 3 (R g
— — 1 < = =7
rQ (2n) =2 [r/zn t dt
Hence
2n
1 rr 3 w(2n+1)/2n Q(t)
—_ — | < - LANEA
;’I‘Q (2n)=2/,r/n t dt

Since @(7/t) is non-decreasing and Q(7/t) = @(7r) for 0 <t <1, we have

" Qx/t) , ! Qr/t),, . ["Qx/t)
/2n/(2n+1) ;- s /2n/(2n+1) t t+/1 t s

e w/k = w/k
< A) | 5 Q) )gng(k/)

=2n+1

and therefore

2n n
(3.23) Z%Q (%’7—;) gszg-g%/k—).
r=2 k=1

The proof of Theorem 2 follows now from (3.21) and (3.23).

101
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