
Acta Math. Hung. 
59(1-2) (1992), 91-102. 

RATE OF C O N V E R G E N C E  OF HERMITE-FEJ]~R 
POLYNOMIALS FOR F U N C T I O N S  

W I T H  DERIVATIVES OF B O U N D E D  VARIATION 

R. BOJANIC (Columbus, Ohio) and F. CHENG (Lexington, Kentucky) 

1. Introduction 

Let f be a function defined on [-1,  1]. The HermJte-Fej~r interpolation 
polynomial H~(f, x) of f ,  based on the zeros 

(1.1) Xk~=COS 2n lr , k = l , 2 , . . . , n  

of the Chebysev polynomial Tn(x) = cos(n cos -1 x), is defined by 

(1.2) H~(/, x) = ~ / (~k~) (1 -  xknx) \n(x-xk~)/  
k=l 

It was proved by L. Fej6r [1] that H~(f ,x)  converges uniformly to f(x) if 
f (x)  is a continuous function on [-1,  1]. The rate of convergence of H~(f, x) 
to ] (x)  when f(x) is a continuous function has been extensively studied 
before ([2]--[9]). A survey of various quantitative estimates of the rate of 
convergence can be found in [9], where it was proved that 

_ = +w~ + 
k=l 

Here C1 and C2 are positive constants and W I is the modulus of continuity 
of I. 

The behavior of Hn(f, x) when f • BV[-1,  1] (i.e., f is of bounded varia- 
tion on [-1,  1]) was studied by Bojanic and Cheng [10]. It was proved that if 
f E BV[-1,  1] and continuous at x • ( -1 ,  1) then Hn(f, x) converges to f(x) 
when n tends to +oo and the rate of convergence of Hn(f, x) to f(x) satisfies 
the following inequality 

(1.3) [H,(f ,  x ) - f ( x ) [  _-< 64T~(x) ~-~VX+~/kr,~ oVx+lr[Tn(x)[/2n{ ~e'~ 

k----1 
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where Vba(f) is the total variation of f on [a,b]. (1.3) can not be improved 
asymptotically. 

However, if x is a point of discontinuity of f where f(x+) ~ f (x - ) ,  the 
sequence (Hn(f,  x)) is no longer convergent. This follows from the following 
observation 

(1.4) lim sup 1 1 
n--.oo inf Hn(f,x) = ( f (x+)+f(x- ) )+ If(x+)-f(x-)lj3(x) 

where ~(x) = 1 if x = cos(c~Tr) and a is irrational, and 

~(x)= \ - ~  / 1 -  _- (4q2V- 1)2 

if x = cos(p~r/q). 
(1.4) shows that ,  unlike Fourier series of 2~r-periodic functions of bound- 

ed variation or Bernstein polynomials of functions of bounded variation 
which all converge to ( f (x+)+f(x-) ) /2  ([11], [12]), the Hermite-Fej~r in- 
terpolation polynomials of a function of bounded variation converge only if 
y(z+) =/(x-). 

Although smoother functions find more applications in various fields such 
as computer  aided geometric design, computer  vision, graphics and image 
processing, the asymptotic behavior of Hermite-Fej~r interpolation polyno- 
mials for functions smoother than continuous functions has been studied only 
for functions with continuous derivatives. 

In this paper we shall investigate the asymptotic behavior of Hermite-  
Fej~r polynomials for functions defined the following way 

/f (1.5) / ( z )=/ ( -1)+ ~(t)at, xe[ -1 ,1 ]  
1 

where ~ is a function of bounded variation on [-1,  1]. This class of functions 
can be described as the class of differentiable functions whose derivatives are 
of bounded variation and will be denoted by DBV[-1 ,  1]. It is dear  that  
this class of functions is much more general than functions with continuous 
derivatives. However, as it will be seen in the next section, the asymptotic 
behavior of Hermite-Fej~r interpolation polynomials for functions in this 
category is also much bet ter  than  the asymptotic behavior of Hermite-Fej~r 
interpolation polynomials for continuous functions. Results for Bernstein 
polynomials for functions of this type can be found in [13]. 

2. Results 

Let / be a function in DBV[-1, 1] and ~ e BV[-1, 1] so that (1.5) is 
satisfied. For any x ~ ( - 1 ,  1) such that x ~ xk~ for k = 1, 2 , . . . ,  n we have, 
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from (1.2) and (1.5), 

(2.1) 
k = l  

where 

I \ n ( x - - X k n ) ]  ' k =  l , 2 , . . . , n .  

If we define ~x( t ) the  following way 

{ v(t)-¢(~-), t < 
v.(t) = o, t = 

,e(t)-,e(~+), t>~ 

then (2.1) can be expressed as 

(2.2) 

Since 

H , ~ ( f , x ) - f ( x ) =  

= -  ¢p~(t)dt Hk,~ (x) 
~kn<~X ~ k n ~  x kdgg 

-~(~-1 ~ (~-~k~lH~(~)+~(~+) ~ (xk~-~lH~(~). 
Xkn~X Xkn~X 

v(~+) ~ (~-~)nk~(~)-V(~-) ~ (~-xk~)a~(~)= 
Wkn~>X Xkn <~ 

2 2 
k = l  k = l  

and the two summations on the right-hand side of the equation are the 
Hermite-Fej~r interpolation polynomials of f z (  t ) - It - x I and g~( t ) = t - x ,  
- 1  _< t _< 1, respectively, we can further convert (2.2) as follows 

(2.3) a H A Hn(/, x) - f(x) = ~ ,~(/x, x) + ~Hn(g::, x) + P,~(/, x) 

where 
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(2.4) ~ =  ~ ( x + ) - ~ ( x - ) ;  ~ = ~ ( x + ) + ~ ( ~ - )  

and 

(2.5) P=(f,x)= 

N ( / ; )  ( / ? )  ~_, ~(tldt H ~ ( ~ ) +  ~ ~(tldt H~(~).  
x k n  <x  kn xkn>ar 

Therefore, evaluation of the rate of convergence of H~(f,  x) to f ( x )  is simply 
a matter  of evaluating Hn(fz, x), Hn(gx, x) a~td Pn ( f ,  x). 

We shall give estimates for H~(f~,x) and H,~(g~,x) first and then use 
these estimates to get an estimate for the rate of convergence of Hn(f,  x) 
to f ( x ) .  Since the estimates we get for Hn(fx, x) and Hn(gz, x) are of some 
interest, we shall state them as an independent theorem. 

TItEOKEM 1. I f  z E (--1, 1) and x # Xk,~ for  any k = 1, 2 , . . . ,  n then 

(2.6) Ik=~llXk,,- 

(2.7) 

x l n , : , , ( x )  - 2 ( 1  - x ~ ) i / ~ T ~ ( : ~ )  log n 
7r n 

xk,~- z)Hk,~(x < C IT'~(x)l 
= n 

_<_ clT,~(x)I, 
n 

where C = 7 + re. 

The rate of convergence of Hn(f,  x) to f ( x )  can be estimated as follows. 

THEOREM 2. Let  f be a funct ion in DBV[-1,  1] and qa e BV[-1,  1] so 
that (1.5) is satisfied. Then for  any x E ( -1 ,  1) such that z ~ zk,~ for  k = 
= 1, 2 , . . . ,  n we have 

(2.8) IHn(f,x)- f(x)- U(1--x'2)l/2Tn2(~g)Tr lognn = < c(I,~l + I.Xl)2 IT,~(x)ln 

~r lT ,~(z ) l . .~+ . lT . (~) l l ,~  , , ,  ~ ~ . 12T~(x) L %=-,qkt~Jk 
4 V t  __ 7r I"/1 I~ ' t  I l n  t ~JX J T n n k=l 

4- 

where vba(~x) is the total variation of  qo~ on [a,b],* a and A are defined in 
(2.4), and C is defined in Theorem 1. 

*We assume here  and  in  the  res t  of  t he  pape r  t ha t  f is ex t ended  to the  entire real  line 

by f ( x )  = f ( 1 )  for x > 1 and  f ( x )  = f ( - 1 )  for x < - 1 .  
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If f '  is cont inuous at x, i.e., a = 0 and A = 2 f ' ( z ) ,  then  (2.8) can be 
simplified as follows. 

~lT~(x)lv~+~lT"(~)l/~t ¢'~a. (2.9) IH,~(f,x)- f(x)[ < Clf ' (x)T, ,(z) l  t --=-,,IT.(-)I/,~" ' "  
= n n 

+ 12T~(z) - = - , q k w  ) 

n k 
k = l  

The  r igh t -hand side of (2.8) converges to zero as n ~ ~ since cont inui ty  
of ~oz at  z implies t ha t  

zq-~ v~_~(~) - ,  0 (~,~-~ 0+). 

Actually,  the  last t e rm  of the  r ight -hand side of (2.8) is o(log n /n ) -con-  
vergent .  Therefore (2.8) can also be expressed as 

I t n ( f , x ) = f ( x ) +  a(1-x2)XDT2n(x)log___nn + o  ( l o g n )  . 
7r n \ n ]  

Note t ha t  all the  es t imates  ment ioned  in Section 1 for continuous funct ions 
or funct ions of bounded  variat ion are o(1)-convergent only. 

As far as the  precision of (2.9) is concerned,  consider the  Hermi te -Fe j~r  
polynomials  of the  funct ion f ( x )  = x 2 at x = 0 for even n. Since T~(0) = 1 if 
n is an even integer,  we have 

~ T~(0) 1 
H . ( f , O ) -  f(O) = n 2 - n "  

k = l  

On the other  hand ,  since a = ~ = 0 at x = 0, it follows f rom (2.9) t ha t  

r +,1'~ 12 X~ V+~r/k" " 
IH"(f'0)-f(0)l<= nV-"/"(~°°)+ n 2.,._., -~/k~°°)k 

k = l  

since ~o(t) = 2t and  ~oo(t) = ~o(t), we have 

47r 2 12 ~ 4 r  C 
IH'~(f' 0 ) -  f(O)l < - ~  + - - - -  n ~-" ~ <--n 

k = l  

for some C > 0. Hence for the  funct ion f ( x )  = x 2 when n is ~n even integer  
we have 

1 C 
- __< I H . ( f ,  0 ) -  f ( 0 ) l  < - -  
n n 

for some positive constant  C > 0. Therefore (2.9) can not  be improved 
asymptotical ly.  
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3 .  P r o o f s  

3.1. PROOF OF THEOREM 1. To prove (2.6), observe that 

(3.1) tt,,(I:,~)- I ~ - x l ( 1 - ~ )  t . ~ ( ~ - ~ . ) )  -< 
k = l  T/, 

Therefore, it is sufficient to study the asymptotic behavior of the second 
term on the left-hand side of (3.1) only. 

Let x - cos 0, 0 < 0 < r ,  xkn = cos 0k,~, 0k,~ = (2k - 1)~r/(2n), k = 1, 2 , . . . ,  
n, and define 

tio(a) = { 1, i f 0 < ~ < 0  
-I, i f t g<~<~r .  

Then 

(3.2) 
{ sin:0cos2( O) 

k=~ t ~ ( x -  xk~))  k=~ ~(cos ok,,-cos o)" 

Since cos0k~-cos  O = (O--~k,~)sin~k,~ for some ~kn between 0 and 0k~, it 
follows that 

Ik~ 1 sin2 v9 cos2(n~) 
~(~k~) n~-~J s -~ -  ~--J-s 0) 

( sio  
= n 2 cos Ok-~-~ ----cos 0 

k----.1 

< sin~cos2 n0 ~ 1 ( sin~ 
k----1 

_;: S i l , °  I 

0 - V~kn = 

'0 - Ok,~' = 

< 

= n~ O-Ok-----7 ~ ,S = 
k = l  

sin~ c°s2 n~ ~ I n  2 %9----117kn O--~kn I < sin z7 c°s2 n~ ~ I ~ l - - - - = - - - - s i n  ~ k n  = n2 
k = l  k = l  

Furthermore, since I sin 91--> I~1/" iS I01 -<_ ~, we have 
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] cos O-cos ~gk,~ [ 12 sin ~--TY-~ sin £-7A~ __ 2 2 > 
sin ~ k ~  = ~---S-~-k, ~ z9 - 0k,~ 

2 sin a+a*" ~-~k" 2 I (O+~gkn) [ 2 2 ~ = -  sin > M(~9) 
=> 0 - 0~n rr 2 = 

where M(O) = rain(sin },sin - ~ ) .  Therefore, 

(3.3) 

I ~ ( ~ ) n ~ ( c o s ~ - c o s O )  k=~ ~(k~) ~((~---~k~) < = T$ 

by noticing that M(O) >__ sin z9/2. 
Let j be the integer such that zgjn < 0 < ~gj+l,n. It is easy to see that 

Sin~. ,~(o - o~.,) = , r ( ~  + 1  ~), we have 

(3.4) 
'~ sin 0 cos2(n, ~9) 

k = l  

- -  nv ~ 1 (~ I ~) -- n ~  ~ - ; - +  - . .  + - 
k = l  

1 1 nTr ~ - + 7 - j + k  ,~_A+~ - 1 - k  
7Y 

nTr . ~ + 1  • I" E k+l_(~+l)+j = ~ - ? + k  k=o 

nr p(n'O)+k + 1 - p ( n 0 ) + k  = AI+A2 
k = 0  

where 

~-~+ 

We shall prove that A1 and A2 are both asymptotically equal to 
sin ~ cos 2 nz9 log n/(n~r). 

Acta Matkematica Hun#arlca 59, 199~ 



98 R. BOJANIC AND F. CHENG 

First ,  observe tha t  

(3.6) A 1 - -  
sin # cos 2 n#  log n 

nTl" 
- -  61,1 + 61,2 

where 

sin # cos 2 n#  1 sin ?~ COS 2 n~ 
61,1 - -  61, 2 - -  

n r  p ( n ~ ) '  n~r 
1 - l o g  n . 

p(n0)+k 

Since cos n~) = ( - 1 )  J sin(p(n~)~r) where j = [nzg/~r % 1/21, if follows tha t  

(3.7) 1~1,1[ ~ sin ~9] cosn~  I 
n 

On the o ther  hand ,  it is easy to see tha t  

i I p ( n # ) + k - l ° g n  < 5. 

Hence, 

( 3 . 8 )  161,2[ 
5 sin # cos 2 n# 

n ~  

Therefore,  f rom (3.6), (3.7) and (3.8) we have 

( 3 . 9 )  { m l -  sin # c°s2 nzg l°g n { < 3 sin #[ c°s = n 

The  evaluation of the  asymptot ic  behavior  of A2 can be carried out  in a 
similar way. First ,  observe tha t  

sin ~ cos 2 n# log n 
(3.10) A2 - -  "" 62,1 + 62,2 

where 

62, 2 = 

sin ~ cos 2 nz~ 1 
62,1 ~-- 

n~  l-p(n#)' 
sin ~ cos2 n#  ( n ~  1 i l o g n )  . 

nr  \ k=l l -p(n~)+k 

Since cos n~ = ( - 1 )  j sin(1 - p(n~)Tr) where j -- [n~/Tr + 1/2], it follows t ha t  
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(3.11) I~,~1 <__ 
sin 01 cos n0l 

?Z 

On the other hand, it is also easy to see that 

k=~ i- p(nO) + k - log  n I < 5. 

Hence, 

(3.12) ]~2,21 < 
5 sin O cos 2 nO 

?ZTI" 

Therefore, from (3.10), (3.11) and (3.12) we have 

(3.13) 
I sin O cos2 nOlog n I < 3 sin OI cosnOI 
A 2  --  ~Tr rt  ' 

and the estimate (2.6) follows from (3.1), (3.2), (3.3), (3.4), (3.6), (3.9) and 
(3.13). 

To prove (2.7), observe that by using a similar technique we can show 
that 

(3.14) 

(3.15) 

(3.16) 

I n 
\ n ( ~ - x k ~ ) ]  I = ~ ' k = l  

n I T , ~ ( x ) ~ 2  ~ sin20cos2(n0) 
(xk~-~)(1-~2) \ n ( x - ~ k ~ ) ]  = ~-(;g~-oZ:~-oTo)' 

k = l  k--1 

kn=~l sin20 c°<(n0)  _ k)2:~,l sin 0 c°s2 (n0) < 7r cOs2 n0 
~ 2 ( ~ o s O k ~ - c o s O )  = ~ ( 0 - o k ~ )  = ~ ' 

where x = cos 0, 0 < 0 < r ,  xkn =-cos 0k=, 0k= = (2k - 1)rr/2n, k = 1, 2 , . . . ,  n, 
and 

sin 0 cos2 (n0) 
(3.17/ Z ~2~:~-~)  = a~-  ~ 

k = l  

where A1 and A2 are defined in (3.4). It follows immediately from (3.9) and 
(3.13) that 

(3 .1s)  I z x l -  zx21 5 
6 sin Ol cos nOI 

n 

Acta Mathematica Hungarica 59, 199~ 



100 R. BOJANIC AND F. CHENG 

Therefore, (2.7) follows from (3.14), (3.15), (3.16), (3.17) and (3.18). 
3.2. PROOF OF THEOREM 2. Since the evaluation of Hn( f~ ,x)  and 

Hn(g~, x) is already done in Theorem 1, the only thing we have to do now 
is the evaluation of Pn( f ,  z). The technique used here is similar to the one 
used in [10]. 

For any x E ( - 1 ,  1) such that  x ~ Zk,~ for k = 1, 2 , . . . ,  n we have 

±1// [Pn(Y,x) l  < ~oz(t)dt Hkn(x) < 
k = l  kn 

:==< I :+:=< _ dt I z - x k ,  lV ~ ) H k ~ ( ~ )  < v :  + ~ )  n k ~ ( x ) <  
k = l  kn k = l  

where tk~ = I x - ~ l  and V ~ ( ~ )  is the total  variation of ~p~ on [a,b]. Let 
x = cos v q, 0 < # < r ,  xk,~ = cos ~k~, zgk~ = (2k - 1 ) r / (2n) ,  k = 1, 2 , . . . ,  n, and 
define 

(, + l, E~(n,~9)= k:~-~n<la-0k~l==_ ~X j , ~ = 0 , 1 , . . . , 2 ~ - 1 .  

Then we have 
2n- - i  

Is - ~k= I v , _ , , .  (~.)Hk=(~).  
r = 0  k6E~(n ,d)  

Since tk~ = I x - x ~ l  =< 10-0k~l-< ~IT~(~)I/2~ if k 6 Eo(n, ~9) (see [9], p.257) 
and Eo(n,  0) has at most two elements, it follows tha t  

(3.19) 
~+t,. rlTn(x)l  vX+~rlT,(x)l/2n[ ,, 

= ?Z 

On the other hand,  since E r (n ,  O) has at most two elements, 

T2(x) 
Ix - ~k~ I Hk. (~) < (1 - ¢o~ 0 co~ Ok. + sin 0 sin 0k~) ~21 cos 0 - cos Ok~ I =< 

_<_ ( 1 -  cos(Okn + 0)) T2(z)  < 

< T~(~)~ < 2T~(~) 
= n21~9-zgk,~l = nr  

and t ~  __< (~ + 1)~ /2~  if k e E~(~, 0), we have 
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(3.20) ~ Iz-zk~lV:+~2:(~:)Hk~(z) < 4Tx( )V: + (~x) 
= n r  - t  s t 

kEEr(n,d) 

for r= 1 ,2 , . . . , 2n -  1. Therefore, by (3.19) and (3.20), 

(3.21) IP,~(f,x)l < rlT,~(z)l...~+,iT.(:)i/~,,, , .  n vz-~rlT"(~)ll 2~tcp~j-i- 

4T~(x) 2~-~ I _1V=+(.+1)./2=( ~ 

r=l 

VX+t/. Let Q(t)= ~-t,w~)- Then 

(3.22) 2 • - •  11Vz+(r+l)r/2n, , 
r ~-(~+')~/2 '~)  = 

r = l  

2n  2 

, , -1 ~ - - < 2 Z ;  ~ " 
r = 2  r = 2  

By virtue of the fact that Q(t) is a aon-decreasing function, we have 

/,,-+1,~-1,~ O(_t)dt> Q (2-nn)/,,-+1,-,,-12~ d_t> Q (~)log 1 + 
Jrlr/2n t = Jr~r/2n t = 

or 

(~) 3 ]'('+1'~/:~ O(Od,. 

Hence 

( r r )  3 [~(2~+~)12~ Q(t) dt. 
r----2 

Since Q(Trlt) is non-decreasing and Q(rrlt) = Q(rr) for 0 < t <__ 1, we have 

L ~ Q(Trit)dt< L 1 Q(rlt)dt+ 71 n Q(r/t)dt< 
n/(2nh-1) $ = n/(2n+X) t t = 

< Q(,~) ~ _ ,  Q(~/k_____~) < 2 Q(~/k) 
= 2 n + l  k = k 

k = l  k = l  

and therefore 

(3.23) 2 n l Q  ~ n  < 3  k 

r=2 k=l 

The proof of Theorem 2 follows now from (3.21) and (3.23). 
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