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Abstract. For analytic step regulation in numerical integration of highly eccentric orbits it is proposed 
to use the orbital arc length of a moving partMe as independent argument. 
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1. Introduction 

In integrating highly eccentric orbits the physical time t is often replaced by the 
fictitious time s 

dt = Q ds , (1) 

with Q being some function of coordinates and velocity components of moving 
particle (Janin, 1974; Nacozy, 1981). In particular, it is aimed thereby to ensure 
the more uniform distribution of orbital points for equidistant values of argument 
(analytic step regulation) and to make possible the use of fixed-step numerical 
integration methods. The function most generally employed is 

Q = ck r k (2) 

with k = 1 (eccentric anomaly), k = 3/2  (elliptic anomaly) and k = 2 (true 
anomaly), ck is usually chosen so that the variation of 27r for 3 corresponds to one 
period P of the Keplerian motion in physical time 

P 

1 f r_kd t 
o 

(3) 

A more compl icaed function Q has been proposed in (Ferrandiz et al., 1987; 
see also Ferrandiz, 1986) 

Q = r3/2(cto + al r) -1/2 , (4) 
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with a0 and al being constants or functions of Keplerian elements. In the general 
case, with non-zero ao and al, the function (4) leads to the generalized elliptic 
anomaly s. By a suitable choice of a0 and al one may ensure a sufficiently uniform 
distribution of points of specific orbit for equal intervals of s. 

However, the same purpose may be achieved directly by adopting for s the 
orbital arc length of a particle. The aim of this short note is to call attention to the 
possibility of such a choice. Needless to say, the length of arc is sometimes used 
as an independent argument in theoretical investigations but, it seems to us, its use 
for numerical integration has not been discussed in the literature. 

2. K e p l e r i a n  M o t i o n  

In terms of eccentric anomaly 9 the rectangular orbital coordinates of the moving 
particle have the values 

X = a ( c o s  g - e ) ,  Y = a (1  - e2) 1/2 sin g ,  (5)  

with a and e being the semi-major axis and eccentricity, respectively. 
The radius-vector is determined by the expression 

r = a(1 - e cos g) • (6) 

The relation with time is given by the Kepler equation 

9 - e s i n  9 = n( t  - T ) .  (7)  

T is the time of pericentre passage, n is the mean motion. The length of arc s 
satisfies the differential equation 

d9 I-\~-9 J + \-79-9 / j = a(1 - e 2 cos 2 g ) 1 / 2  . (S) 

Reckoned from the pericentre, the length of arc is 

9 9+re~ 2 

f (1 --6:2 COS 2 ~t) 1/2 d~/, = a  f ( 1 -  e2 sin 2 ~/,)1/2 d~t 8 =  a 
, ]  

0 Tr/2 

= [ E ( o  + - (9) 

We use here the standard notation for incomplete and complete elliptic integrals of 
the second kind 
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U 

E(u, k) = f (1 - k 2 sin; u) 1/2 du,  
i /  

0 

~/2 

/ (1 - k 2 sin 2 u) U2du.  E(k) 

0 

Therefore, using elliptic Jacobi functions of modulus e one has 

g = a m ( S  + E )  7r 

2 ' ( lO)  

s i n g = - c n  + E , c o s g = s n  + E . 
' , a  

Needless to say, the quantity s may be represented in different forms, for example 

( sin g ) e 2 sin 9 cos g 
s = E  a r c s i n ( l _ e  2cos e g ) l / 2 ' e  - ( 1 - e  2cos 2g)I/2" (11) 

From (7) and (8) it follows that: 

d r _  dt d g _  1 [ 1 - e c o s g ] U 2  (12) 
ds dg ds n a  l + e c o s  " 

Using Kepler's third law naa 3 = G M  and denoting by -hk  the Keplerian energy 
of particle 

G M  
hk -- , (13) 

2a 

one may reduce (12) with the aid of (6) to the form (1) with the function 

Q = r l / 2 ( 2 G M  - 2h~ r) -1/2 . (14) 

Expressed in this form the transformation (1) is applicable to any type of Keplerian 
motion. In the case of elliptic motion one may demand that one period in physical 
time t would correspond to the variation of a new argument s* by 2re. This means 
the description of relation (1) in the form 

dt = Q* ds* 

with 

2a 
Q* = cQ , ds* = c -1 d8 , c = - -  E ( e )  . 

7F 

(la) 

(15) 
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3. Perturbed Motion 

Let us consider the equations of perturbed motion in the standard form (Stiefel and 
S cheifele, 1971; Janin, 1974) 

G M  OV 
+ 7 -  x = F -  0--~' (16) 

with V = V(x,  t) being a perturbing potential and F being a non-conservative 
perturbing force. If perturbations are sufficiently smooth and small, then the step of 
numerical integration will again be determined by the eccentricity of the Keplerian 
orbit. Therefore, the transformation (1) with the value (14) may be useful, hk is to 
be meant there as 

G M  V 2 
hk -- - -  (17) 

r 2 

where v is the velocity of the particle, h~ satisfies the equation 

(18 )  

As noted in (Stiefel and Scheifele, 1971) it is suitable to use the complete energy 
- h  

h = hk - V ,  (19) 

satisfying the equation 

j~ _ OV F v .  (20) 
Ot 

Transforming Equation (16) to the equations of the first order and introducing the 
independent variable s one obtains 

d x  
- -  = Q v ,  (21)  
ds 

dv ( _ __aM O_ x ) 
d s =  Q r3 x + F -  , (22) 

dt 
d-~ = Q '  (23) 

dh OV F v ) .  (24) 
ds- Q(-O-(+ 

These equations should be complemented by algebraic relations (14), (17) and 
(19). The definition of s implies that 
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Q = (V2) - 1 / 2  • (25)  

In virtue of (17) this determination coincides with (14). Therefore, Equations (21)- 
(24) may be deduced without using the solution of Kepler problem. Moreover, in 
using (25) Equation (24) becomes unnecessary for solving Equations (21)-(23). 
The energy h may be determined, if needed, by the finite formulae (17) and (19). 

To improve stabilization of numerical integration the variable t is often replaced 
by the time element ~- which changes linearly with s in the unperturbed motion. 
In our case this may be done using the standard technique by Nacozy (1981) 
on the basis of the Kepler equation (7) and explicit expressions as (11). But the 
interrelation between 7- and t will involve elliptic functions making computation of 
right-hand members of the equations of perturbed motion more complicated. The 
efficiency of such transformation may be tested only by actual calculations. 

4. Numerical Tests 

The efficiency of the transformation (1) and (25) has been tested by several exam- 
ples. We have used the Bulirsch-Stoyer integrator as implemented in (Press et al., 
1989). Integration was performed on a 12 MHz 286 IBM AT computer. To avoid the 
scaling factors we have used as independent arguments the mean anomaly M = n t  

and the length of arc s* expressed in radians. In each version we have tried to set 
the optimal parameters of integrator in order to perform the 'clean' comparison of 
M- and s*-integrations. It is to be noted that the M-version is much more sensitive 
to the choice of initial step of integration than the s*-version. 

In the results reproduced here and dealing with unperturbed motion we give the 
integrator accuracy (EPS), the number of steps (NS), the number of the right-hand 
side computation (NRHS), the computing time (CPT) and the final accuracies in 
position vector IAxl and velocity IAv]. All these data are given for one revolution 
of a satellite. The satellite under consideration was HEOS I with the orbital elements 
(Janin, 1974): 

a = 118363.47km 
e = 0.942572319 
i =28°.16096 

= 185°.07554 
w =270°.07151 
M 0 =  0 °. 

The period of revolution of this satellite is 4.69 days. 
The results obtained are as follows: 
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Argument EPS NS NRHS CPT [s] lax[ [km] IAvl [km/s] 

M 1.E-  12 34 2234 8.9 0.3 E - 0 5  0.2 E - 0 8  
s* 1.E-12 27 1771 7.1 0.1 E-0 .7  0.1 E - 1 0  

M 1.E-14 47 3119 12.5 0A E - 0 7  0.3 E - 1 0  

The last line shows that to obtain in the M-version the same final accuracy as 
in the s*-version one needs much more calculating. 

Finally, it is interesting to note that even for quasi-circular Navstar orbit (e = 
0.01) the s*-version turns out to be a little more advantageous than the M-version 
as seen from the following data: 

Argument EPS NS NRHS CPT Is] IAxl [krnl IAvl [km/sl 

M 1.E-12 13 877 3.5 0.4 E - 0 7  0.5 E -11  

s* 1.E-12 11 763 3.1 0.3 E-0 .8  0.4 E - 1 2  

5. Conclusion 

Analytic step regulation for highly eccentric orbits may be achieved rather simply 
by choosing as independent argument the arc length s determined by differential 
Equation (1) with value (14). In unperturbed motion the dependence of s on t is 
expressed by means of elliptic functions. Equations (21)-(24) of perturbed motion 
may prove very useful for numerically integrating highly eccentric orbits. 
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